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Abstract: Transient changes in the power demand of state-of-the-art fuel cell systems are
compensated by a battery in order to operate the fuel cell system safely within its physical
boundaries. More concretely, oxygen starvation in the fuel cell is conventionally prevented by
directly controlling the oxygen excess ratio. However, this limits the transient response of the
fuel cell and the system’s overall flexibility and efficiency. In order to overcome these limitations,
we ascribe the task of the dynamic but safe response in a hybrid system to the fuel cell.
For this purpose, we present a nonlinear model predictive control approach which is able to
realize efficient transient power tracking, while considering the oxygen excess ratio explicitly
as a boundary. We address the control challenges of a nonlinear, coupled, and bounded system
with an adequate control design using a real-time capable nonlinear controller model. The
controller is validated as proof of concept in simulation with a detailed dynamic plant model.
Our contribution realizes a collaborative power setting by fuel cell and compressor. Moreover,
system efficiency both in stationary and in transient operation is achieved, while preventing
oxygen starvation as well as compressor surge and choke throughout the entire operation.

Keywords: Fuel cell systems, Air-path control, Model-based control, Nonlinear systems

1. INTRODUCTION

Fuel cell systems have recently become one of the most
promising technologies for emission-free power generation
both in stationary and mobile applications. This devel-
opment can be attributed to their wide applicability, high
power density and efficient operation (Gruber et al., 2012).
In order to further exploit their potential in clean power
production, a safe but increasingly dynamic and powerful
operation of fuel cells is desired (Pukrushpan et al., 2004;
Li and Liu, 2009).

The central issues of a dynamic power supply are its com-
pliance with physical boundaries, power demand tracking,
and system efficiency. These issues are determined and
dominated by the cathodic air path including the compres-
sor (Pukrushpan et al., 2004), which is part of a periphery
with a variety of components (see Fig. 1). Hence, the focus
of this paper lies on the cathodic air dynamics.

Yet, the dynamic operation and transient response of fuel
cell systems are predominantly considered slow (Li and
Liu, 2009). This is because such systems are challeng-
ing to control, especially during transients: The system
of interest is over-actuated with coupled, nonlinear, and
constrained system dynamics (Ettihir et al., 2016). Oxygen
starvation in the fuel cell, as the most critical boundary,
threatens the functionality and lifecycle of the fuel cell
stack (Guo et al., 2013). Especially during load changes,
fuel cells are prone to oxygen starvation, since the dy-
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Fig. 1. Schematic structure of the integrated fuel cell
system as part of a hybrid system, and power flows
of the overall system Psys, the battery Pbat, the fuel
cell stack Pfc and the compressor Pcm, resulting in the
fuel cell system net power Pnet.

namics of the reactant-supplying air flow are significantly
slower than the reactant-consuming electrochemistry. Con-
sequently, many contributions operate the fuel cell conser-
vatively and hence extensively use a secondary component,
such as batteries or supercapacitors, to buffer the transient
power delay during these load changes (Liu et al., 2018; Et-
tihir et al., 2016; Li and Liu, 2009; Vahidi et al., 2006). In
contrast, we investigate a control approach which ascribes
the task of dynamic power supply in a hybrid system to the
fuel cell while adhering to the boundaries. As one beneficial
consequence, the secondary component can be downsized.
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As another challenge of dynamic power supply, starvation
prevention at all times is considered to be more important
than an instantaneous and efficient power setting. Hence,
many contributions treat the oxygen excess ratio λO2 as
the primary control objective. It is often chosen as the
main control variable and maintained at λO2,dem = 2 with-
out explicit consideration of an efficient system operation
(Vahidi et al., 2006; Bordons et al., 2006; Puig et al., 2007;
Gruber et al., 2012). Other contributions propose tracking
an efficiency maximized steady-state excess ratio λ∗O2,dem,
which is subject to the operation point and thereby still
confines the range of the system operation more strictly
than necessary (Guo et al., 2013; Bordons et al., 2006; Arce
et al., 2010; Hähnel et al., 2015). In contrast, we omit the
control of λO2 but consider oxygen starvation explicitly
as a boundary. We thereby create the potential to treat
the power demand tracking and efficiency as the primary
control objectives.

The omission of the safety-focused control variable ne-
cessitates accurate knowledge of system dynamics and
states, and, most importantly, the ability to explicitly
consider boundaries in the controller. For this purpose,
model predictive control (MPC) strategies are predestined
to be applied to the system of interest (Vahidi et al., 2006;
Bordons et al., 2006; Gruber et al., 2012; Arce et al., 2010;
Hähnel et al., 2015; Liu et al., 2018). While the majority of
presented solutions use a linearized approximation in the
operation point (Arce et al., 2010; Bordons et al., 2006),
the accurate prediction of system dynamics is essential
during transients in the presence of physical boundaries,
and hence a nonlinear description and thus nonlinear MPC
(NMPC) is beneficial, as presented in this paper.

Considering efficiency and power tracking in detail, the
compressor accounts for the highest peripheral power
consumption and the dominant time lag. On the one hand,
the compressor operation lowers the overall efficiency of
the fuel cell system by up to 30 % (Haubrock et al.,
2006). Thus, it is sought to be reduced to a minimum.
On the other hand, the system’s net power Pnet is jointly
determined by the fuel cell Pfc and the compressor Pcm,
as shown in Fig. 1. Simultaneously, neither Pcm nor Pfc

can follow step-like load changes without deviation due
to their delayed transient response. Yet collaboratively,
dynamic delay can be eliminated and an accurate dynamic
power tracking can be achieved. Thus far, Pcm is widely
considered solely parasitic and hence, the potential of the
over-actuated system of fuel cell stack and compressor is
not utilized (Pukrushpan et al., 2004; Haubrock et al.,
2006; Suh and Stefanopoulou, 2006; Zhao et al., 2016). In
contrast, we include both Pcm and Pfc as an additional
degree of freedom in the control strategy. Hence, we
promote an efficient and deviation-free power demand
tracking in both transient and steady state. To the best of
our knowledge, this has not yet been of research interest.

In this contribution, we present an NMPC with power ref-
erence tracking and efficiency optimization for the fuel cell
system. Hence, the power of both the fuel cell Pfc and the
compressor Pcm is considered and the reference Pnet,dem

hence collaboratively set. Simultaneously, compliance with
all physical boundaries, i.e. starvation prevention as well as
choke and surge prevention in the compressor, is ensured.
We omit all optimization objectives which solely seek to

keep the operation physically valid and reformulate them
as boundaries. We thereby enable the fuel cell system to a
more dynamic and powerful operation.

The paper is organized as follows. In Sec. 2, the control
approach for the fuel cell system in the context of a
hybrid system is described, including the controller model
deduction. The control design is described in Sec. 3.
Finally, the application of the controller to a detailed plant
model is presented in Sec. 4 and the control performance
is evaluated. A conclusion is drawn in Sec. 5.

2. CONTROL-ORIENTED MODELING

In this section, we present the plant model and the vari-
ables, followed by the general prediction model simplifica-
tions (reduced-order model) with focus on the cathodic air
flow. Subsequently, the prediction model is summarized by
a system of nonlinear differential equations.

Plant Model Figure 2 depicts the plant model of the
integrated proton exchange membrane fuel cell (PEM FC)
system, used in this paper as part of a hybrid system
with a battery and power electronics. The fuel cell system
model is obtained from the detailed dynamic model by
Pukrushpan et al. (2004), which is widely recognized for
its comprehensiveness and wide range of applicability. For
conciseness of this paper, we refrain from restating the
overall system model and focus on simplifications and
modified equations. The complete dynamic model can be
accessed as a MATLAB/Simulink R© model in Pukrushpan
et al. (2002).

Fig. 2. Schematic structure of the plant model of the PEM
fuel cell system - black: considered in controller model,
grey: neglected in controller model.

Controller Variables We choose the states x = (pca, prm,
pO2

, psm, ωcp,msm, Tst, Ufc), with the pressure in the cath-
ode pca and in the return manifold prm, the oxygen partial
pressure in the cathode pO2 , the pressure in the supply
manifold psm, the compressor speed ωcp, the air mass in
the supply manifold msm, the stack temperature Tst, and
the stack voltage Ufc. The inputs u = (Ist, Ucm, hrm) are
analogous to Vahidi et al. (2006) the fuel cell current Ist
and compressor voltage Ucm. Furthermore, we add the
aperture of the valve hrm as a further input in order to
obtain a degree of freedom in the compressor operation
(Hähnel et al., 2015). The output is y = Pnet.
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2.1 General Modeling

The controller model is derived from the plant model with
regard to the following key aspects:

I) dynamic power tracking,
II) compressor surge and choke prevention,

III) prevention of oxygen starvation, and
IV) efficiency maximization in transient and steady state.

Fuel Cell Voltage Formation The core of the fuel cell
system model is the nonlinear voltage formation Ufc of the
fuel cell, with the Nernst potential Un, corrected by the
three voltage losses ∆Uact, ∆Uohm, and ∆Udiff :

Ufc = Un −∆Uact −∆Uohm −∆Udiff (1)

= f(pca, pO2
, Tst, Ist).

Pfc = Ist Ufc (2)

As Ufc determines the fuel cell power Pfc, it is crucial for
the control performance and hence modeled identical to
the plant model.

We assume the following simplifications with subordinate
relevance to the key aspects (I–IV). Figure 2 depicts the
considered components in black and the neglected ele-
ments in grey. We assume that the compressor is the only
power consuming auxiliary component (Haubrock et al.,
2006; Liu et al., 2018). Thus, the net power Pnet is cal-
culated as the difference between Pfc and the compressor
power Pcm (Pukrushpan et al., 2004):

Pnet = Pfc − Pcm. (3)

Since this paper’s focus lies on the cathodic dynamics,
no anodic effects, such as purging, are modeled. Active
cooling is ignored, since its effect on the temperature for-
mation over the prediction horizon is small. Moreover, we
assume an ideal humidifier and thus neglect the influence
of humidity (Hähnel et al., 2015). Finally, the pressure
balancing between anode and cathode as well as the stack
cooling are not considered in the NMPC. Instead, auxiliary
PID controllers are ascribed with these tasks, as proposed
by e.g. Vahidi et al. (2006).

2.2 Cathodic Air Flow Modeling

All key aspects of the control (I–IV) concern the cathodic
air flow. Consequently, the controller model includes the
essential physics of the compressor and the flows through
the three control volumina (sm, ca, rm (see Fig. 2)):

Compressor The electrical power consumption of the
compressor Pcm is calculated by:

Pcm =
Ucm

Rcm
(Ucm − kv ωcp), (4)

with the compressor motor voltage Ucm and the motor
constants Rcm = 0.82 Ω and kv. The compressor speed
ωcp is obtained via conservation of momentum τi with the
compressor inertia Jcp = 5 · 10−5 kg/m2:

dωcp

dt
=

1

Jcp
(τcm − τcp) (5)

τcm = ηcm
kt Pcm

Ucm
(6)

τcp =
cp Ta

ωcp ηcp

(
Π
γ−1
γ − 1

)
ṁcp, (7)

Fig. 3. Compressor map.

Table 1. Parameters δij of compressor mass
flow rate approximation ṁcr.

δ00 1.96 · 10−1 kg
s

δ10 − 9.98 · 10−2 kg
s

δ20 − 9.47 · 10−2 kg
s

δ11 4.81 · 10−6 kg
s (RPM)

δ21 6.09 · 10−7 kg
s (RPM)

δ12 − 2.08 · 10−11 kg
s (RPM)2

δ01 − 4.73 · 10−6 kg
s (RPM)

δ02 4.36 · 10−11 kg
s (RPM)2

δ03 − 2.87 · 10−16 kg
s (RPM)3

δ13, δ22, δ23 = 0

with the compressor motor efficiency ηcm = 0.98, the
motor constant kt = kv = 0.0153 Nm/A, the heat capacity
ratio of air γ = cp/cv = 1.4, the ambient temperature
Ta, the pressure ratio across the compressor Π = psm/pa

with the ambient pressure pa. The variable compressor flow
efficiency ηcp = f(ṁcp, psm) in the plant model, is set to a
constant value of ηcp = 0.8 in the controller model. As a
result, the computational effort is reduced while accepting
a minor mismatch. The compressor mass flow rate ṁcp is
obtained from the compressor map (see Fig. 3 and (8))
via the corrected compressor mass flow ṁcr = f(Π, (Ncr ∝
ωcp)), with the temperature correction (Θ =

√
Ta/288K)

and pressure correction (ψ = pa/1atm). In the plant model,
the compressor map is approximated by an exponential
equation for ṁcr, which is computationally intensive with
high gradients in the operation area’s periphery, and can
cause numerical instabilities within the control algorithm.
Thus, we calculate a polynomial fit for the controller model
of the NMPC using a least squares fit:

ṁcp =
ψ

Θ
ṁcr ≈

ψ

Θ

2∑
i=0

3∑
j=0

δijΠ
iN j

cr. (8)

The parameters δij are listed in Tab. 1. Inadequate approx-
imation might lead to an operation outside the boundaries.
Especially in surge operation, this can cause severe damage
to the compressor and the entire air flow system (Kurz
et al., 2016). Thus, it is of utmost importance that the
polynomial approximation shows little deviation from the
exponential equation in vicinity to the surge and choke
boundary, so that the controller can obey the boundaries
correctly. Therefore, the weight of the value points for
the approximation is raised in proximity to the surge and
choke line.

Manifold and Cathode Connections In comparison to the
original plant model, the connections between the inlet
manifold and cathode, respectively cathode and return
manifold were changed from nozzles to orifices. Nozzles
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are in general intended to control a flow, while orifices
can result from a constructional necessity. The mass flow
across an orifice ṁori can be described as:

ṁori = αAρA

√
2

∆p

ρA
, (9)

where α = 0.3 is the flow coefficient, A the orifice area, ρA

the density of air before the orifice and ∆p the pressure
loss across the orifice (Hähnel et al., 2015). The orifice area
A is empirically derived (Aca,in = 0.0003 m2, Aca,out =
0.00025 m2), so that the ratio between ṁori and ∆p ap-
proximates the nozzle parameter k used in the original
model by Pukrushpan et al. (2004). It can be observed
that this formulation slows down the air flow dynamics,
and hence stabilizes the cathodic air flow.

Inspired by Hähnel et al. (2015), we substitute the return
manifold’s nozzle by a valve (10), i.e. expand the nozzle
equation by an aperture hrm = ṁv/ṁv,max, which indicates
the valve’s relative flow rate. The maximum mass flow
across the valve ṁv,max equals a linearized nozzle mass
flow (Pukrushpan et al., 2004). krm = 5 · 10−6 kg/(s Pa) is
the nozzle parameter.

ṁv = ṁv,max hrm = krm(prm − pa)hrm (10)

2.3 Overall State-Space Model

The resulting prediction model of the fuel cell system is
mathematically described by the state-space model as a
system of nonlinear ordinary differential equations (ODE)
and the output equation:

ẋ = f(x,u) (11a)

y = g(x,u). (11b)

The entirety of state and output equations is modeled
via ideal gas law, mole flows ṅi, mass flows ṁi, constants
ci, and conservation of energy (heat Q̇i, power Pi), mo-
mentum τi, and mass mi, according to Pukrushpan et al.
(2004). The interconnections in the state-space model are:

ṗca = ẋ1 = c1
∑

ṁiTst = f(pca, prm, psm, Tst, Ist) (12a)

ṗrm = ẋ2 = c2
∑

ṁiTst = f(pca, prm, Tst, hrm) (12b)

ṗO2
= ẋ3 = c3

∑
ṅiTst = f(pca, prm, ... (12c)

pO2 , psm, Tst, Ist)

ṗsm = ẋ4 = c4
∑

ṁiTi = f(pca, psm, ωcp,msm) (12d)

ω̇cp = ẋ5 = c5
∑

τi = f(psm, ωcp,msm, Ucm) (12e)

ṁsm = ẋ6 =
∑

ṁi = f(pca, psm, ωcp) (12f)

Ṫst = ẋ7 = c7
∑

Q̇i = f(Tst, Ufc, Ist) (12g)

U̇fc = ẋ8 = c8 (Ufc,mod − Ufc) (12h)

= f(pca, pO2
, Tst, Ufc, Ist)

Pnet = y =
∑

Pi = g(ωcp, Ufc, Ist, Ucm). (12i)

Note that in (12h) the fuel cell voltage Ufc is fed back to the
controller as an artificial differential state via a first-order
lag element in order to detect and correct mismatches
between the plant and the controller model. The constant
c8 = 1/∆t equals the inverse of the sampling time ∆t. The

voltage Ufc is measured in the plant model and fed back
to the controller every execution step. Ufc,mod is the stack
voltage which is algebraically modeled in the controller
model (Pukrushpan et al., 2004). Mismatches occur since
the fuel cell voltage formation in the plant model is highly
nonlinear and influenced by a multitude of variables that
are regarded in a simplied manner in the controller model.

3. CONTROL DESIGN

This section presents the control design with the control
structure, the optimal control problem (OCP), and the
solver setup.

3.1 Control structure

Fig. 4. Schematic control structure with detailed dynamic
plant model and NMPC including states x, inputs u,
outputs y and the reference r. The elements necessary
for real-life application, i.e. reference planning, low-
level control and state observer, are neglected in this
paper and thus depicted in grey.

The control structure is schematically shown in Fig. 4. It
depicts the resulting states x of the NMPC, the inputs
u, and the output y = Pnet, which tracks the reference
r = Pnet,dem. We assume to follow a reference trajectory
with prior knowledge of Pnet,dem for the fuel cell system,
as presented by Liu et al. (2018) and Hähnel et al. (2015).
This is the case, if the controller is part of a hierarchical
structure, in which the reference is generated by a reference
planning optimization (Neisen et al., 2018; Liu et al.,
2018). Hereby, we utilize predictive information in order
to further exploit the advantages of MPC.

The inputs u are assumed to be set by a low-level con-
trol within a negligible bandwidth for the NMPC. Ist is
assumed to be set by a DC/DC converter set-up, accord-
ing to Bocklisch et al. (2010), which is simultaneously
controlling the bus voltage at the DC-bus. For a proof
of concept of the control performance, we assume perfect
state knowledge. In the light of real-life application, a state
observer will become necessary for stationary accuracy,
and in order to estimate states which are not exactly
measurable. Here, msm and pO2 are the most difficult to
measure. Though, msm can be calculated using the ideal
gas law and mass balances. Furthermore, measurement
methods for pO2 already exist (Inukai et al., 2008).

3.2 Optimal Control Problem

The nonlinear optimal control problem (OCP) used in the
NMPC is formulated as a minimization problem:
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min
u

J(x,u,x0, t) cost function (13)

s.t. ẋ(t) = f(x,u, t) system dynamics (12)

x(t0) = x0 initial value

h(x,u, t) ≤ 0 inequality constraints (15)

u ∈ [umin,umax] box constraints (18).

Cost Function The objective of this control is to mini-
mize the deviation of the net power Pnet from a demanded
reference power Pnet,dem, while simultaneously maximizing
the fuel cell system’s efficiency ηnet. Since we focus on
a highly dynamic operation, efficiency maximization is
desired in transient and steady state. This can be realized
by formulating an additional, economic cost term. Pure
reference tracking strategies, on the other hand, might fall
short on reaching high transient efficiency, because they
do not consider efficiency during load transitions (Ellis
et al., 2014). We present a combination of a reference
tracking MPC and an economic MPC. Accordingly, the
cost function J is designed as combination of a reference
tracking functional lref and an economic functional le.
The optimization objectives are balanced by the weighting
factors qref = 1 and qe = 0.45.

J =

∫ t0+Th

t0

[lref(x,u, t) + le(x,u, t)] dt

=

∫ t0+Th

t0

[
qref

(
Pnet − Pnet,dem

Pnet,dem

)2

︸ ︷︷ ︸
lref (x,u,t)

+ qe

Ist/Ist,0

Pnet︸ ︷︷ ︸
le(x,u,t)

]
dt .

(13)

lref(x,u, t) is formulated as a normalized mean square min-
imization of the deviation from the demanded reference
power r = Pnet,dem. The values of Pnet,dem are known to
the controller at t = t0 for the duration of the prediction
horizon Th. Hence, the response to a load change can be
prepared prior to the actual event.

le(x,u, t) is the normalized fuel consumption. It results
from maximizing the fuel cell system efficiency ηnet, which
is equivalent to the minimum of its inverse:

max ηnet = max
Pnet

PH2

⇔ min
1

ηnet
⇔

(PH2
∝Ist)

min
Ist
Pnet

.

(14)

PH2 is the consumed hydrogen power, which is, based on
Faraday’s Law, proportional to the fuel cell stack current
Ist (Pukrushpan et al., 2004), and thus the minimization of
PH2

is equivalent to the minimization of Ist. Ist,0 denotes
the scaling value of Ist, as described in Sec. 3.3.

Constraints The system dynamics are limited by essen-
tial operation restrictions, which are implemented as nor-
malized inequality constraints in order to ameliorate the
controller performance, and are described subsequently:

h(x,u, t) =


(pca,min − pca)/p̄ca

(pca − pca,max)/p̄ca

(λO2,min − λO2)/λO2,min

Π− 278.69 ṁ2
cr − 17.88 ṁcr − 0.79

−Π + 15.27 ṁcr + 0.6

 ≤ 0.

(15)
with p̄ca = (pca,min +pca,max)/2. They concern the cathode
pressure pca, the oxygen excess ratio λO2 and the surge

and choke boundaries of the compressor ṁcr = f(Π, Ncr).
λO2

is the ratio between the oxygen mass flow entering
the cathode ṁO2,in and the consumed oxygen mass flow
ṁO2,con (Pukrushpan et al., 2004):

λO2
=

ṁO2,in

ṁO2,con(Ist)
=

ṁca,in wO2

ṁO2,con(Ist)
. (16)

The air mass flow entering the cathode ṁca,in is the
mass flow across the orifice between supply manifold and
cathode, and hence calculated with (9). The oxygen mass
fraction of air wO2 is assumed constant and equal to that
of the ambient air wO2 = 0.231. ṁO2,con is proportional
to Ist, based on Faraday’s Law. The oxygen excess ratio
λO2 is kept above λO2 ≥ λO2,min = 1.5 (Puig et al.,
2007). The cathode pressure is sought to remain within
1.013 bar = pca,min ≤ pca ≤ pca,max = 5 bar.

The surge and choke boundaries, shown in Fig. 3, are
obtained from Pukrushpan et al. (2004). Vahidi et al.
(2006) linearizes both boundaries to use them in a linear
MPC. In this paper, the original quadratic surge boundary
is approximated with a second order least square fit, as this
allows a broader operation at low pressure ratios:

Surge : Π ≤ 278.69 ṁ2
cr + 17.88 ṁcr + 0.79 (17a)

Choke : Π ≥ 15.27 ṁcr + 0.6. (17b)

The inputs u are limited by box constraints typical for
such fuel cell systems:[

25 A
0 V

0.008

]
︸ ︷︷ ︸

umin

≤

[
Ist
Ucm

hrm

]
︸ ︷︷ ︸

u

≤

[
450 A
400 V

1

]
︸ ︷︷ ︸

umax

. (18)

Ist has a lower bound Ist,min > 0 in order to avoid high
voltage gradients in the fuel cell. It is assumed that the
outlet valve cannot be closed entirely, hence hrm ≥ 0.008
(Hähnel et al., 2015).

3.3 Solver Setup

The OCP in Sec. 3.2 is solved with the toolbox GRAMPC
by Englert et al. (2019), which contains an outer aug-
mented Lagrangian approach and an inner projected gra-
dient method. The augmented lagrangian method replaces
the constrained OCP with its unconstrained dual opti-
mization problem, i.e. penalty parameters and multipli-
ers are used to rephrase the constraints as an additional
cost functional. The maximum iterations of the gradient
method are set to Ngrad = 12 and of the the augmented
lagrangian method are set to Nlag = 8. The execution rate
of the NMPC equals the sampling rate of the OCP within
the prediction and leads to a sampling time ∆t = 25 ms.
In combination with the prediction horizon of Th = 1 s,
this results in Nint = 41 integration steps per execution of
the NMPC. While other algorithms such as interior point
methods typically show faster convergence, augmented
lagrangian approaches are superior in rapidly finding a
valid suboptimal solution, which is an important property
for nonlinear OCPs (Englert et al., 2019).

Note that we do not penalize input gradients ∆u in the
cost function, since this might lower the inputs’ dynamic
response. Instead, we adjust the parameters of the solver,
e.g. of the line search algorithm, in order to smoothen
the inputs u(t). Though, we acknowledge that such input
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Fig. 5. Controlled systems response to test cycle: Power
of components (a), inputs (b), corrected compressor
mass flow normalized to surge boundary (c), oxygen
excess ratio (d), efficiency (e).

penalization might become necessary, when applied to
real-life application. GRAMPC itself utilizes a warm start
to realize real time capability. In order to decrease the
condition number of the control problem, the states x
and inputs u are normalized to their initial value, e.g.
x̃i = xi/xi,0 = xi/xi(t=0). A feasible set of values is selected
for the inputs’ initial values in the first time step.

4. RESULTS

The controller presented in Sec. 3 with the nonlinear
reduced-order model described in Sec. 2, is perfomed
on the detailed dynamic plant model (see Fig. 2) in
MATLAB/Simulink R©. The alterations in the plant model
in comparison to the model by Pukrushpan et al. (2002)
concern the valve and orifices: The nozzles in the supply
and return manifolds were changed to orifices (see (9)) and
the outlet nozzle was augmented to a valve (see (10)). The
subsequent results show a robust controller performance
concerning the key aspects (I–IV), despite multiple model
simplifications in the controller model.

4.1 Power Setting and Component Collaboration

A test sequence of six steps in the reference trajectory
Pnet,dem, ranging from 10 kW to 52 kW, is passed to
the controller. By utilizing the predictive nature of the
NMPC, the controller gains knowledge of an upcoming
step Th = 1 s in advance and can subsequently prepare for
the transient response. Figure 5a shows the results of the
control. It can be seen that Pnet is set without significant
deviation from Pnet,dem. More concretly, the consumption
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Fig. 6. Controlled system response during step-down at
t = 18 s: Power of components (a), inputs (b), cor-
rected compressor mass flow rate normalized to surge
boundary (c), oxygen excess ratio (d), mass flow rates
of compressor and cathode inlet (e).

minimization le(x,u, t) results in a mean absolute devia-
tion of 0.077 %. In particular, the load changes are followed
without deviation thanks to the combined consideration
of fuel cell and compressor dynamics. The evolution of
the inputs Ist, Ucm and hrm is shown in Fig. 5b. Note
that hrm is depicted on a different scale than the other
inputs. It can be seen that Ist shows an almost step-like
course, resembling Pfc, while Ucm and hrm are noticeably
flatter in their response. It can be seen in Fig. 6b that the
controller prepares the step-down at t = 18 s by leaving the
stationary state approximately 0.3 s before encountering
the load change. Immediately before the step, Pfc and Pcm

are increased equally, as shown in Fig. 6a. To conclude,
evaluating both fuel cell and compressor power simulta-
neously, enables the controller to set strong load changes
with high accuracy.

4.2 Compliance with Compressor Boundaries

Figure 5c shows the compressor air mass flow ṁcr nor-
malized to the mass flows at the surge boundary. ṁcr

is successfully kept between the surge and choke bound-
ary for the entire test sequence. During a step-down in
Pnet,dem, as is shown in Fig. 6c, the compressor temporarily
operates close to the surge boundary (18.1-18.5 s). This is
because the pressure formation is slower than the mass
flow adjustment. Thus, ṁcr cannot be decreased instan-
taneously but the flow follows the surge boundary until
the pressure reaches the stationary level. Consequently,
the dynamic performance of the system is confined by
the surge boundary. Since the controller can predict that
compressor surge could occur, ṁcr is increased before the
step-down (t = 17.9 s) in order to widen the distance to
the surge boundary. Hence, the predictive nature of the
MPC approach enhances the ability for dynamic response.
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(section).

Figure 7 shows the predicted and resulting operation in
the compressor map during the step down at t = 18 s
(compare Fig. 3). It underlines the importance of an accu-
rate approximation of ṁcr in proximity to the operation
boundaries. While far from the boundary a large deviation
from the detailed formulation in the plant model is notice-
able and acceptable, the approximation quality increases
closer to the surge boundary. Neither the prediction nor
the detailed model’s response violate the constraints.

4.3 Obedience of Minimum Oxygen Excess Ratio

Besides satisfying the compressor operation limits, Fig. 5d
shows that an oxygen excess ratio above λO2,min = 1.5 is
guaranteed for the entire load sequence. Intuitively, high
Pnet results in a low λO2 , whereas during a low power
demand a vast amount of oxygen is available. While λO2

returns quickly to a stationary value after step-ups in
Pnet,dem, the relaxation takes longer after severe step-
downs (see Fig. 6d), because the compressor is operating
at the surge limit and hence cannot immediately reduce
ṁcr. It can be seen that λO2 ranges from 1.6 to 2.4
in steady state for medium loads. Hence, the stationary
values of λO2 resemble the reference values presented
in those contributions that use efficiency-oriented excess
ratios (Guo et al., 2013; Hähnel et al., 2015).

Especially during intense step-ups, the fuel cell is at
risk for oxygen starvation (compare e.g. at t = 9 s). In
detail, changing the compressor operation (Ucm and hence
indirectly ṁcr) does not have an instantaneous impact on
the mass flow entering the cathode ṁca,in and thus λO2

(see the time-delayed response in Fig. 6e for an exemplary
step-down). Starvation is prevented by using predictive
information, and thus by preemptively increasing the
supplied mass flows prior to the load change. It is shown
that starvation is safely prevented even for step-like power
changes without treating λO2 as an optimization objective.

4.4 Fuel Cell System Efficiency and Power Loss

The fuel cell’s gross efficiency ηfc = Pfc/PH2
and the sys-

tem’s net efficiency ηnet = Pnet/PH2
are shown in Fig. 5e.

Intuitively, ηfc is higher than ηnet, since the operation
of the compressor consumes a portion of the generated
power. Especially during load steps, ηnet is lowered due
to the increased operation of the compressor. Figure 8
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Fig. 8. Relative power loss due to compressor operation
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shows the relative power loss Pcm/Pfc caused by the com-
pressor. On average, the compressor consumes 6.7 % of the
generated power, while in one time step the loss rises to
approximately 16.6 % in preparation for the step-up (see
t = 5 − 6 s). Hence, by minimizing the consumption in
le(x,u, t), the loss is reduced both in stationary and in
transient operation.

4.5 Transient and Stationary Behavior

Finally, a highly transient test sequence is compared to
a stationary operation in order to further examine the
transient efficiency, as shown in Fig. 9a. The transient
sequence Pnet,dem,trans consists of randomly distributed
power levels between 10 kW and 40 kW, each 250 ms long.
The stationary power Pnet,dem,stat is chosen to equal the
arithmetic mean of the transient cycle. It can be seen that
both responses Pnet,trans and Pnet,stat are indistinguishable
from Pnet,dem,trans and Pnet,dem,stat. Pnet only deviates
0.049 % from Pnet,dem in stationary operation, and 0.066 %
during the transient sequence. In particular, the transient
load changes are followed without deviation. Moreover,
neither the compressor boundaries nor the minimum oxy-
gen excess ratio are violated. The power loss caused by
the operation of the compressor is shown in Fig. 9b and
resembles the behavior in Fig. 8. Note that the average
power loss during the transient cycle is raised from 5.9 %
in stationary operation to only 6.8 %. This underlines the
controller’s ability to enforce efficiency both in transient
and stationary operations.

4.6 Analysis of Computation Time

The simulations were executed on an Intel R© CoreTM i5-
8250u processor (4x1.6 GHz). Though depending on the
specific run, one time step (∆t = 25 ms) of the sequence in
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Fig. 5 was on average simulated in approximately 20.5 ms,
which allowed the computation within sampling time. We
acknowledge that the computation time might differ when
applied to a real-time hardware used in practice. Note,
that the performance of the presented NMPC is strongly
dependent on parameter tuning. The controller could be
further examined to reduce the computational resources.

5. CONCLUSION

This paper presents a nonlinear model predictive control
(NMPC) for the simultaneous tracking of demanded power
and efficiency maximization in a fuel cell system. The pre-
sented approach is capable of tracking the power demand
without significant deviation or dynamic delay during load
changes. In contrast to the majority of contributions, the
integration of the compressor power in the optimal control
problem enables a joint power setting with the fuel cell.
The omission of oxygen excess ratio as a control variable
introduces a degree of freedom, which we utilize to fur-
ther improve the system efficiency in both transient and
steady state. Moreover, we prevent oxygen starvation by
satisfying an inequality constraint. The presented deduced
controller model shows sufficient accuracy to represent the
detailed dynamic plant model, while facilitating adequate
calculation times. Consequently, the presented NMPC is
able to sustainably and robustly operate the system within
the boundaries without thereby losing transient perfor-
mance. Thus, the faster and stronger load changes occur
in the power demand, the higher is the benefit of the
presented control approach.

Next steps towards real-life application are the implemen-
tation of reference planning, the state observer, and the
low level-controllers. Moreover, a robustness analysis of
the NMPC under prediction disturbances might enhance
the controller’s real-life performance.
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