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Abstract: In contrast to a vector non-linear stochastic differential equation (SDE) describing the satellite 

dynamics under the ‘fluctuating aerodynamic torque’, this paper analyses a second-order fluctuation 

equation for the radial perturbation about the given orbit. The second-order fluctuation equation for the 

radial perturbation has found its application for the satellite orbital stability. After accomplishing a phase 

space formulation, we arrive at the two-dimensional SDE. Most notably, the inaccurate choice of 

stochastic integral describing the satellite stochastic dynamics will have influence on their estimation, 

stability and control.  For this reason, we develop a noise equation of the satellite dynamics in the 

Stratonovich setting. The satellite dynamics in the Stratonovich sense can be expressed equivalently in 

the Itô setting by accounting additional correction terms in the system non-linearity term of the SDE. 

This paper develops the estimation theory of satellite dynamics via the Stratonovich calculus. The 

analytic findings are useful to the trajectory estimation of the orbiting satellite under the influence of 

atmospheric dust perturbations, where the observations are not available. 
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1. INTRODUCTION 

      In satellite mechanics, the two-body problem describes 

the motion of an orbiting particle, i.e. the Planet-Sun system. 

One can arrive at the two-body model by writing the 

Lagrangian of the orbiting particle in combination with the 

Euler-Lagrange equation. After accounting the effect of 

‘stochastic dust particles’, an astronomical phenomenon, the 

governing equation leads to a system of two-coupled second-

order fluctuation equations (Sharma and Parthasarathy, 

2007). Various two-body models and their exposition can be 

found in the famous book, i.e. Foundations of Mechanics, 

authored by (Abraham and Marsden, 1987). Another 

appealing model in satellite mechanics is described by a 

multi-dimensional SDE, a six-dimensional, see Bierbaum et 

al. (2002) and Montenbruck and Gill, (2000). More notably, 

random initial conditions and small random perturbation 

effects give rise to the concept of the SDE. Unaccounting the 

effect of small perturbation effects, inaccurate choice of the 

stochastic interpretation  and the inaccurate choice of noise 

models will  lead to the inaccurate estimated state trajectory, 

which will have the following consequences: (i) a poor 

decision about the positioning of the orbiting satellite (ii) 

inaccurate satellite orbit determination (Montenbuck and Gill, 

2000) leading to the false military threat (Kessler and Cicci, 

1997) (iii) poor control algorithmic procedures, which will 

have influence on the satellite orbit stability. The motion of 

satellites with magnetic elements is influenced by the 

geomagnetic (Sagirow, 1972) field in two ways: (i) 

interaction between the magnetic rod and the geomagnetic 

field (ii) interaction between the eddy current, which is 

produced in the shell of the satellite, geomagnetic field. 

Under fluctuating geomagnetic field, the orbiting satellite can 

be regarded as  a stochastic differential system resulting from 

the electromagnetic theory and the theory of stochastic 

processes. Notably, the satellite dynamics under the influence 

of the fluctuating aerodynamic torque is formalized using a 

higher-dimensional non-linear SDE (Sagirow, 1970). It 

becomes harder to analyse the higher-dimensional non-linear 

stochastic differential system, since it involves the matrix-

vector format as well as the closed-form solution is not 

possible.  As a result of this, it becomes imperative to explore 

a lower dimensional SDE describing the effect of random 

perturbations on the orbiting satellites. Fortunately, one such 

model, a second-order fluctuation equation for the pitch 

motion has proven useful for the satellite orbital stability 

problem (Kloeden and Platen, 1991, p. 262). After 

accomplishing the phase space formulation for the second-

order fluctuation, we are led to the two-dimensional SDE. 

The white noise-driven stochastic model is popular, but 

informal. There are two formal stochastic interpretations, the 

Itô and Stratonovich. It is a famous stochastic process 

quotation that the computers are the Itô and the circuits are 

the Stratonovich, see Rathore and Sharma, (2018) and Victor 

and Chirikjian, (2019). Filtering and control of physical 

models involving the ‘Stratonovich differential’ are relatively 

very scarce. This paper does that. 

   Most notably, in this paper, we wish to develop a noise 

equation of a satellite dynamics in the Stratonovich setting, 

an alternative interpretation. The satellite dynamics in the 

Stratonovich sense can be expressed equivalently in the Itô 

setting by accounting additional correction terms in the 

system nonlinearity term of the stochastic differential system 

that contribute to the accuracy of the noise equation. 
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Secondly, this paper utilizes the theory of Stratonovich SDE. 

Some experimentations as well as guesswork to develop and 

examine the efficacy of an estimation algorithm for the 

satellite dynamics. This paper explains in some detail the 

stochastic stability of the satellite motion using the 

Stratonovich differential as well as highlights the 

mathematical intractability associated with asymptotic 

stability in probability for the stochastic problem of concern 

here. The estimation theory, stability conditions and control 

of dynamical systems in the Stratonovich setting are known 

in literature are relatively scarce. Since this paper unfolds the 

estimation procedure for a satellite dynamics in the 

Stratonovich setting, aerodynamists, practitioners will find 

the paper revealing. 

  

 Notations: This paper adopts the notation  for the 

conditional expectation of the random variable.  

 

2. AN ESTIMATION ALGORITHM FOR A STOCHASTIC 

SATELLITE DYNAMICS 

   This section explains briefly the motion of the orbiting 

satellite under the influence of gravity gradient and 

fluctuating aerodynamic torque. The satellite dynamics under 

the influence of randomly varying atmospheric density is, see 

Sagirow, (1970).  

 

,extMD
dt

dD
=×+ ω                                                              (1) 

 

where the term ''D  has an interpretation as moment of the 

momentum of the orbiting satellite, ω is the vector angular 

velocity of the satellite, the sign ×  denotes the vector product 

and extM  has two components: (i) gravity gradient torque (ii) 

the fluctuating aerodynamic torque ),),,((
2

1 2 ωλϕφ Kfgv +  

where  ),,,( λϕφf  ωK  are the vector non-linear functions. 

Note that the atmospheric density g has the stochastic 

character, 

 

)1( to Bgg &δ+= ,                                                                 (2) 

 

where og is the deterministic atmospheric density, δ  is the 

noise intensity and tB  is the Brownian motion. The 

stochastic character is attributed to the Earth-Moon 

interaction, solar activity etc. The satellite xyz -fixed axes 

and orbital axes are associated with the Euler angles, the roll 

angle ,ϕ  the yaw angle ,φ the pitch angle .λ  As a result of 

equations (1)-(2), we have  

 

=×+ D
dt

dD
ω ),),,(()1(

2

1 2
0 ωλϕφδ KfvBg t ++ &              (3) 

 

Consider the roll and yaw angles are at the equilibrium points 

and the x -axis is an axis symmetry of the satellite. After a 

simple calculation, equation (3) reduces to the second-order 

non-linear stochastic pitch motion, see equation (3.24) of   

Sagirow (1970, p. 56), i.e.    

 

,0)(sin2sinsin 000 =++−++ tBl &&&&& ληλδλληλλ               (4) 

 

where 0η depends on the satellite geometry and aerodynamic 

constants, 0δ  depends on the satellite geometry and l is the 

gravity gradient. Interestingly, equation (4) is an immediate 

consequence of the notion of the time normalization.  After 

rearranging the terms of equation (4), adopting more familiar 

and convenient notations for the phase space analysis, we 

arrive at (Kloeden and Platen, 1991, p. 262), 

                                 

,02sinsin)1()1( =−++++ tttttt cBaBab λλλλ &&&&&               (5) 

 

where .,, 00 lcab === δη For convenience, we have 

adopted the notation tB&  for the white noise process in lie of 

the notation tξ  adopted in (Kloeden and Platen, 1991).  The 

standard approach to analyse stochastic differential systems is 

to derive the conditional moment evolution equation, where 

conditional mean and variance become the special case. After 

accomplishing the phase space formulation of equation (5), 

we get a formal stochastic interpretation, i.e. 

 
,),(),( tttt dBtGdttfd λλλ +=                                           (6) 

 

The thi component of the above SDE can be stated as  

 

,),(),( γ

γ

γ λλλ dBtGdttfd titii +=                                 (7) 

where  

 

( ) ,, 21
T

t λλλ = ( ) ,2sinsin,),( 1122
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.)sin,0(),( 12
T

t aabtG λλλ −−=  

 

In the Itô theory, the term ,dtBdB tt
&=  where tB& is the white 

noise process, The term tdB is treated as a rigorous 

mathematical object. The Itô calculus has demonstrated 

surprising power for stochastic problems arising from diverse 

field. In the Stratonovich setting, equation (7) becomes   

   

 

,),(),( γ

γ

γ λλλ dBtGdttfd titii o+=                              (8) 

 

where ''o  denotes the Stratonovich differential, a linear 

operator. The Stratnovich SDE can be further replaced with 

Itô SDE with additional correction terms in the system non-

linearity term, see Jazwinski, (1970, p. 119) and 

Stratonovich, (1966), we get  
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Furthermore, the estimation theory, stability and control of 

the Stratonovich SDE can be accomplished by considering 

equation (9) in lieu of equation (7). After considering the 

Stratonovich setting, the additional correction term 

1
2

2
22 sin5.05.0 λλ baba +  contributes to the satellite 

dynamics considered here. Thus, the satellite dynamics in 

Stratonovich setting can be further recast as, 

 

,21 dtd λλ =                                                                         (10) 

 

dtbabacbd )sin5.02sinsin( 1
2

2
22

1122 λλλλλλ +++−−=  

           ,)sin( 12 tdBaab λλ −−+                                           (11) 

 

The additional correction term 1
2

2
22 sin5.05.0 λλ baba +  of 

the satellite dynamics is a special case of the Stratonovich 

correction term
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. Thanks to result 

stated in Jazwinski (1970, pp. 136-137), we state the 

following exact evolution equations: 
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where,    
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For the sake of generality, this paper utilizes the term 

conditional mean and variance that become the mean and 

variance for the deterministic initial state. A system of exact 

evolution equations, equation (12) and (13) is not convenient 

from for numerical experiments. For this reasons, we utilize 

the conditional mean and variance evolution equations 

accounting the perturbation order two in the system non-

linearity and the diffusion coefficient. As a result of this,  
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Remark:  Equations (14)-(15) account for the greater partial 

order attributed to the Stratonovich differential in contrast to 

the Itô differential. The greater order can be traced back to 

the mean square convergence of the Stratonovich stochastic 

integral (Pugachev and Sinitsyn 1987, p.175 and p. 390).     

Equations (14)-(15) are useful that are exploited to the 

trajectory estimation of the orbiting satellite under the 

influence of atmospheric dust perturbation. 

 

Conditional mean and variance evolutions for the satellite 

dynamics 

                

  Conditional mean and variance evolutions for the satellite 

dynamics in Stratonovich setting can be obtained by 

considering equations (10), (11), (14), (15). As a result of 

these, we have 

 

,21 dtd λλ =                                                                   (16) 
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3. NUMERICAL SIMULATIONS 

For Approximate evolution equations, equations (16)-(20), 

are hard to evaluate theoretically, since the global properties 

are replaced with the local. In this paper, the numerical 

experiments associated with estimation algorithms of the 

satellite stochastic dynamics in the Itô and Startonovich 

senses are accomplished by considering two different sets of 

initial conditions, system parameters. The first set of system 

parameters and initial conditions is    

 

,rad/sec5.0)0(,rad1.0)0(,3.0,6.0,3.0 21 ===== λλcba

./secrad0)0(,/secrad0)0(,rad0)0( 2
12

22
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2
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For convenience, here we consider that initial variances of 

the state vector are chosen as zero. This assumption allows 

studying the mean and variance trajectories under fluctuating 

atmospheric density explicitly. Non-zero initial variances can 

be chosen for the numerical testing of the estimation 

algorithms of the paper as well. The initial conditions and 

system parameters considered in this paper are associated 

with equations (16)-(20). The system parameters cb,  are 

damping and oscillatory terms of equation (5) respectively 

describing the satellite dynamics under the influence of 

varying atmospheric conditions. The system parameter a  is 

chosen using the criterion that the contribution to the 

evolution of the state vector T
t ),( 21 λλλ =  stemming from 

the random part is relatively smaller than the deterministic. 

 

The numerical simulations demonstrated in figures (1)-(4) 

suggest that the mean and variance trajectories for the pitch 

angle and the derivative of the pitch angle display the 

bounded property resulting from estimation algorithms, 

equations (16)-(20). Furthermore, the mean and variance 

trajectories for the Stratonovich differential are bounded as 

well. The variance trajectories of figures (3)-(4) suggest that 

the difference between the variances, resulting form the 

Stratonovich and Itô settings. It is difficult to differentiate 

between the mean trajectories of figure (2) resulting from the 

Itô and Stratonovich settings. This suggests the contribution 

to the mean evolution 2λd  coming from the additional 

term 1
2

2
22 sin5.05.0 λλ baba +  of the Stratonovich 

differential  is relatively smaller, especially for the first set of 

system parameters and initial conditions. 

 

The additional correction terms associated with the 

Stratonovich SDE contribute the additional terms to the mean 

and variance evolutions leading to the better state estimates.  

Note that the additional correction terms associated with 

evolution of the conditional mean 2λ  are the following: (i) 

)sin5.0)(5.0( 1
2

2
2 λλ baab + (ii) ,sin25.0 1

2
11 λbaP−  see 

equations (15) and (16). Furthermore, the additional 

correction term with the evolution 22dP  of conditional 

variance is ).5.0(2)cos5.0(2 22
221

2
12 babPbaP −−λ    

Thirdly, the term )5.0()cos5.0( 22
121

2
11 babPbaP −−λ  of 

12dP  describes the additional correction term stemming from 

the Stratonovich interpretation. As a result of these correction 

terms, the estimated state trajectories of the satellite dynamics 

using the Stratonovich differential will be closer to their 

actual trajectories.   
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Figure 1: a comparison between estimated trajectories 
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Figure 2: a comparison between estimated trajectories 

Time (second) 

  
  

  
  

 T
h

e 
st

at
e 
λ

2
 

 

Time (second) 

  
  

  
  

  
T

h
e 

st
at

e 
λ

1
 

 

   ………. Noisy trajectory 

 

______ Stratonovich trajectory 

        

    _ _ _ _   Itô trajectory 

    

   ………. Noisy trajectory 

 

______ Stratonovich trajectory 

        

    _ _ _ _   Itô trajectory 

    

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2446



 

 

     

 

 

 

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 
 

Figure 3: a conditional variance trajectory  
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Figure 4: a conditional variance trajectory  

 

 

4. THREE STOCHASTIC PROBLEMS 

    In this section, we highlight three stochastic problems. The 

first problem is about filtering theory of satellite dynamics of 

this paper. The second and third problems are about the 

stochastic stability conditions for the satellite dynamics by 

exploiting the Stratonovich context of the SDE. The stability 

of dynamical systems becomes quite harder in contrast to 

classical stability, since its involves the results of stochastic 

calculus than the ordinary calculus. 

(i) In this paper, we developed the estimation algorithm for 

the satellite motion under the influence of the random 

atmospheric perturbation without accounting the effect of 

observations. After accounting observation terms in 

estimation algorithms, the estimation algorithms become 

filtering algorithms. Filtered estimates are more accurate in 

contrast to estimation algorithms unaccounting observations 

terms. For this reason, stochastic filtering of the satellite 

dynamics in the Stratonovich setting deserves investigations. 

(ii) The stochastic stability theory for the Itô SDE, by 

constructing the stochastic Lyapunov function, is available in 

literature (Kushner, 1967). The structure of the differential 

operator that can be regarded as the Kolmogorov-Fokker-

Planck operator is the following, 

.
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The above operator is useful to obtain the derivative of the 

stochastic Lyapunov function ).( tv λ The term ))(( tvL λ , a 

derivation of the stochastic Lyapunov function, plays the key 

role to obtain stability conditions. Secondly, the Itô process is 

a right continuous strong Markov process as well. On the 

other hand, the stochastic stability for the Stratonovich SDE 

involving the concept of the stochastic Lyapunov function is 

not sufficiently known. The differential operator acting on the 

stochastic Lyapunov function of the Stratonovich SDE is 

modified to, 
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However, asymptotic stability in probability is valid for the 

right continuous strong Markov process. The proof of the 

Stratonovich process tλ  to be a strong Markov process is 

cumbersome (Protter, 1990). Thus, deriving stability 

conditions for the satellite dynamics using the Stratonovich 

SDE merits investigations. The stochastic stability conditions 

for the Stratonovich setting would be more stringent and 

general in contrast to Itô setting. 

(iii) Alternatively, the stochastic stability for dynamical 

systems involving the concept of the Lyapunov exponent 

received attention in literature. The results on the stochastic 

stability for the Stratonovich time-varying vector ‘bilinear’ 

SDE involving the concept of the Lyapunov exponent are 

available in literature (Pignol, 1985), see a celebrated book 

authored by Lin and Cai, (1995) as well. In the stability 

context, Liu and Liew, (2005) will be also useful. However, 

the stability results on ‘non-linear’ Stratonovich SDEs 

exploiting the concept of the Lyapunov exponent are not 

sufficiently known. For this reason, deriving stability 

conditions for the satellite dynamics of this paper, a 

mathematical problem formalized as a non-linear vector 

Stratonovich SDE coupled with the concept of the Lyapunov 

exponent, can be regarded as an open problem. 

Contributions to the three stochastic problems of this paper 

will advance the topics in ‘filtering and stochastic stability’. 
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That will prevent the possibility of inaccurate state estimates 

and poor stability conditions. 

5. CONCLUSION 

In this paper, we have developed a perturbed satellite 

dynamical model by exploiting a Satellite dynamics in the 

Stratonovich setting that is not available in literature. 

Notably, it hard to differentiate between state trajectories 

associated with the satellite dynamics in the Itô and 

Stratonovich settings, especially under zero initial variances. 

On the other hand, under non-zero initial variances, the 

difference between the state trajectories resulting from both 

settings becomes lager. Thus, the numerical simulation 

suggests that the Stratonovich setting is a more accurate 

stochastic interpretation in contrast to the Itô setting. It is 

further shown that the estimation equations of this paper 

resulting from the Stratonovich SDE have ability to preserve 

perturbation effects associated with satellite dynamics, see 

figures (1)-(8) of the paper. 

  Another contribution of the paper is to weave equations 

(14)-(20) using the Stratonovich calculus. Results are useful 

to the trajectory estimation of the orbiting satellite under the 

influence of atmospheric dust perturbations. 

 This paper will provide a direction to address the Itô and 

Stratonovich dilemma, the choice of a stochastic 

interpretation, for appealing and non-trivial stochastic 

problems. 

The Stratonovich SDE, equations (10)-(11) of the paper, 

deserves further investigations that opens up the topics, i.e. 

Filtering, stochastic stability and control of the satellite 

dynamics with atmospheric random perturbation. Another 

contribution of the paper is to highlight three potential 

stochastic problems by briefly discussing them. Resolving 

them will lead to advancing the topic. 
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