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Abstract: This work studies accurate interception problem for salvo-attack missions and proposes a 
robust guidance law in the presence of impact time and angle constraints. First, the dynamic model for 
planar homing endgame guidance is built. Different with conventional guidance dynamic model, this 
work takes the derivative with respect to range, rather than time. Next, the trajectory of desired line-of-
sight is formed and a time-to-go prediction method is introduced. On this basis, according to sliding 
mode methodology, a sliding manifold consisting the knowledge of time-to-go and line-of-sight angle is 
built and an integrated Lyapunov control method based guidance law is deduced to force this sliding 
manifold converge to a small region around zero in finite time, so that the missile will intercept target 
with a desired flight time and a heading angle. Detailed theoretical analysis and numerical simulations 
verified above properties. 

Keywords: homing guidance; salvo attack; flight time constraint; heading angle constraint; sliding mode 
control. 

 

1. INTRODUCTION 

Facing ballistic missile defence system, the so-called “salvo-
attack” which requires multiple missiles carry out different 
flight envelopes and intercept the target simultaneously, is 
one of the useful methods for defence penetration. Ref.(Yang 
et al., 2016, He and Lin, 2018, Cho et al., 2015) pointed that 
this combat method held important significance, especially 
when it was applied into anti-ship missions to penetrate 
warships’ self-defence system, such as close-in weapon (CIW) 
and surface-to-air missile (SAM) systems. Obviously, 
guaranteeing multiple missiles attack the target at the same 
time is the key-point for salvo-attack. 

Generally speaking, there are two methods to achieve 
salvo-attack: cooperative guidance (Lyu et al., 2019a, Lyu et 
al., 2019b, Wang and Tan, 2018) and so-called pseudo 
cooperative guidance (Zhu et al., 2019, Zhao et al., 2016). 
The key different between these two methods is whether 
there exists information communication among every 
interceptor. The former one requires a complex 
telecommunication system and a cooperative algorithm, 
which is difficult to apply in real engineering practice. The 
latter one requires a desired time before missiles launching. 
Compared with cooperative guidance, this method is much 
more practical in today’s technical environment, although 
this desired time should be estimated by an experienced 
engineer. With this in mind, this work concentrates to design 
a guidance law for so-call pseudo cooperative guidance. 

In real engineering practice, zero miss-distance is not the 
the index to evaluate a guidance law. For single missiles, 
especially for anti-tank and anti-ship missiles, the impact 
angle which decides the damage performance in some degree, 
is another important index. Because of its zero-miss distance 
property and successful history of application, conventional 
proportional navigation (PN) guidance law (Talole et al., 
2006, Zarchan, 1995, Franzini et al., 2017) is used in many 
kinds of real engineering missions. However, owing to the 
limit of field-of-view (FOV), conventional PN guidance law 
is difficult to be employed in large impact angle attack. With 
the development of optimal control theory, many scholars 
aim to design optimal guidance laws with impact angle 
constraint (Kumar et al., 2014, Bardhan and Ghose, 2015, 
Tsalik and Shima, 2016) However, these optimal guidance 
laws are always built on the basis of small attack angle 
assumption and are difficult to realize large impact angle. 
Even if these guidance laws take into account the large angles, 
the complex Hamilton-Jacobi-Bellman equation always does 
not have an explicit solution. 

Because sliding mode control (SMC) method holds strong 
robustness and can resist the external disturbance, many 
scholars use it in impact angle constrained guidance law 
design. To cite a few, Ref.(Hou et al., 2019) proposed two 
different terminal sliding mode surfaces such that the 
guidance law can achieve impact time and angle constraints 
simultaneously; using fast terminal SMC method, Ref.(Sun et 
al., 2016) presented a guidance law to realize terminal angle 
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guidance. Ref.(Ji et al., 2019) extend SMC guidance laws 
into three-dimensional environment.  

 This work presents an impact time and angle constrained 
guidance law, which can be applied in salvo-attack missions. 
The rest of this paper is organized as follows: Sect.2 states 
problem formulation, consisting with dynamic model, desired 
line-of-sight (LOS) angle and a time-to-go estimation method; 
a SMC based guidance law is presented in Sect.3 with a 
sliding manifold which includes the knowledge of heading 
angle and flight time. In Sect.4, detailed numerical 
simulations are carried out to verify the efficiency of 
proposed guidance law. A brief conclusion is given in Sect.5.  
 

2. PROBLEM FORMULATION 

2.1 Dynamic model of engagement phase 

Assume that the control system of interceptor holds roll 
channel stabilization and so that the geometry of endgame 
engagement phase is built in an inertial Cartesian coordinate 
O XYZ−  , as shown as Fig.1.  
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Fig.1 Geometry of endgame engagement phase 

 
In Fig.1, M and T denotes positions of missile and target, 

( ),x y and ( ),T Tx y denote their coordinates, respectively. 
( )0 0 0,M x y  denotes initial position of missile, V  denotes 

missile velocity, A  denotes missile acceleration and r  
denotes the distance between the missile and target.   and   
denote pitch and line-of-sight (LOS) angles, respectively. For 
ease of study, we denote so-called trajectory lead angle as 
  = − . 

According to Fig.1, one can conclude the dynamics during 
engagement phase as 

( )

( )

cos  sin

sin
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For ease of following calculation, introduce auxiliary variable 
  satisfying 

d d dt

dx dt dx

 
=                                           (2) 

Hence, (1) can be rewritten as 
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               (3) 

This completes the dynamics during endgame engagement 
phase. 

Remark 1. Using (2), the time t  is released as a system 

state, which is much easier for following flight time 

constrained guidance law design. 

2.2  Desired LOS angle formulation 

According to linear approximation methodology, desired 
LOS angle and its derivative with respect to x  is formulated 
as 

  
( )

( )

3 2
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where ( )d x  denotes desired LOS angle, ( )d x  denotes the 
range derivative of desired LOS angle, a , b , c  and d  
denotes coefficients. 

Consider following boundary conditions at initial point 
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and following boundary conditions at endgame point 
( ) ( ), 0d T d d Tx x  = =                          (6) 

Substituting (5) and (6) into (4), one can obtain that 
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Solving (7) yields 
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2.3  Time-to-go estimation 

The method for time-to-go estimation is the key point in the 
practice of impact time and angle constrained guidance.  Ref. 
(Jeon et al., 2010)stated a kind of time-to-go prediction 
method as (9) for planar engagement case and Ref.(He and 
Lin, 2018) extended this method into three-dimensional 
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environment. 

( )
2

1
2 2 1go

r
t

V N

 
= +  − 

                             (9) 

where N denotes navigation gain. 
However, above time-to-go estimation method without 

terminal impact angle information only can be employed 
when the interceptor utilizes PN guidance law. To obtain 
time-to-go for other guidance laws,  Ref.(kumar and Ghose, 
2015) proposed a novel 2D time-to-go estimation algorithm 
using linear approximation technique, which is formulated as 

( )2 22 2 4 4

1
15 30 420 840
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go

r
t
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        + −+ +
 = + − − +
 
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  (10) 

For ease of application, omitting fourth and fifth terms of 
(10), yields 
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f f
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r
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                    (11) 

where 
f d  = −  denotes trajectory lead angle at endgame 

point. 
Taking the derivative of (11) with respect to x  yields  

2 2 2 2
1
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f f f f f f
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r r
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  (12) 

It follows from the definitions of    and 
f   that  

2 cos

f

A

V
   


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                     (13) 

Substituting (13) into (12) yields 
( )2 2

3
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For ease of following study, (14) is rewritten as follows 
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2.4 Assumption and Lemma 

Assumption 1. There exist two positive constants maxr  and 
minr  such that min maxr r r  . The values of maxr and minr are 

subject to the maximum distance between the missile and 
target and the length of missile’s and target’s shells, 
respectively. 
Lemma 1. (Bhat and Bernstein, 2000) Assume that ( )V x is 

1C a smooth function defined on nU  . For arbitrary positive 
constants 1  and ( )2 0,1  , if there exists ( ) ( )2

1 0V x V x+  , 
there exists an region 0

nU   such that any ( )V x  starting 
from this region can reach ( ) 0V x   in a finite time rT , which 
is given by ( ) ( )21

0 1 21rT V x  − − , where ( )0V x is the initial 
value of ( )V x . 

 

 

3. GUIDANCE LAW DESIGN 

Based on compound SMC theory, a super-twisting-like 
algorithm is employed to design guidance law for system (3), 
desired LOS angle (4), coefficients (8) and estimated time-to-
go (11) in this section.  
    Select sliding manifold as 

( ) ( )( )1d go elap ds t t T    = − + − + −                (16) 
where 

elapt  denotes elapsed time, dT  denotes desired impact 
time which is set up in advance,   0,1  is a constant 
meaning the weight. 
    Remark 2. Zeroing LOS angular rate methodology is not 

applicable in the case we take the derivatives of system 

variables with respect to x .  At the initial point, real LOS 

angle ( )0x is approximately equal to desired LOS angle 

( )0d x , thus, to guarantee the interceptor move following the 

desired trajectory, we only need to guarantee real LOS 

angular rate ( )x converge to the desired LOS angle ( )d x . 

Above guidance law design methodology does not only 

guarantee accurate interception, but guarantee impact 

heading angle constraint. 

    The robust guidance law is designed as 
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where 1 0k  , 2 0k   and 2p   are design parameters. 
The closed-loop stability of system (3) with guidance law 

(17) can be summarized as following theorem. 
Theorem 1. Guidance law (8) can drive system (3) 

converge into a small compact region around zero in a finite 
time. 

Proof. Taking the derivative with respect to x , yields 
( ) ( )( )

( )

2 3 3 2

1 2

1

cos 2 6 2
cos

11
cos

d go elap

T T

s t t

r ax b
A

rV r x x

K K A
V

   

 







    = − + − +

  
= − − − − 

 

 
+ − + + 

 

               (18) 

Substituting (17) into (18), yields 
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where 
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2 3
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2
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


   
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For ease of study, introduce following two auxiliary variables 
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2
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Next, following discuss is divided into two cases, with 
respect to the property of positive and negative of the 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9589



 
 

     

 

polynomial ( ) 2 3
21 cos cosK rV   − − . 

 
Case 1: If ( ) 2 3

21 cos cos 0K rV   − −  , (19) can be 
rewritten as  

( ) ( ) ( ) ( )1 1 1 2
1 2sgn sgnp p

s k s s k s s dx  
− −

 = − −              (22) 
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Differentiating (23) with respect to x , yields  
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   To demonstrate the finite-time convergent property, 
consider following Lyapunov function candidate 
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It follows from (25) that 0V  at any time, so that V can be 
employed to evaluate the closed-loop stability. 

Differentiating (25) with respect to x , yields 
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It follows from ( ) 2 3
21 cos cos 0K rV   − −   and Assumption 

1 that 0  , and there exist min 0  and max 0  such that 
 min max
  


                               (27) 
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 
 , (26) can be rewritten as 
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It follows from the definition of 1k , 2k  and p that Q is 
positive definite.  

Next, rewrite (27) as 
TV = P                                (30) 

with  
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According to the definition of 1k , 2k  and p , one can 
conclude that P is positive definite and V  is Radial 
unbounded, so that  

( ) ( )2 2
min maxV   P P                        (32) 

where  ( )min  and ( )max  denote the minimum and maximum 
eigenvalues of ( ) .  
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It follows from 2p  that ( ) ( ) ( )2 3 1 0,0.5p p− −  , according 
to Lemma 1, one can conclude the system will converge to a 
small neighbourhood around zero in a finite time, which is 
govern by 
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Case 2: If ( ) 2 3

21 cos cos 0K rV   − −  , (19) can be 
rewritten as 

( ) ( ) ( ) ( )1 1 1 2
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Differentiating (34) with respect to x , yields  
( ) ( )
( ) ( )

1 1
1 1 1 1 2

1 2
2 2 1 1

sgn

sgn

p

p

k

k

    

   

−

−

 = +

 =
                (37) 

Consider another Lyapunov function candidate 
( ) ( ) ( )( )22 1 122

1 2 1 1 1 2
1 1 sgn

1 2 2
p p p pk p

V k
p

    
− −= + + +

−
    (38) 

Differentiating (36) yields 
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( )( )

222
1 1 1 1 2 2

1 1
1 1 1 2 1 1 2 1

2 122
1 1 1 2 1 1 1

1 2
2 1 1 1 2 1 1

1 1
1 1 2 2 1 1 1

1 2 2 sgn 2
1 2

1sgn

1 2 2 sgn sgn
1 2

2 sgn sgn

1 sgn

p p

p p p

p p p p

p p p p

p p p

k p p
V k

p p

p
k k

p

k p p
k k

p p

k k

p
k k

p

    

     

     

     

     



−

− −

− −

− −

− −

  −
  = + + − 

−
 + +

  −
= + + − 

+ +

−
+ +

= ( ) ( )

( ) ( )

1 2 1 2 13
1 1 2 1 1 1

1 12 2
1 1 1 1 2 1 2

1

2 2 1sgn

p p p p p

p p p

p
k k k

p

p p
k k

p p

  

     

− − −

− −

 −
+ 

 

 − −
+ + 

 

(39) 

It follows from ( ) 2 3
21 cos cos 0K rV   − −   and 

Assumption 1 that 0  , and there exist min 0  and 
max 0  such that  

min max
  


                           (40) 

Following part of demonstration is similar as Case 1. This 
completes the proof. 

Remark 3. It follows from (17) that the polynomial 
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( ) 2 3
21 cos cosK rV   − −  serves as denominator and cannot 

be zero. However, in real engineering practice, the case 

( ) 2 3
21 cos cos 0K rV   − − =  may exist and cause guidance 

law (17) failure. To overcome this problem, we define that 

this polynomial should be a small value when it approximates 

zero. 

   

4. SIMULATION EXAMPLES 

In order to demonstrate the effectiveness of proposed 
guidance law, numerical simulations are carried out and the 
results are given and analysed in this section. The simulation 
is divided into three scenarios. 

Scenario 1. Different desired flight times with the same 
impact angle. 

We set up different desired flight times before simulation, 
in the presence of the same impact angle. During the homing 
phase, the guidance factors are chosen as Table.1. 

Table.1 The guidance factors 
Initial position (0m, -500m) 

Desired position (10000m, 0m) 
Desired flight times 45s, 50s, 54s 

Velocity 250m/s 
Initial heading angle 60o 

Desired impact heading angle -60o 
 
The parameters as chosen as 1 50k = , 2 10k = and 2.5p = . 
Simulation results are shown as Fig.2 

(d)(c)

(a)
(b)

 
Fig.2 Simulation results of Scenario 1: (a) Trajectories; 
(b)Time-to-go; (c) Accelerations; (d) Heading angles. 

 
It follows from Fig.2(a) that the missile can intercept the 

target accurately with a same heading angle. Note that the 
trajectory is longer when the desired time is longer. Fig.2(b) 
depicts the time-to-go and it can be concluded that missile 
arrives to target point at the desired time accurately.  Figs.2(c) 
and (d) depict the acceleration and heading angle, one can see 
that heading angle approaches to the desired value at terminal 
point. 

 
Scenario 2. Different desired heading angles with the same 

flight time. 

We set up different desired heading angles in advance in 
the presence of the same flight time. The guidance factors are 
chosen as Table.2. 

Table.2 The guidance factors 
Initial position (0m, -500m) 

Desired position (10000m, 0m) 
Desired flight time 45s 

Velocity 250m/s 
Initial heading angle 60o 

Desired heading angles 0°，-30°，-45°，-60°，-90° 
 
The parameters are selected same as them in Scenario 1. 
Simulation results are shown as Fig.3. 

(a) (b)

(c) (d)

 
Fig.3 Simulation results of Scenario 2: (a) Trajectories; 
(b)Time-to-go; (c) Accelerations; (d) Heading angles. 

 
Figs.3(a), (b), (c) and (d) depict trajectory, time-to-go, 

acceleration and heading angles, respectively. From Figs.3(b) 
and (d), one can see that the missile can intercept target with 
desired impact angles and a same flight time.  

 

(a) (b)

(c) (d)  
Fig.4 Simulation results of Scenario 3: (a) Trajectories; 
(b)Time-to-go; (c) Accelerations; (d) Heading angles. 

 
Scenario 3. Multiple missiles salvo-attack. 
In this scenario, we employ three missiles to achieve the 
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mission of salvo-attack. These missiles launch from different 
position at different initial heading angles, but intercept the 
target simultaneously with desired heading angles. The 
guidance factors of every missile are set up as Table.3. 

Table.3. The guidance factors 
 Missile 1 Missile 2 Missile 3 
Initial position (0,500) (3000,8000) (4000,-8000) 
Initial angle 10o -40o 30o 
Desired angle -30o 80o -80o 
Desired time 45s 45s 45s 

 
The parameters are selected same as them in Scenario 1. 
Simulation results are shown as Fig.4. 

    Fig.4(a) illustrates trajectories of three missiles and these 
missile approach to target point accurately. Fig.4(b) shows 
that all the missiles hold a same flight time. Fig.4(c) depicts 
accelerations of every missile. As shown as Fig.4(d), one can 
see that every missile can achieve desired impact angle at the 
terminal time.  
 

5.  CONCLUSION 

Facing salvo-attack missions, a guidance law which can 
achieve accurate interception and impact time and angle 
constraints is proposed in this paper. This guidance law only 
uses four parameter and is practical. Simulation examples 
verify its efficiency and effectiveness properties. 
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