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Abstract: Unmanned autonomous vehicles offer a solution to maintaining adaptive multi-hop
communication paths when fixed infrastructure is not available, as may be the case in disaster
recovery or in contested environments. Some of the potential challenges these networks face are
changing environmental conditions, changing numbers of available agents and the need to avoid
certain domains. In this paper, a distributed implementation of a constrained extremum seeking
approach is proposed to optimise the signal power along the communication chain by adapting
vehicle locations within allowable regions. The approach is demonstrated via simulations that
consider both homogeneous and heterogeneous signal transmission pathways.
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1. INTRODUCTION

With the growing prevalence of wireless sensor network
technologies and Internet of Things, mobile ad-hoc net-
works are an important enabler to provide reliable com-
munication services (Rawat et al., 2014). In infrastructure-
scarce scenarios such as might be encountered in disaster
relief, a mobile adhoc network that can self-configure by
changing the positions of agents, and/or accommodate the
addition or removal of agents to provide solid multihop
communications over a wireless communication channel,
is an important tool.

In this paper, we consider the network to consist of a team
of quadrotor-mounted wireless communication relays. In
general, the wireless communication quality of two nodes
in the network strongly depends on the distance between
them; however, spatial- or time-varying environmental fac-
tors like humidity, fading coefficient and the transmitter’s
battery capacity can lead to an inaccurate estimation of
the signal power distribution for each node. This can
lead to a suboptimal deployment if the imprecise signal
model is used. Furthermore, it may be undesirable to
permanently locate agents above certain landforms such
as forests and lakes which impact safe vehicle retrieval, or
above other non-flight areas (e.g. helicopter landing zones
or areas where adversaries are detected). To address this
type of problem, we seek a model-free approach to optimise
online the weakest signal power link within the network
(i.e. the transmission bottleneck) by dynamically position-
ing the quadrotor-mounted communication relays, whilst
also restricting the quadrotors from within designated no-
? C Manzie and A Chapman acknowledge the support of the DCRC
on Trusted Autonomous Systems.

go areas. To solve this area-constrained wireless signal
chaining problem, a recently proposed output constrained
extremum seeking controller (ESC) (Liao et al., 2019) is
adapted to provide a distributed implementation across a
fleet of vehicles.

There are three main contributions of this work relative to
similar schemes proposed previously in the literature:

• Other than Dixon and Frew (2009) which only consid-
ers optimising the throughput of the wireless commu-
nication chain, the strategy we propose also takes into
account the both known and detected area constraints
as well as disturbances;

• Different from Zhang et al. (2007) and Dürr et al.
(2011) that inject perturbation signals to actuators
of the vehicle, we proposed an inner-outer loop con-
strained extremum seeking scheme which explicitly
takes into account the internal vehicle stabilising and
tracking controller so that the proposed framework is
applicable to more general vehicle dynamics;

• Unlike Min et al. (2016); Hasan et al. (2017) which
utilise a distance or channel quality model to solve
the optimum locations for deploying signal relay
nodes, the proposed scheme is non-model based. This
removes the reliance encountered by model-based
design approaches when the environment and the
signal model are highly uncertain.

The paper is laid out as follows. In the following section the
nomenclature used throughout is defined. The proposed
distributed approach is then outlined and the assumptions
required for the theoretical guarantees of (Liao et al., 2019)
are tested. Finally, simulation results are presented that
validate the proposed approach with homogeneous and
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heterogeneous agents acting under positional constraints
indicative of a no-fly region.

2. NOMENCLATURE

A bold lower-case letter stands for a vector, e.g. a, and
a matrix is represented as a bold upper-case letter, e.g.
A. The block diagonal matrix formed by m number of A
matrices on its diagonal entries is diag(A)m. The l2 norm
of a vector is ‖ · ‖. A non-empty set, A, has a boundary
denoted by ∂A.

The function β(·, ·) is class KL if β(·, ·) : IR≥0 × IR≥0 →
IR≥0 is non-decreasing in its first argument, strictly de-
creasing in the second argument. Without loss of general-
ity, β(0, t) = 0 ∀t ≥ 0.

The finite graph G is defined as a pair G(V,E), where V
and E are the sets of vertices and edges. ij ∈ E is the
existing edge between vi and vj in G(V,E).

The following smooth approximations of minimum, satura-
tion and switching functions that preserve differentiability
and respectively denoted as Ψ(·), Ω(·, ·) and σ(·) are used
for x ∈ R;a ∈ Rn with c1 = 10; c2 = 103:

Ψ{a1, . . . , an} :=

∑n
k=1 ak · exp(−c1ak)∑n
k=1 exp(−c1ak)

(1)

Ω(x) :=
2

1 + exp(−x)
− 1 (2)

σ(x) :=
1

1 + exp
(
− c2x

) (3)

3. PROBLEM FORMULATION

3.1 Proposed approach

We consider the scenario that there are n+ 2 nodes in the
chained wireless data-link, where each node has a label
i = 0, 1, · · · , n + 1. In addition, we set node i = 0 and
i = n+1 as fixed end nodes representing two base stations,
while nodes i = 1, · · · , n are quadrotor-mounted wireless
communication relays that can navigate in the space. The
communication topology considered herein is a simple path
graph as shown in Fig. 1. Under this communication topol-
ogy, the quadrotor-mounted node (agent) i communicates
with nodes (agents) i− 1 and i+ 1 only.

i=0

. . . .
Fixed End Fixed End

i=1 i=n i=n+1

Fig. 1. The considered graph communication topology,
denoted G(V,E).

During this communication, each agent is assumed to be
able to measure the respective signal strength from each of
its neighbours. No a priori knowledge of the signal power
functions of individual agents is assumed to exist. The
implication of this assumption is that a non-model-based
approach to the problem must be employed, leading to
the self assembly of agents towards preferable locations
to maximise the communication throughput. Furthermore,
it is desirable that the algorithm for agent localisation

is distributed, so that no centralised communication is
required. Thus within each agent, a hierarchical control
structure is proposed that consists of an outer loop that
sets a reference position, ui := [xgi , y

g
i , z

g
i ]T in (x, y, z)-

coordinates, and an inner loop that utilises the position
error between guidance coordinates and the current posi-
tion of vehicle, xi := [xi, yi, zi]

T , to command the motors.

Given the desire to not consider certain specified no-fly
zones, it is apparent that a constrained, non-model based
online optimisation approach is a potential outer-loop
strategy that can readily be implemented in a distributed
fashion. The proposed structure is illustrated in Fig 2, and
based on (Liao et al., 2019).

Linearized 

Quadrotor

Equation of Motion

Optimiser
Gradient Estimator

Inner Loop

Outer Loop Guidance Logic

. . . . . . . .
Fixed End Fixed End

Relays

i-1 i i+1

Fig. 2. The proposed hierarchical strategy. The outer-loop
is an output constrained ESC. For relay node i, the
objective function Qi corresponds to the data-link
power to be maximized; whilst GA is the operation
area constraint.

In the following subsections, the Assumptions that under-
pin the constrained extremum seeking approach of (Liao
et al., 2019) will be shown to hold, and thus the semi-
global practical result contained therein can be applied to
this problem.

3.2 Inner-loop tracking controller for node i ∈ {1..n}

In the inner loop control, a standard linearised quadrotor
model at the hovering equilibrium is considered. The
equation of motion of the ith quadrotor from (Bouabdallah
and Siegwart, 2007) is used here, and is included for
completeness as follows:

φ̇i = pi; ṗi =
ρxi
Ix

; u̇i = −gθi +
fx

m
; ẋi = ui

θ̇i = qi; q̇i =
ρyi
Iy

; v̇i = gφi +
fy

m
; ẏi = vi

ψ̇i = ri; ṙi =
ρzi
Iz

; ẇi =
−f ti + fz

m
; żi = wi

(4)
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Here, (φi, θi, ψi) are the Euler angles; (pi, qi, ri) and
(ui, vi, wi) are angular and linear velocities along quadro-
tor’s body frame x-y-z axis respectively; and (xi, yi, zi)
are quadrotor’s inertial frame coordinates leading to the
overall state vector in the inner loop control Xi =
[φi, θi, ψi, pi, qi, ri, ui, vi, wi, xi, yi, zi]

ᵀ ∈ R12×1. The ve-
hicle motors supply thrust force and torques uacti =
[f ti , ρ

x
i , ρ

y
i , ρ

z
i ]

ᵀ, but are potentially corrupted by constant
wind disturbances along the inertial frame x-y-z direction
d = [fx, fy, fz].

The inner loop dynamics of (4) can subsequently be
written into the compact linearised form

Ẋi = AXi +Buacti +Dd. (5)

The desired height of the UAVs is assumed to be constant
at zgi , and thus only the (xgi , y

g
i ) coordinates are required

to be specified by the outer (guidance) loop of each agent.
An LQR controller is subsequently chosen to regulate Xi

to Xg
i = [09×1, x

g
i , y

g
i , z

g
i ]ᵀ.

Remark 1. The dynamics of (4) are sufficiently smooth
so that Assumption 1 of (Liao et al., 2019) holds.

Remark 2. The formulation of (4) can consider either
feedback linearisation or local linearisation approaches.
The former leads to the choice of LQR design for the inner
loop control ensuring that the linearised dynamics are
GAS towards a steady state input-output map, x = l(u),
and hence Assumption 2 of (Liao et al., 2019) is satisfied
- other choices for the inner loop controller that maintain
this property are equally valid. However in the latter case
with only a locally linear model being considered, only
LAS can be concluded and the results of (Liao et al., 2019)
collapse to local rather than global conditions.

3.3 Choice of optimisation metric used in guidance loop

For nodes i and j in the chain with their current co-
ordinates on the x-y plane denoted as xi,xj ∈ R2, the
transmitted signal power from node j measured by node
i is S(xi,xj). The measured signal power, S(xi,xj), is
utilised to evaluate the communication quality of that link
in the chain.

The signal power functions are typically modelled in
a Gaussian form, with a potentially temporally- and
spatially-varing fading parameter cfi, and a peak power
level, Ki, for the ith node given by:

S(xi±1,xi) = Ki · exp(−cfi‖xi±1 − xi‖2) (6)

A single (unconstrained) optimisation metric for the en-
tire set of agents would be to improve the bottleneck
(or weakest) link by adjusting the reference positions of
the agents. In this work, to maintain smoothness in the
optimisation metric, the unconstrained problem is posed
using the softmin function as:

ho(x) := Ψ
{
S(xi,xj),∀ij ∈ E

}
(7)

It follows directly from Remark 2 that the following un-
constrained optimisation problem for the guidance coordi-
nates can be posed on the steady state manifold:

Q(u) := ho(l(u)) = Ψ
{
S(ui,uj),∀ij ∈ E

}
(8)

u∗ := arg max Q(u) (9)

Remark 3. It is straightforward to show that the choice
of optimisation function (8) is continuously differentiable

everywhere and so satisfies Assumption 3 of (Liao et al.,
2019). It is worth noting, however, that in practice the
use of dither provides a smoothing effect that mitigates
against the need for continuity everywhere in the steady-
state map (Zames and Shneydor, 1976). The implication is
that Ψ(·) used in (8) can be replaced in practice by a strict
min operation, potentially simplifying the implementation.
Nonetheless, to retain consistency with the developed
theory in Liao et al. (2019), the explicit Ψ(·) function is
used hereafter in this work.

Remark 4. It is worth noting that the solution to (9) is
only approximately equal to the true minimum, however
this approximation error can be made arbitrarily small
through the choice of c1 in the definition of Ψ(·). The value
of c = 10 ensures the approximation error is small in the
context of the problems considered in this paper.

As shown in (Dixon and Frew, 2009), under a simple
path graph communication topology with fixed end nodes
such as considered here, the problem in (9) can be solved
distributively by treating ui±1 as constant with respect to
the ith node. Thus, given Remarks 2 and 4, the distributed
solution to (9) for relay i to solve in the slow time scale
can be simplified to:

Qi(ui) := Ψ
{
S(ui,ui+1), S(ui,ui−1)

}
(10)

u∗i := arg max Qi(ui) (11)

3.4 Choice of constraint function

Within the x − y domain we denote the region A repre-
senting the no-fly area in which each of the UAVs cannot
remain permanently. Here, the constrained regions are con-
sidered to be represented by ellipses, and the (unknown)
constraint functions are considered to be quadratic poten-
tial functions in a similar methodology to (Zavlanos and
Pappas, 2007):

GA(x) = −α‖x− xcon‖2 +Kcon (12)

Here, the parameters (xcon,Kcon, α) are chosen to ensure
that the constraint function has sufficient gradient and
satisfies GA = 0 on the boundary of the constraint region,
and GA < 0 when the constraint is inactive.

Remark 5. This is clearly a simplistic approximation,
although overbounding the disallowed regions with convex
polytopes of other shapes is a practical solution. This
choice of constraint function ensures that Assumption 4
(convexity of the constraint function) (Liao et al., 2019)
is satisfied by design, and furthermore Assumption 5 (a
feasible unconstrained solution exists) is satisfied for finite
(xcon,Kcon, α).

3.5 Choice of dither and gradient estimator

The two dither signals in the x−y setpoints for each agent
are chosen to be sinusoids of amplitude a, and the gradient
estimators in Fig. 2 are chosen to be low pass filters with
transfer functions described by ωiωLi

s+ωiωLi
. The outputs of

the gradient estimators are denoted ξi := [ξoi , ξ
c
i ]
T .

Remark 6. With this choice of dither and in the case ωi 6=
ωi±1, it is clear that 1

T

∫ T
0
ri (t) ri (t)

ᵀ
dt =: K � 0. Hence
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it is concluded that Assumption 6 of (Liao et al., 2019),
which relates to a persistency of excitation condition, is
satisfied.

3.6 Choice of optimiser

As in (Liao et al., 2019), the optimizer Fγ in the outer-loop
combines the objective and constraint function gradients
(with the latter weighted by some scaling parameter λ) to
generate the guidance setpoint in R2. The optimizer Fγi
utilises the smooth function (3), and is given by:

Fγi
(
GA(xi),

[
∇Qi
∇GA

] )
=
(
1− σ(GA(xi)− γi)

)
∇Qi

− σ(GA(xi)− γi)λ∇GA (13)

In (Ramos et al., 2017) dynamics were introduced in the
offset parameter, γi, to ensure the steady state solution of
the extremum seeker is in the feasible constraint set. These
dynamics were of the form γ̇i = −kGA(xi) with appropri-
ate antiwindup action added. In this paper, the follow-
ing smooth antiwindup approach is used which maintains
|γi| ≤ γsat by introducing a pseudo-state, gi, and uses (2):

γi = γsatΩ(gi) (14)

ġi =
−kεωLiωi
γsat

Ω(GA(xi)) (15)

Remark 7. The continuous approximation functions (1)-
(3) utilised in (8) - (15) may be replaced by their discontin-
uous counterparts leading to a hybrid system, which may
be dealt with directly as in (Poveda et al., 2018), albeit
with assumptions for the closed loop system that are more
difficult to satisfy a priori.

3.7 Analysis of closed loop system

We can formulate the closed loop equations for the entire
closed loop system under a constant disturbance using (4)
to (15). For notational convenience, we introduce the vari-

ables ζi := [Ψ

(
S(ui,ui+1), S(ui,ui−1)

)
rᵀi , GA(xi)r

ᵀ
i ]ᵀ,

and zi := [γi, gi]
T . The overall closed loop system in Fig. 2

can then be represented by the following dynamics:

ẋi = fi(xi, ûi + ari(ωit),d)

ξ̇i = −ωLiωi ·
(
ξi − ζi

)
˙̂ui = εωLiωi · Fγ

(
GA(xi),

1

a
diag(K−1) · ξi

)
żi = −εωLiωiΩ(GA(xi))

[ 2ke−gi

(1 + e−gi)2
,
k

γsat

]T
(16)

The desired solution to (16) for the ith relay corresponds to
the state (x∗i , ξ

∗
i ,u

∗
i , z
∗
i ), which is the steady state solution

to the posed constrained optimisation problem, i.e.:

u∗i :=

{
Ψ
{
S(ui,ui+1), S(ui,ui−1)

}∣∣∣∣GA(ui) ≤ 0

}
(17)

An error system can then be constructed by defining:

ũi(t) = ûi(t)− u∗i
z̃i(t) = z(t)− z∗i
ξ̃i(t) = ξi(t)− ξ∗i
x̃i(t) = xi(t)− x∗i (18)

The error system dynamics resulting from (16) and (18)
are in the same form and all the required Assumptions
of Theorem 1 in Liao et al. (2019) hold. Thus, we can
conclude that the following SPA result holds for the
distributed constrained signal chaining problem:

Corollary 1. Consider (16)-(18), with any positive ∆
such that

||x̃i(t0), ξ̃i(t0)), ũi(t0), z̃i(t0)|| ≤ ∆.

For any ν > 0, there exists β1, β2, β3 ∈ KL, such that there
exists (a∗, k∗, α∗) ∈ IR3

>0, where for any (a, k, α) ∈ (0, a∗]×
(0, k∗] × IR≥α∗ there exists ε∗ > 0, such that for any
ε ∈ (0, ε∗] there exists ω∗L > 0, and for any ωLi ∈ (0, ω∗L]
there exist ω∗i > 0, such that for any ωi ∈ (0, ω∗] the
following holds ∀t ≥ t0 ≥ 0, ∀i = 1..n:

‖x̃i(t)‖ ≤ β1
(
‖[x̃i(t0), ξ̃i(t0), ũi(t0), z̃i(t0)]‖, (t− t0)

)
+ν

‖ξ̃i(t)‖ ≤ β2
(
‖[ξ̃i(t0), ũi(t0), z̃i(t0)]‖, ωiωLi(t− t0)

)
+ν

‖[ũi(t), z̃i(t)]‖ ≤ β3
(
‖ũi(t0), z̃i(t0)‖, ωiωLiεka(t− t0)

)
+ν

The implication of this result is practical stability for
the entire closed loop system operating under a constant
disturbance, with tuning guidelines outlined above. In the
event that locally linear controllers are used, the result
becomes a local result that places an upper bound on ∆.

4. SIMULATION RESULTS

4.1 Distributed algorithm with homogenous agents and no
area constraint

To demonstrate the proposed framework, we initially con-
sider the scenario whereby two base stations are positioned
at x0 = [0; 0] and x16 = [150; 100], and there are no area
constraints to contend with. Fifteen identical quadrotors
with m = 0.35kg, Ix = Iy = 8.6×10−3 kg m2, Iz = 2Ix are
dispatched from a single location x = [50, 0] to maximise
the signal transmission between the bases. The parameters
of the agents distributed controllers are shown in Table 1.

The trajectories of the agents upon release are shown
in Fig. 3. As might reasonably be expected given the
identical nature of the agents and the absence of area
constraints, the relays distribute themselves uniformly
along the shortest path between the two base stations.
This is however an important base case, as it validates that
distributing the algorithm in the manner suggested herein
does not impact on the ability to achieve the optimum
solution.

Table 1. Initial parameters for simulations
without area constraints

(Ki, cfi) for (6) (2, 0.5× 10−2)

(ε, γsat, k) in (14)-(16) (25, 20, 10−3)

Relays i = 1, 4, 7, 10, 13 r = [sin(0.02t+ π/2); sin(0.02t)];
ωLi = 0.01

Relays i = 2, 5, 8, 11, 14 r = [sin(0.15t); sin(0.15t+ π/2)];
ωLi = 0.15

Relays i = 3, 6, 9, 12, 15 r = [sin(0.015t+ π/2);
sin(0.015t+ π/7)];

ωLi = 0.014
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This is further illustrated in Fig. 4 where the signal
strength across the weakest link in the chain of relays,
which is the bottleneck for the overall transmission be-
tween the two end nodes, demonstrating that this ap-
proaches the global solution.

Fig. 3. Trajectories of 15 quadrotor-mounted communica-

tion relays (symbol 9) position evenly between two
stations (symbol N) at the end of the simulation. All
nodes have the same signal power function.

0 0.5 1 1.5 2 2.5 3

10
6

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. The team of quadrotors maximise the weakest
signal power link within the communication chain.
The dash line represents the optimum value.

4.2 Distributed algorithm with homogenous relays and an
area constraint

Having established the functionality of the distributed
algorithm, area constraints are now imposed that the
relays must satisfy in steady state representing a no-fly
zone for the UAVs. The no-fly zone is represented by
the ellipsiodal potential function centred at (15, 15) and
described by GA(x) = (−‖x − [15; 15]‖2 + 80) × 103.
GA(x) > 0 is the constrained area, and lies directly in
the pathway between the two end points. The number
of agents is now reduced to three to allow for clearer
illustration, and the base stations are located at x0 = [0; 0]
and x4 = [25; 25]. The parameters used in this second
simulation are contained in Table 2.

The relays are now released from equally separated posi-
tions along the x-axis, and the resulting trajectories are
plotted in Fig. 5. This requires two of the relays to transi-
tion towards equidistant locations on the boundary of the
constrained region, represented by the constrained optima
of x∗1 = [9.33; 3.72] x∗2 = [18.87; 7.13] x∗3 = [23.88; 14.86].

As a further test case, force disturbances representing
constant wind conditions of positive and negative values
are added to the simulation with the results plotted in Fig

Table 2. Parameters for initial simulations with
area constraints

(Ki, cf ) for (6) (8, 0.5× 10−2)

(ε, γsat, k) in (14)-(16) (25, 20, 10−3)

λ in (13) 0.02

Relay 1 r = 0.5×[sin(0.01t+ π/2);
sin(0.01t];
ωL = 0.01

Relay 2 r = 0.5×[sin(0.03t);
sin(0.03t+ π/2)];

ωL = 0.15

Relay 3 r = 0.5× [sin(0.015t+ π/2);
sin(0.015t+ π/7)];

ωL = 0.014

Fig. 5. Stations and relays have the same transmission
power function.

6. Despite this causing an offset at the inner loop control,
the outer loop simply adjusts the set point to compensate
for the impact of these disturbances. Although not plotted,
a similar result holds if the constant disturbances differ
between agents.

0 1 2 3 4 5 6 7 8

10
4

0

1

2

3

4

5

Fig. 6. Bottleneck signal link power under constant force
disturbances.

As a demonstration of the impact of tuning parameters
on the convergent behaviour, the dither amplitude and
optimiser gain are increased to (a, ε) = (2.5, 100). As
expected from Theorem 1 of (Liao et al., 2019) and shown
by the offset trajectories relative to these optima in Fig. 7,
increasing these gains leads to a faster convergence rate at
the expense of larger oscillations around the optima.

4.3 Distributed algorithm with heterogeneous relays and
an area constraint

To simulate the effect of heterogeneity amongst the agents,
the signal power of the middle relay is now reduced to
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

0

10

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

0

10

20

Fig. 7. Position errors ‖x̃1‖, ‖x̃2‖, ‖x̃3‖ of relays using
different sets of tuning parameters.

S(x1,3,x2) = 3 · exp(−‖x2−x1,3‖2
2·102 ). This might represent

the battery on this relay is starting to lose power leading to
lower available transmission effectiveness. The other relays
maintain the same power transmission characteristics as in
the earlier simulations. The results demonstrated in Fig. 8
show that the final positions of relays 1 and 3 are closer to
the weak relay to compensate for the reduced power. The
new constrained optimum obviously has a lower bottleneck
link transmission as illustrated in Fig. 9, but roughly the
same time to achieve the final positions.

0

0

0

0 5 10 15 20 25 30 35

0

10

20

30

Fig. 8. The middle relay incurs degraded transmission.

0 1 2 3 4 5 6 7 8

10
4

0

0.1

0.2

0.3

0.4

0.5

Even Power

With Weak Relay2

Fig. 9. The bottleneck signal transmission power with
homogenous and heterogeneous agents.

5. CONCLUSION

To maximise connectivity across a UAV-based communi-
cation network that cannot have agents remain in certain
regions, this paper proposes a distributed version of the
constrained extremum seeking algorithm presented in Liao

et al. (2019). The considered approach is computationally
low, and not impacted by the number of agents in the
network. Through a series of simulations the approach is
shown to position the UAV-relays to maximise the bot-
tleneck link for signal transmission, leading to positions
that obey the area constraints under constant disturbances
with both homogeneous and heterogeneous agents.

Further work is required to implement the algorithms on
hardware, with further algorithmic refinement to focus on
improving the convergence rates through incorporation of
known information into the algorithm, and to formally
derive conditions under which the end points may be time
varying. We will also consider adaptation of the algorithm
to account for redundancy requirements, particularly in
the face of changes to the underlying graph due to removal
of individual agents.
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