
PolySafe: A Formally Verified Algorithm
for Conflict Detection on a Polynomial

Airspace

Brendon K. Colbert ∗ J. Tanner Slagel ∗ Luis G. Crespo ∗

Swee Balachandran ∗∗ César Muñoz ∗

∗NASA Langley Research Center, Hampton, VA, USA
∗∗National Institute of Aerospace, Hampton, VA, USA

Abstract: This paper presents a strategy for verifying that an aircraft following a polynomial
path complies with a given set of safety criteria in continuous time. Such criteria ensure that
a minimal separation between the aircraft and a set of obstacles, which can be either static
or dynamic, is maintained. Dynamic obstacles are also assumed to follow a known polynomial
path. Dynamic obstacles may, for example, correspond to a separation volume around another
flying aircraft. In the most general case, the separation criteria vary in time depending upon the
position and relative velocity between the aircraft and the obstacle. The efficiency and scalability
of the proposed algorithm, to be called PolySafe, make it suitable for real-time conflict detection
and path re-planning of aircraft flying in a complex and crowded airspace. PolySafe has been
formally verified to guarantee the detection of conflicts within a finite time horizon.

Keywords: trajectory and path planning, safety, autonomous systems

Advances in Unmanned Aircraft Systems (UAS) promise
to carry out missions such as search and rescue, surveil-
lance, data gathering and package delivery operations au-
tonomously. However, autonomous UAS will be required to
meet existing safety requirements before they are allowed
to share the airspace with existing aircraft. The concept
sense and avoid is defined in the Federal Aviation Ad-
ministration (FAA) Sponsored Sense and Avoid Workshop
(2009) as “the capability of a UAS to remain well clear
from and avoid collisions with other airborne traffic.” The
notion of UAS being well clear is cast in terms of a well-
clear volume in Cook et al. (2015). Specifically, a well-
clear violation occurs when an aircraft trajectory enters
the well-clear volume of another aircraft.

Changing flying conditions such as weather or cross-wind
may force an aircraft to change its nominal trajectory.
Such changes might lead to unanticipated well-clear vol-
ume violations. Thus, there is a need for determining, both
reliably and efficiently, if the current flight path is in well-
clear violation so a new guidance law can be computed as
early as possible. Such an algorithm must be fast so that
a re-planning algorithm is given sufficient time to find a
new safer path, but it should also provide the guarantee
that no safety violations go undetected. Furthermore, the
algorithm should avoid diagnosing “false positives” that
will trigger unnecessary replanning.

Current algorithms for detecting conflicts with geofences
include Stevens and Atkins (2016) and Dill et al. (2016).
The former paper proposes a method of shared control
between a pilot and autopilot, by which control commands
resulting in a fence breach are modified to keep the UAS
within a given geofence. The latter paper proposes a
method by which geofence conflicts are detected, and vio-

lation of geofence constraints are prevented using vehicle
contingency maneuvers and flight termination.

Regarding air traffic conflicts, the Traffic Alerting and
Collision Avoidance System (TCAS) has been adopted by
the commercial aviation industry as the standard collision
avoidance system, see Williamson and Spencer (1989). The
system provides alerts to pilots if a collision threat is de-
tected. In recent years, the FAA has formed a group led by
Lincoln Laboratory to define a new collision avoidance sys-
tem. The system, called ACAS X, relies upon probabilistic
and computer-based optimization techniques, see Kochen-
derfer et al. (2012). In the case of UAS, DAIDALUS (De-
tect and Avoid Alerting Logic for Unmanned Systems) is
the reference implementation of detect and avoid minimum
operational requirements for large UAS, see Narkawicz
et al. (2018). DAIDALUS provides alerting and maneuver
guidance logic for a well-clear volume defined by distance
and time thresholds. These air traffic conflict systems
implement tactical approaches. In the case of TCAS and
DAIDALUS, aircraft states are projected using relatively
simple kinematic models. These approaches can be inte-
grated into path planning algorithms using discrete search
techniques such as A* and Rapidly Exploring Random
Trees (RRT) as in Balachandran et al. (2017).

This paper proposes a formally verified algorithm called
PolySafe for determining if a polynomial flight path ex-
hibits enough separation from a possibly moving obstacle.
Obstacles are characterized as semi-algebraic sets, i.e.,
a region of the airspace satisfying a set of polynomial
constraints that might vary in a continuous time. This
characterization allows determining if a given polynomial
path intersects static obstacles such as buildings or moun-
tains, or dynamic obstacles such as the well-clear volume

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 15824



of another aircraft. Methods in Colbert et al. (2019), for
instance, return a semi-algebraic set containing a given
cloud of points from sensor measurements of an obstacle.
Hereafter, it is assumed that all the aircraft and obstacles
follow known polynomial paths.

Polynomial paths will be denoted as

r(t) = [x(t), y(t), z(t)]>, (1)

where x(t), y(t), z(t) ∈ R[t] are univariate polynomial
functions with respect to time t > t0 ∈ R. This path is
prescribed by a guidance law relative to a reference frame
on the ground. The trajectory r(t) is assumed to account
for the effects of cross-winds, and for the presence of nearby
obstacles. It is also assumed that the desired polynomial
path can be tracked closely by means of a flight control
system and a set of pilot commands.

The rest of this paper is organized as follows. Section 1
describes the problem statement and goals of the pro-
posed algorithm while Section 2 describes our solution
approach. Section 3 characterizes static and dynamic ob-
stacles including the well-clear volume. Section 4 presents
the PolySafe algorithm and discusses efficient numerical
tools required for its implementation. Section 5 discusses
the formal verification of safety properties of PolySafe.
Section 6 evaluates the proposed algorithm through simu-
lation. Finally, Section 7 provides concluding remarks and
describes future work.

1. PROBLEM STATEMENT

In this work, the airspace is represented as the 3-
dimensional Euclidean space R3. Each of n obstacles is
denoted Oi(t) ⊂ R3, for i = 1, . . . n, with

Oi(t) ,
{

(x, y, z) : pi,j(x, y, z, t) ≤ 0, ∀j = 1, ...mi

}
, (2)

where pi,j(x, y, z, t) is a polynomial function. The func-
tion Oi(t) can represent a large class of obstacles includ-
ing the intersection of parallelepipeds, convex polygons,
spheres, and pyramids. In addition, it can also describe
the time-dependent well-clear volume defined in Munoz
et al. (2014).

The polynomial path r(t) will be called conflict-free if
r(t) ∩ (∪ni=1Oi(t)) = ∅, for all t ∈ [t0, tf ]. In this setting,
the problem statement can be stated as follows: given a
polynomial path r(t) and the set of obstacles Oi(t), for
i = 1, . . . n, first determine if such a path is conflict-free
for all times in the interval [t0, tf ]. Second, if the path is
not conflict free, determine

t∗ = arg min
t∈[t0,tf ]

{
t : r(t) ∈ ∪ni=1Oi(t)

}
. (3)

In Formula (3), t∗ is the time instance when conflict first
occurs. Based on t∗, r(t∗), and the particular obstacle the
nominal path r(t) is in conflict with, a suitable new path
r̂(t) can be computed by a conflict resolution logic of the
underlying guidance law. This paper focuses on conflict
detection only. A (re)planning algorithm, to work in unison
with PolySafe, will be presented elsewhere. Polysafe should
be run continuously in time over a receding time horizon
[t0, tf ] while the polynomial paths of all aircrafts are
updated according to measurements of their position and
velocity over the past time interval [t0 −∆, t0] for ∆ > 0.

2. SOLUTION APPROACH

A violation occurs at a time t if all polynomial inequalities
defining an obstacle are non-positive at that time. In
particular, the aircraft with polynomial path r(t) is in
conflict with obstacle k ∈ [1, . . . n] during the time interval
[t0, tf ] if and only if there exists a time t̃ ∈ [t0, tf ] such that

pk,j

(
x(t̃), y(t̃), z(t̃), t̃

)
≤ 0, ∀ j = 1, . . .mk. (4)

Denote as t̃k the minimum time for which (4) holds. If (4)
does not hold make t̃k =∞. Therefore,

t∗ = min
k=1,...n

t̃k. (5)

Determining the times when a violation occurs is difficult
because they may occur at any point within a set of
infinitely many points. However, the detection approach
used in this paper only considers the first occurrence of
such an event. This time instance must be at a real root of
one of the mk polynomial inequalities in (4). Therefore, it
is necessary to find the real roots of all the mk polynomials
pk,j , sort them in increasing order, and then evaluate pk,j
at all of them. The smallest root at which all pk,j ≤ 0
defines t̃k. If no such point is found, there is no conflict
between the aircraft and the k-th obstacle, so t̃k = ∞.
The next section describes how to characterize obstacles.

3. MODELING OBSTACLES AS SEMIALGEBRAIC
SETS

This section focuses on modeling static and dynamic
obstacles as possibly time-varying semi-algebraic sets. The
first assumption is that obstacles can be defined, or closely
bounded by polynomial inequalities in euclidean space.

3.1 Static Obstacles

Any convex polygon can be described as the intersection
of half-planes, and the half-planes themselves can be used
to define a semi-algebraic set. For instance, a cube whose
bottom left corner occurs at the point (1, 2, 5) with side
lengths of 5 can be defined by the intersection of the
following six half-planes,

1− x ≤ 0, x− 6 ≤ 0, 2− y ≤ 0, (6)

y − 7 ≤ 0, 5− z ≤ 0, z − 10 ≤ 0.

Let O be a semi-algebraic set representing a static obstacle
with m half-planes, then O can be defined as

O = {(x, y, z) : pj(x, y, z) ≤ 0 ∀j = 1, ...,m},
where pj are polynomials that represent the desired half-
spaces. In the example above, p1(x, y, z) = 1− x, . . ., and
p6(x, y, z) = z−10. Additional polynomial inequalities can
be considered, e.g., a sphere of radius r centered at (5,2,-5)
can be defined by (x− 5)2 + (y − 2)2 + (z + 5)2 − r2 < 0.
Such an obstacle would be defined by the semi-algebraic
set

O = {(x, y, z) : (x− 5)2 + (y − 2)2 + (z + 5)2 − r2 ≤ 0}.
The intersection of any of the above sets is, as expected,
a representable obstacle geometry. The above framework
enables describing a wide range of shapes with varying
levels of refinement. As long as O fully contains the true
geometry of the obstacle, false negatives (i.e., missing the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15825



detection of a conflict) will not occur. The greater the
offset between the true obstacle and its outer bounding
set, the more false positives (i.e., declaring an inexistent
conflict) might occur. As such, tight outer approximations
of the obstacle geometry are preferable.

3.2 Dynamic Obstacles

Time-varying obstacles will be represented as time-varying
semi-algebraic sets:

Od(t) = {(x, y, z) : pj(x, y, z, t) ≤ 0, ∀j = 1, ...,m},
where pj(x, y, z, t) is a polynomial function. For instance,
a growing spherical obstacle centered at the origin whose
radius r > 0 increases at ṙ meters per second, while moving
in the positive x direction at a rate of ẋ meters per second
is given by

Od(t) = {(x, y, z) : (x− ẋt)2 + y2 + z2 − (r + ṙt)2 ≤ 0}.
This framework enables the characterization of more
complex obstacles such as the well-clear volume defined
in Munoz et al. (2014). Such a volume, which depends
on the relative position and velocity of two aircraft, is
characterized next.

Let xr(t), yr(t), and zr(t) be the relative position between
the two aircraft in the x, y, and z coordinates and
let ẋr(t), ẏr(t), and żr(t) be the relative velocity. If the
positions of both aircraft are polynomial functions of
time, then the relative position and velocity functions are
also polynomials. The well clear-volume is centered at
the location of a moving aircraft (i.e., an obstacle from
the perspective of the aircraft with trajectory r(t)). For
simplicity, the following presentation assumes that such a
center is the origin. A simple coordinate transformation
can be used to translate the well clear-volume from the
origin to any other location in the airspace.

Multiple examples of the well-clear volume for different
dynamic obstacles are shown in Figure 1. The well-clear
volume is defined as the union of three time-varying sets.
Hence, if any of these sets yields a conflict, then the well-
clear volume has been violated. An exact representation
of the clear volume developed in, Munoz et al. (2014),
is obtained by using the semi-algebraic representation
presented next. The first of the three sets is defined by
the cylinder

(xr(t)
2 + yr(t)

2)−D2 < 0,

zr(t)
2 − Z2 < 0,

where D > 0 and Z > 0 are fixed parameters. The second
set is the intersection of the following polynomial sets

xr(t)ẋr(t) + yr(t)ẏr(t) < 0,

(ẏr(t)
2xr(t)− ẏr(t)ẋr(t)yr(t))2 . . .

+(ẋr(t)
2yr(t)− ẏr(t)ẋr(t)xr(t))2 . . .
−(ẋr(t)

2 + ẏr(t)
2)D2 < 0,

(xr(t)
2 + yr(t)

2) + τ(xr(t)ẋr(t) + yr(t)ẏr(t))−D2 < 0,

zr(t)
2 − Z2 < 0,

where τ and Z are parameters. The last set is defined by
the following five polynomial inequalities:

Fig. 1. The well-clear volume between an aircraft (square)
and a moving obstacle (asterisk) is shaded in grey for
two different conditions. The volume changes shape
based on the relative velocity between the aircraft and
the obstacle.

xr(t)ẋr(t) + yr(t)ẏr(t) < 0,

(ẏr(t)
2xr(t)− ẏr(t)ẋr(t)yr(t))2 . . .

+(ẋr(t)
2yr(t)− ẏr(t)ẋr(t)xr(t))2 . . .
−(ẋr(t)

2 + ẏr(t)
2)D2 < 0,

(xr(t)
2 + yr(t)

2) + τ(xr(t)ẋr(t) + yr(t)ẏr(t))−D2 < 0,

zr(t)żr(t) < 0,

−(T żr(t)
2 + zr(t)żr(t) < 0,

where T is another constant defined a priori.

If dx, dy and dz are the degrees of the relative posi-
tion in the corresponding coordinates, the degree of the
polynomial inequalities above is bounded by max(4(dy −
1)dx, 4(dx− 1)dy, 2dz). Hence, if the polynomial paths are
cubic, a commonly made assumption, this ensures that
the degree of the univariate polynomial inequalities is less
than or equal to 24. The next section presents means to ef-
ficiently and accurately calculate the roots of polynomials
needed to estimate t∗ in Formula (5).

4. CONFLICT DETECTION

This section addresses the problem of finding the first time
instance in [t0, tf ] (if any) when r(t) intersects ∪ni=1Oi(t),
given the polynomial path r(t) in (1) and the obstacles
in (2). To do so, the formula pi,j(x(t), y(t), z(t), t) ≤ 0 is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15826



rewritten as a univariate polynomial with respect to time.
If any of the following sets,

Ti := {t : t0 − t ≤ 0,

t− tf ≤ 0,

pi,j(x(t), y(t), z(t), t) ≤ 0, ∀j = 1, ...,mi},
are non-empty then there exists a time t ∈ [t0, tf ] such
that r(t) ∈ ∪ni=1Oi(t), and a violation occurs.

It is clear that a violation will only occur if the set Ti is
non-empty. The following theorem states that, over a finite
time interval t ∈ [t0, tf ], if Ti is non-empty (a conflict
occurs) then t∗ will occur at either t0 or at a root of
pi,j(x(t), y(t), z(t), t) falling within [t0, tf ].

Theorem 1. Let pj(t), ∀j = 1, . . .m be polynomials of
degree at most d. If the semi-algebraic set

T := {t : t0 − t ≤ 0, t− tf ≤ 0, pj(t) ≤ 0,∀j = 1, . . .m}
is non-empty then the first instance of conflict t∗= min T
corresponds to a root of the polynomial, pj(t

∗) = 0, for
some j ∈ [1, ...,m] or to t∗= t0.

Proof. Define
t∗ = inf T .

Since t∗ is the infimum of the set T , there is a sequence
of points {tk} in T such that tk → t∗. Since {tk} is in T ,
pj (tk) ≤ 0,∀j = 1, . . .m, for each k. The fact that each
pj is a continuous function implies that pj (t∗) ≤ 0,∀j =
1, . . .m. This means that t∗ ∈ T and therefore t∗ = min T .

If t∗= t0 the result is shown. Suppose t∗ 6= t0 and that
pj (t∗) < 0, ∀j = 1, . . .m. Since each pj is continuous
and t∗ 6= t0, there exists an ε > 0 such that for all
t ∈ (t∗ − ε, t∗ + ε), pj (t) < 0,∀j = 1, . . .m and t0 < t.
This is a contradiction since, t∗− ε

2 ∈ T and t∗− ε
2 < t∗ =

min T . Therefore, there must exist a j = 1, . . .m such that
pj(t

∗) = 0.

The first time at which a violation occurs must be at a
root of one of the polynomials or at t∗= t0. Therefore,
to determine if a violation occurs, it suffices to check
for violations at t0 and at the roots of each polynomial
function, pi,j(x(t), y(t), z(t), t).

In practice, the algorithm can be sped up by mini-
mizing the number of times the polynomial functions
pi,j(x(t), y(t), z(t), t) are evaluated. Because the algorithm
only checks whether or not all of the polynomial func-
tions, pi,j(x(t), y(t), z(t), t), are non-positive at some time
instance, it is not necessary to know the actual value of
the polynomial at any given time, but just if it is positive,
negative, or zero. In addition, since the sign of a polyno-
mial will only change at the roots of the polynomial, only
sign information around the roots of a set of polynomials
is needed to detect if they are ever negative at a point.

More precisely, given a set of n univariate non-zero polyno-
mials pi, with 1 ≤ i ≤ n, and a sequence t0 < . . . < tl con-
taining roots of all the polynomials pi, define the sequence
v(t0), . . . , v(tl) of n-dimensional vectors with entries 1, −1,
or .5 as follows:

• If t0 is not a root of pi, the i-th component of v(t0)
is the sign (1 or −1) of pi(t0). If t0 is a root of pi, the
i-th component of v(t0) is −1 if pi is negative exactly
after t0, and .5 if pi is positive exactly after t0.
• For 1 ≤ k ≤ l,

1. If tk is a root with odd multiplicity of pi and the
i-th component of v(tk−1) is 1, then v(tk) = −1

2. If tk is a root with odd multiplicity of pi and the
i-th component of v(tk−1) is −1, then v(tk) = .5

3. If tk is a root with even multiplicity of pi and the
i-th component of v(tk−1) is 1, then v(tk) = .5

4. If tk is not a root of pi then the i-th component of
v(tk) is the sign of the i-th component of v(tk−1).

For v(tk) defined above, a violation happens when all
entries of v(tk) are less than 1. A violation that lasts for
more than a single instance, happens when the entries of
v(tk) are all less than 0.

For instance, let the functions pi(x(t), y(t), z(t), t), for
i = 1, 2, have the following values at t = t0 = 0.

p1(t0) = −5 and p2(t0) = 1.

Therefore, the vector v(t0) is defined as

[
−1

1

]
. Further-

more, assume the function p1(t) has real roots with odd
multiplicity at t = 1 and t = 5, while p2(t) has a real root
with even multiplicity at t = 1 and odd multiplicity at
t = 2.

Since v(t0) has a positive component at t0, no violation
occurs at that time. Furthermore the next time at which
a violation could occur is at the next root of one of the
polynomial inequalities because that is the first time at
which the sign of the polynomials, and thus v(t), will
change. In the given example,

v(1) =

[
.5
.5

]
, v(2) =

[
1
−1

]
, and v(5) =

[
−1
−1

]
.

The first root at which every element of v is less than
1 is t = 1, so this is where the first violation occurs.
This violation happens for an instant, then is immediately
resolved. At t = 5 all entries of v(5) are less than 0, which
indicates a violation that lasts for more than an instant.

This process is not defined for zero polynomials since they
do not have a finite number of roots. For conflict detection,
zero polynomials pi may be discarded since the inequality
pi(t) ≤ 0 is always satisfied, so a violation is contingent
only on the rest of the polynomial constraints in the set T

As soon as a root is found such that every entry of v is
less than 1, it can be determined that a violation will occur
at that time. The entries of v encode the necessary sign
information to determine if a violation occurs and whether
the violation occurs for a single moment in time or for a
longer period of time.

Algorithm 1 provides pseudocode for PolySafe. The algo-
rithm must be run for each aircraft-obstacle combination,
and many of the operations can be performed indepen-
dently making it suitable for parallel programming.

Key to the implementation of Algorithm 1 is the ability
to efficiently find roots of univariate polynomials. The
roots of univariate polynomials of degree five or less can
be calculated analytically. However, in cases such as the
well-clear zone for cubic polynomial paths, the resulting
polynomials have degree 24. As such, numerical methods
to find the roots of high-order polynomials have to be
used. Fortunately, there are a number of efficient and
accurate numerical methods for determining the roots of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15827



Algorithm 1 PolySafe Algorithm for Conflict Detection.

Input: r(t), O := {(x, y, z) : pj(x, y, z, t) ≤ 0,∀j =
1, ...,m}, t0, and tf

Output: t∗ (time at violation)
1: set T := {pi(x(t), y(t), z(t), t) : ∀i = 1, ..., n},
2: discard zero polynomials, update T
3: for all polynomials in T do
4: calculate roots of the i’th polynomial
5: discard imaginary roots
6: discard roots not within [t0, tf ]
7: end for
8: sort roots in ascending order
9: calculate v(t0)

10: for each root do
11: update v at current root
12: if all entries of v are less than 1 then
13: return current root
14: end if
15: end for
16: return ∞

univariate polynomials. For instance, there is the Jenkins-
Traub method described in Ford (1977) and other matrix-
based methods. Such methods are widely used in many
engineering and science applications.

An approach to calculate the roots using the matrix-
based approach is presented below. This approach, which
requires finding the eigenvalues of the companion matrix
of the polynomial, is suitable for real-time applications.
Given the degree n polynomial p(t) = c0 +c1t+c2t

2 + ...+
cqq, where cq 6= 0, the corresponding companion matrix

M ∈ R(q+1)×(q+1) is given by

M ,


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cq

 .
The determinant of M − tI is the polynomial function
p(t), and thus the eigenvalues of M are the roots of the
polynomial as shown in Edelman and Murakami (1995).
The eigenvalues of mid-size matrices can be estimated
accurately and efficiently using well-established numerical
methods. For the purposes of this paper, a matrix larger
than 25 by 25 is rarely required. Furthermore, for obstacles
defined by the intersection of half planes and a cubic
polynomial path, the size of the companion matrix is only
4 by 4.

5. FORMAL VERIFICATION OF POLYSAFE

A formal analysis of PolySafe was carried out in the Pro-
totype Verification System (PVS). PVS, first introduced
by Owre et al. (1992), is a formal verification tool that
tightly couples a specification language with an interactive
theorem prover. The specification language is a mathemat-
ical language for writing algorithms and specifying their
properties in the form of lemmas and theorems. These
lemmas and theorems are to be discharged by the PVS
user issuing proof commands that corresponds to deduc-
tive rules of a higher-order logic. This approach is known
as formal verification and stands in contrast to standard

methods for validating algorithms that are purely based
on testing and code review. Formal verification provides
a high level of assurance that an algorithm is logically
correct with respect to a well-defined set of assumptions.
In the case of PolySafe, the formal analysis shows that
under real arithmetic, assuming all roots of the polynomial
constraints are precisely known, the PolySafe algorithm is
guaranteed to detect the earliest violation. The following
theorem states the correctness of the PolySafe algorithm
and was formally verified in PVS.
Theorem 2. For a polynomial path r(t) defined in For-
mula (1), an obstacle

O = {(x, y, z) : pj(x, y, z, t) ≤ 0,∀j = 1, ...,m},
where each pj(x, y, z, t) is a polynomial function, and
t0, tf ∈ R such that tf ≥ t0, the PolySafe algorithm in
Algorithm 1 returns t∗ ∈ R if and only if the earliest
violation between r(t) and O in [t0, tf ] occurs at time t∗.

Formal verification of PolySafe helped improve earlier
versions of the algorithm. In the original algorithm, only
the signs of the polynomials before and after each root
were calculated, instead of the slightly more complicated
procedure described in Section 4. This method could
detect violations that lasted for any positive length of
time, but not violations that occurred at a single instance.
Whether this sort of violation is considered an actual
threat is problem specific.

For example, when an obstacle is a separation volume
around an aircraft, a point violation might not be an
issue, as the volume is a buffer around the aircraft.
On the other hand, for an exact geofence that has no
buffer, a point violation would be a collision with that
obstacle. The PolySafe algorithm can be changed to detect
only violations that occur for more than an instance, by
considering violations where each entry of v(tk) is less than
0 rather than 1.

Another part of the PolySafe algorithm that was developed
during the formal verification process was the check that
discarded the polynomials that were exactly zero, i.e. pi=
0. There are many non-zero polynomials p(x, y, z, t) and
non-zero paths r(t) in (1) where p(x(t), y(t), z(t), t) = 0
for all t. For example, choosing

r(t) =

[
1

2
t, t− 1, 2t+ 2

]>
, (7)

p(x, y, z, t) = −32x+−4y2 + z2, (8)

results in p(x(t), y(t), z(t), t) = 0 for all t, although this is
not obvious by looking at r(t) and p(x, y, z, t).

A full PVS specification of PolySafe will be available as
part of the NASA PVS Library. Future formal verification
of PolySafe will account for violation detection using
floating point arithmetic instead of real arithmetic, and
when only approximations of the roots of the polynomial
constraints are known.

6. SIMULATION RESULTS

The efficiency of the algorithm will impact the type and
number of obstacles that can be modeled, the speed at
which conflicts can be detected, and the speed at which
conflicts can be later resolved.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15828



Table 1 shows the average time taken to verify the safety
of a trajectory of a polynomial path of degree 3 for a single
obstacle. Obstacles with different numbers of inequalities
and inequalities of different degrees are compared. These
calculations were performed on a standard desktop com-
puter with 2.8GHz quad-core Intel Core i5 processor and
8 GB of 1867MHz LPDDR3 onboard memory. The times
given account for the time needed to replace the x, y,
and z values in the inequalities with the x(t), y(t), and
z(t) functions of a trajectory, and for the execution of the
PolySafe algorithm. The code was tested in Matlab with a
randomly generated polynomial path, and an obstacle at
the origin 1000 different times. To represent the worst-case
scenario, a large time horizon is considered so every root
of the polynomial is within the time interval, and must be
checked. Therefore, the values in the table are conservative
estimates of the time required by the algorithm on a
realistic application.

The low computational cost allows for checking a large
number of obstacles. For instance, given one tenth of a
second to check the safety of a trajectory, over 1,300
spherical obstacles can be verified and over 350 cubic
obstacles. For checking well-clear violations of moving
aircraft, the algorithm could check an average of 120
aircraft every one tenth of a second.

It is also important to note that PolySafe can be trivially
parallelized. The checking of the safety properties of a
trajectory r(t) relative to any given obstacle Oi(t) is com-
pletely independent from all other obstacles. Therefore,
the capability exists for obstacles to be split into n groups
and verified on separate cores.

Obstacle Max Degree N Time (ms) STD (ms)

Pyramid 3 5 0.215 0.047
Cube 3 6 0.281 0.092
Sphere 6 1 0.073 0.012
Cylinder 6 3 0.159 0.029
Well-Clear 24 16 0.829 0.127

Table 1. Average time for PolySafe with a
randomly selected degree 3 polynomial path
and a single obstacle where N is the number
of inequalities that define the obstacle. The
average time and standard deviation (STD) for

1000 tests are reported.

7. CONCLUSION

This paper proposes a formally verified algorithm for
checking safety criteria of a polynomial flight path on
a dynamic airspace. By representing static and dynamic
obstacles as semi-algebraic sets, not only can a wide range
of obstacles be accurately modeled, but potential flight
conflicts with such obstacles can be efficiently detected.
PolySafe can be used to generate violation warnings in
real time, as well as to provide key information needed
to replan aircraft paths that violate acceptable levels
of separation. Additionally, PolySafe has been formally
verified to guarantee accurate reporting of these violation
warnings.

PolySafe is shown to efficiently handle hundreds to thou-
sands of obstacles in just a tenth of a second, thereby

making it suitable for complex and crowded airspaces. Be-
cause each obstacle can be processed independently from
the rest, PolySafe can be implemented in parallel thereby
further increasing the speed of computation. Strategies for
the integration of PolySafe to guidance algorithms that
yield new conflict-free paths will be considered in the
future.

REFERENCES

Balachandran, S., Narkawicz, A., Muñoz, C., and Con-
siglio, M. (2017). A path planning algorithm to enable
well-clear low altitude UAS operation beyond visual
line of sight. In Proceedings of the 12th USA/Europe
Air Traffic Management R&D Seminar, ATM 2017, 16.
Seattle, Washington.

Colbert, B.K., Crespo, L.G., and Peet, M.M. (2019). A
sum of squares optimization approach to uncertainty
quantification. In 2019 American Control Conference
(ACC). IEEE.

Cook, S.P., Brooks, D., Cole, R., Hackenberg, D., and
Raska, V. (2015). Defining well clear for unmanned air-
craft systems. In Proceedings of the 2015 AIAA Infotech
@ Aerospace Conference, AIAA-2015-0481. Kissimmee,
Florida.

Dill, E., Young, S., and Hayhurst, K. (2016). Safe-
guard: An assured safety net technology for UAS. 2016
IEEE/AIAA 35th digital avionics systems conference
(DASC).

Edelman, A. and Murakami, H. (1995). Polynomial roots
from companion matrix eigenvalues. Mathematics of
Computation, 64(210).

Federal Aviation Administration (FAA) Sponsored Sense
and Avoid Workshop (2009). Sense and avoid (SAA) for
unmanned aircraft systems (UAS).

Ford, J. (1977). A generalization of the jenkins-traub
method. Mathematics of Computation, 31(137).

Kochenderfer, M.J., Holland, J.E., and Chryssanthacopou-
los, J.P. (2012). Next-generation airborne collision
avoidance system. Lincoln Laboratory Journal, 19(1).

Munoz, C., Narkawicz, A., Chamberlain, J., Consiglio,
M.C., and Upchurch, J.M. (2014). A family of well-
clear boundary models for the integration of UAS in the
NAS. In 14th AIAA Aviation Technology, Integration,
and Operations Conference.

Narkawicz, A., Muñoz, C., and Dutle, A. (2018). Sensor
uncertainty mitigation and dynamic well clear volumes
in DAIDALUS. In Proceedings of the 37th Digital
Avionics Systems Conference (DASC 2018). London,
England, UK.

Owre, S., Rushby, J.M., and Shankar, N. (1992). PVS: A
prototype verification system. In International Confer-
ence on Automated Deduction, 748–752. Springer.

Stevens, M. and Atkins, E. (2016). Multi-mode guidance
for an independent multicopter geofencing system. In
16th AIAA Aviation Technology, Integration, and Op-
erations Conference.

Williamson, T. and Spencer, N. (1989). Development
and operation of the traffic alert and collision avoidance
system (TCAS). Proceedings of the IEEE, 77(11).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15829


