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Abstract: A novel approach to address the problem of integrated guidance and control(IGC)
for a missile is studied in this paper. By taking target maneuver, aerodynamic uncertainty and
fin servo dynamic uncertainty as external disturbances in the adaptive backstepping design
procedure, the proposed controller requires no information on target maneuver and provides
robustness against these uncertainties. Furthermore, the derivatives of the virtual control laws
in the backstepping differentiation process are estimated by a smooth second-order sliding mode
differentiator, this simplifies the calculation and avoids the explosion of terms phenomenon in the
conventional backstepping method. The closed-loop stability of the overall system is supported
by the Lyapunov stability theory. Numerical simulations of an air-to-air interception scenario
are presented in the simulation part to verify the superior performance and the robustness of
proposed IGC law.
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1. INTRODUCTION

The guidance and control of an interception missile are
typically designed as a two-loop, one is the inner autopilot
control loop and the other one is the outer guidance loop.
The inner autopilot control loop is always simplified as a
second-order system (Zarchan (2012)) and the outer guid-
ance loop is designed separately. The lateral commands
generated by outer guidance loop and tracked by the inner
autopilot control loop. Different bandwidths and small
inherent delay make it acceptable for intercepting target
with low speed and weak maneuverability. However, with
the increase of target maneuverability, the separate design
approach significantly degrades the guidance performance
(Wang et al. (2016a)).

To address the problem associated with classical guidance
and control design, guidance law with autopilot dynamic
compensation has been widely discussed (Zhou and Xu
(2016); He et al. (2015b, 2017a)). These approaches may
exhibit good performance by precisely compensating for
the autopilot lag. However, performance will be degraded
in the presence of system uncertainties.

In order to improve the performance of guidance and
control, the IGC scheme has been widely studied in
recent years. Methods, such as feedback linearization
(Menon et al. (2004)), game-theoretic approach (Lin et al.
(1992)), numerical state-dependent Riccati equation ap-
proach (Vaddi et al. (2009)), θ-D method (Xin et al.
(2006)), sliding mode control (Phadke and Talole (2012)),
L1 adaptive control (Erdos et al. (2012)), fuzzy logic
control (Omar and Abido (2010)), time delay control

? This work was supported by the National Natural Science Foun-
dation of China under Grant U1613225.

(Park et al. (2011)), and continuous-time predictive con-
trol (Panchal et al. (2017)) have been discussed in IGC
design.

Besides previous approaches, the backstepping technique
has been widely used for the IGC controller design. The
strict-feedback form of interception engagement can be
established for the backstepping design process under some
reasonable assumptions (Zhang and Song (2009)). Back-
stepping method and input-to-state stability theory (Fei
et al. (2015)) were used in IGC law design in the presence
of actuator failures, and the robustness of the control law
was proved. However, in the application process, the exis-
tence of “explosion of terms” cannot be avoided because
of the analytic differentiation of virtual control laws. To
overcome the inherent drawback of backstepping design,
the dynamic surface theory was implemented in the IGC
controller design (Hou et al. (2013); Wang et al. (2016b)).
This approach substituted the analytic differentiation by
the low-pass filter. However, this approach only consid-
ered a target with weak maneuverability. An adaptive
fuzzy dynamic surface control based IGC controller (Ran
et al. (2014)) was proposed to enhance the performance
of dynamic surface control based IGC controller. In this
approach, the uncertainties and target maneuver were
compensated by an online adaptive fuzzy system. However,
it was too complicated and time-consuming.

In this paper, a novel IGC controller is proposed for
maneuvering target interception without knowing the tar-
get information. Target maneuvering, aerodynamic un-
certainty, and fin servo uncertainty are treated as ex-
ternal disturbances and compensated by adaptive laws.
Different from the dynamic surface control based con-
troller, the derivatives of virtual control laws are esti-
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Fig. 1. Terminal phase geometry of interception

mated by a smooth second-order sliding mode differentia-
tor (SSOSMD). The overall closed-loop stability analysis
demonstrates that the tracking error can be bounded ar-
bitrarily small by proper parameter designing. Finally, the
effectiveness and robustness of the proposed IGC law are
verified by comparison simulation results.

The rest of this paper is organized as follows. Sec 2
formulates the problem. The IGC controller and SSOSMD
are derived in Sec 3. Then the closed-loop stability analysis
is shown in Sec 4, followed by some comparison numerical
simulations in Sec 5.1. Finally, Sec 6 concludes this work.

2. PROBLEM FORMULATION

Considering the terminal phase of intercepting a maneu-
vering target. Fig.1 shows the geometry of the terminal
phase interception. The missile and target are assumed
as point masses. We denote the missile and target by
the subscripts M and T , respectively. The speed, normal
acceleration, flight-path angle, missile and target range,
and line-of-sight (LOS) angle are denoted by V , a, γ, R,
and λ, respectively.

The kinematics of engagement can be expressed as (He
et al. (2015a))

R̈ = Rλ̇2 + aTr − aMr (1)

λ̈ = −2Ṙλ̇

R
+
aTλ
R
− aMλ

R
(2)

where aMr = aM sin (λ− γM ) and aTr = aT sin (λ− γT )
denote the acceleration of missile and target along the
LOS, aMλ = aM cos (λ− γM ) and aTλ = aT cos (λ− γT )
are the acceleration of missile and target perpendicular to
the LOS, respectively.

The missile considered here is a roll stabilized, and a skid-
to-turn missile with the cruciform tail-control surface. The
dynamic equations of the missile can be expressed as (Yan
et al. (2014); Ran et al. (2014); Wei et al. (2010))


α̇ =

1

mVM
(−L+mg cos γM ) + ωz

ω̇z =
M

Jz
θ̇ = ωz
α = θ − γM

(3)

where α is the angle of attack, g is the gravitational
acceleration, m, ωz, Jz and θ are the mass, pitch angular
rate, inertia moment, and pitch angle of the missile,
respectively. L is the aerodynamic lift fore and M is the
aerodynamic pitch moment, which can be formulated as
(Yan et al. (2014); Ran et al. (2014); Wei et al. (2010))L = Qscαyα+Qscδzy δz

M = Qslmα
zα+Qslmδz

z δz +
Qsl2mωz

z

VM
ωz

(4)

where Q is the dynamic pressure, s, l, and δz are the
reference area, reference length, and the fin deflection angle
of the missile, respectively. cαy and cδzy are the aerodynamic
lift force derivative with respect to α and δz, respectively.
mα
z , mδz

z , and mωz
z are the pitch moment derivative with

respect to α, δz, and ωz, respectively.

Substituting (4) into (3) yields
α̇ = −Cαy α− Cδzy δz + ωz +

g cos γM
VM

ω̇z = Mα
z α+M δz

z δz +Mωz
z ωz

θ̇ = ωz
α = θ − γM

(5)

where the aerodynamic coefficients are

Cαy =
Qscαy
mVM

, Cδzy =
Qscδzy
mVM

,Mα
z =

Qslmα
z

Jz
,Mδz

z =
Qslmδz

z

Jz
,

Mωz
z =

Qsl2mωz
z

JzVM

The normal acceleration of missile can be derived from (5)
as (He et al. (2017b))

aM = VM γ̇M = VM

(
θ̇ − α̇

)
= VM

(
Cαy α+ Cδzy δz

)
− g cos γM

(6)

While the aerodynamic coefficients are derived from wind-
tunnel experiments. The real value may dispersion from
the nominal value, the aerodynamic uncertainties should
be take into consideration. Therefore, the aerodynamic
coefficients can be formulated as

Cαy = Cαy,n + Cαy,u, C
δz
y = Cδzy,n + Cδzy,u

Mα
z = Mα

z,n +Mα
z,u,M

δz
z = Mδz

z,n +Mδz
z,u

Mωz
z = Mωz

z,n +Mωz
z,u

(7)

where the parameters with subscripts n, u denote the nom-
inal and bounded uncertain values of the corresponding
aerodynamic coefficients, respectively.

In practice, the fin servo dynamic is formulated as (Idan
et al. (2007))

δ̇z = − 1

τs
δz +

1

τs
δzc (8)

where δzc denotes the fin deflection angle command.
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3. INTEGRATED GUIDANCE AND CONTROL
DESIGN

The control law we designed here is to derive the fin
deflection angle command to nullify the LOS angular rate
λ̇, because nullifies the LOS angular rate λ̇ will lead to zero
miss distance. Following the backstepping design method,
the design processes are designed as follows.

Step 1: Define the sliding surface as s1 =
(
R/VMC

α
y,n

)
(λ̇−

0), differentiating s1 with respect to time yields

ṡ1 =
−Ṙλ̇+ aTλ − aM cos (λ− γM )

VMCαy,n

=
−Ṙλ̇+ aTλ − VM

(
Cαy α+ Cδzy δz

)
cos (λ− γM )

VMCαy,n

+
g cos γM cos (λ− γM )

VMCαy

(9)

Note that the target maneuver profile is unknown. Let
∆1 =

(
aTλ − VM

(
Cδzy δz + Cαy,u

)
cos (λ− γM )

)
/VMC

α
y,n

be an external disturbance. ∆1 satisfies |∆1| ≤ M1,
where M1 is an unknown positive constant. Then, the (9)
becomes:

ṡ1 =− Ṙλ̇

VMCαy,n
− α cos (λ− γM )

+
g cos γM cos (λ− γM )

VMCαy,n
+ ∆1

(10)

For subsystem (10), design the following virtual control
law

α∗ =
1

cos (λ− γM )


g cos γM cos (λ− γM )

VMCαy,n
+ k1s1

+M̂1sgn (s1)− Ṙλ̇

VMCαy,n


(11)

where k1 > 0. The adaptive control law is designed as:

˙̂
M1 = r1 |s1| − ρ1M̂1 (12)

where r1 > 0 and ρ1 > 0.

Step 2: Define the sliding surface as s2 = α − α∗,
differentiating s2 with respect to time yields

ṡ2 = α̇− α̇∗

= −Cαy α− Cδzy δz +
g cos γM
VM

+ ωz − α̇∗ (13)

Let ∆2 = −Cαy,uα − Cδzy δz be an external disturbance.
∆2 satisfies |∆2| ≤M2, where M2 is an unknown positive
constant. Then, (13) becomes

ṡ2 = −Cαy,nα+
g cos γM
VM

+ ωz − α̇∗ + ∆2 (14)

For subsystem (14), design the following virtual control
law

ω∗
z =Cαy,nα−

g cos γM
VM

+ cos (λ− γM ) s1 + α̇∗

− k2s2 − M̂2sgn (s2)
(15)

where k2 > 0. The adaptive control law is designed as:

˙̂
M2 = r2 |s2| − ρ2M̂2 (16)

where r2 > 0 and ρ2 > 0.

Step 3: Define the sliding surface as s3 = ωz − ω∗
z ,

differentiating s3 with respect to time yields

ṡ3 = ω̇z − ω̇∗
z

= Mα
z α+Mδz

z δz +Mωz
z ωz − ω̇∗

z

(17)

Let ∆3 = Mα
z,uα + M δz

z,uδz + Mωz
z,uωz be an external

disturbance. ∆3 satisfies |∆3| ≤ M3, where M3 is an
unknown positive constant. Then, (17) becomes

ṡ3 = Mα
z,nα+M δz

z,nδz +Mωz
z,nωz − ω̇∗

z + ∆3 (18)

For subsystem (18), design a following virtual control law

δ
∗

z =
1

Mδz
z,n

(
−Mα

z,nα−Mωz
z,nωz − s2 + ω̇∗

z

−k3s3 − M̂3sgn (s3)

)
(19)

where k3 > 0. The adaptive control law is designed as:
˙̂
M3 = r3 |s3| − ρ3M̂3 (20)

where r3 > 0 and ρ3 > 0.

Step 4: Define the sliding surface as s4 = δz − δ∗z ,
differentiating s4 with respect to time yields

ṡ4 = δ̇z − δ̇∗z
= − 1

τs
δz +

1

τs
δzc − δ̇∗z

(21)

Suppose that δz = δz,n + δz,u, δz,n denotes the nominal
value of fin deflection, δz,u denotes the bounded fin servo
dynamics uncertainty. Let ∆4 = δz,u/τs be an external
disturbance. Therefore, ∆4 satisfies |∆4| ≤M4, where M4

is an unknown positive constant. Then, (21) becomes

ṡ4 = − 1

τs
δz,n +

1

τs
δzc − δ̇∗z + ∆4 (22)

Finally, for the subsystem (22), design the following con-
trol law

δzc = δz,n + τsδ̇
∗
z − τsMδz

z s3 − τsk4s4 − τsM̂4sgn (s4)
(23)

where k4 > 0. The adaptive control law is designed as:
˙̂
M4 = r4 |s4| − ρ4M̂4 (24)

where r4 > 0 and ρ4 > 0.

The first term on the right hand of (12), (16), (20) and
(24) are used to estimate the external disturbance, and
the second term attenuates the overestimation of external
disturbance. Different from (Panchal et al. (2017); Shima
et al. (2006); Shtessel and Tournes (2009); Erdos et al.
(2012)), the proposed control law (23) requires no target
maneuvering information to design the series of adaptive
gains. The adaptive terms contribute to the robustness of
the control law to against the target maneuver. Therefore,
the proposed IGC control law is more practical. In addi-
tion, the derivative of α∗, ω∗

z , and δ∗z cannot be analytical
calculated due to the complicated forms of (11), (15),
and (19). An SSOSMD is proposed here to estimate the

precise values of α̇∗, ω̇∗
z , and δ̇∗z . Taking α̇∗ as an example,

formulate the differentiator as follows
˙̂α∗ = ˆ̇α∗ + τ1|α∗ − α̂∗|1−1/p

sgn (α∗ − α̂∗)

+τ2|α∗ − α̂∗|1+1/p
sgn (α∗ − α̂∗)

˙̂
α̇∗ = τ3|α∗ − α̂∗|1−2/p

sgn (α∗ − α̂∗)

+τ4τ3|α∗ − α̂∗|1+2/p
sgn (α∗ − α̂∗)

(25)

where α̂∗ and ˆ̇α∗ are the estimations of α∗ and α̇∗,
respectively. The design parameter τ1, τ2, τ3, τ4 > 0 and
p > 2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9595



Theorem 1. Let e1 = α∗ − α̂∗ and e2 = α̇∗ − ˆ̇α∗ be the
estimation errors. Then, the estimation errors can converge
to a small region around zero if α∗ satisfies |α̈∗| ≤ L, L is
a constant value.

Proof. The SSOSMD error system is obtained as
ė1 = α̇∗ − ˙̂α∗

= e2 − τ1|e1|1−1/p
sgn |e1| − τ2|e1|1+1/p

sgn |e1|
ė2 = α̈∗ − ˙̂

α̇∗

= α̈∗ − τ3|e1|1−2/p
sgn |e1| − τ4|e1|1+2/p

sgn |e1|
(26)

For system (26), consider the following Lyapunov function
candidate

W =
1

2
e21 +

1

2
e22 (27)

Differentiating W with respect to time, and according to
the Young’s inequality, the equation can be simplified as

Ẇ = e1

(
e2 − τ1|e1|1−1/p

sgn |e1| − τ2|e1|1+1/p
sgn |e1|

)
+e2

(
α̈∗ − τ3|e1|1−2/p

sgn |e1| − τ4|e1|1+2/p
sgn |e1|

)
≤ 1

2
e21 + e22 +

1

2
α̈∗2 − 2

√
τ1τ2e

2
1 −
√
τ3τ4
2

(
e21 + e22

)
= −

(
−1

2
+ 2
√
τ1τ2 +

√
τ3τ4
2

)
e21 −

(√
τ3τ4
2
− 1

)
e22 +

1

2
L2

≤ −aW +
1

2
L2

(28)

where

a = min

{
−1

2
+ 2
√
τ1τ2 +

√
τ3τ4
2

,

√
τ3τ4
2
− 1

}
the differential inequality can be solved during the time
domain [0, t]

0 ≤W (t) ≤
[
W (0)− L2

2a

]
e−at +

L2

2a
(29)

where W (0) denotes the initial value of W . By properly
setting the parameters we can make ensure that a > 0.
Note that if W (0) ≤ L2/2a, the upper bound of W (t)
is L2/2a. Therefore the upper bound can be arbitrarily
small by designing proper parameters. The error states
e1 and e2 will converge to a small region around zero
due to the positive definitive of all terms in (27). If

W (0) > L2/2a, then Ẇ (0) < 0, which means that the
W is monotone decreasing. If W satisfies W > L2/2a and

∀t ∈ [0, tf ], then Ẇ < 0 holds. This means that the system
is Lyapunov stable. When W decrease to W ≤ L2/2a, the
problem reduces to the first case that has been discussed
above. Finally, we can conclude that the estimation errors
can converge to a small enough region around zero. This
completes the proof.

Since the upper bound can be arbitrarily small, the esti-
mation errors can be restricted to a small region around
zero, generating precisely estimation.

4. STABILITY ANALYSIS

According to the control law derived processes, the closed-
loop system can be defined as

ṡ1 = − cos (λ− γM ) s2 − k1s1 − M̂1sgn (s1) + ∆1

ṡ2 = s3 + cos (λ− γM ) s1 − k2s2 − M̂2sgn (s2) + ˆ̇α∗ − α̇∗

+∆2

ṡ3 = M δz
z,ns4 − s2 − k3s3 − M̂3sgn (s3) + ˆ̇ω∗

z − ω̇∗
z + ∆3

ṡ4 = −M δz
z,ns3 − k4s4 − M̂4sgn (s4) +

ˆ̇
δ∗z − δ̇∗z + ∆4

(30)

Consider the following Lyapunov function candidate:

V =
1

2
s21 +

1

2
s22 +

1

2
s23 +

1

2
s24 +

1

2r1
M̃2

1

+
1

2r2
M̃2

2 +
1

2r3
M̃2

3 +
1

2r4
M̃2

4

(31)

where M̃i = Mi−M̂i, i = 1, 2, 3, 4 are the estimation errors
of external disturbances. Differentiating V yields

V̇ = s1

(
−k1s1 − M̂1sgn (s1) + ∆1

)
+ s2

(
−k2s2 − M̂2sgn (s2) + ˆ̇α∗ − α̇∗ + ∆2

)
+ s3

(
−k3s3 − M̂3sgn (s3) + ˆ̇ω∗

z − ω̇∗
z + ∆3

)
+ s4

(
−k4s4 −M4sgn (s4) +

ˆ̇
δ∗z − δ̇∗z + ∆4

)
+
M̃1

r1

(
−r1 |s1|+ ρ1M̂1

)
+
M̃2

r2

(
−r2 |s2|+ ρ2M̂2

)
+
M̃3

r3

(
−r3 |s3|+ ρ3M̂3

)
+
M̃4

r4

(
−r4 |s4|+ ρ4M̂4

)
≤ −k1s21 − k2s22 − k3s23 − k4s24

+ s2

(
ˆ̇α∗ − α̇∗

)
+ s3

(
ˆ̇ω∗
z − ω̇∗

z

)
+ s4

(
ˆ̇
δ∗z − δ̇∗z

)
+
ρ1
r1
M̃1M̂1 +

ρ2
r2
M̃2M̂2 +

ρ3
r3
M̃3M̂3 +

ρ4
r4
M̃3M̂3

(32)

Note that M̃iM̂i = M̃i

(
Mi − M̃i

)
≤
(
M2
i − M̃2

i

)
/2, the

(32) can be simplified as

V̇ ≤ −k1s21 − k2s22 − k3s23 − k4s24 +
s22 +

(
ˆ̇α∗ − α̇∗

)2
2

+
s23 +

(
ˆ̇ω∗
z − ω̇∗

z

)2
2

+
s24 +

(
ˆ̇
δ∗z − δ̇∗z

)2
2

+
ρ1
2r1

(
M2

1 − M̃2
1

)
+

ρ2
2r2

(
M2

2 − M̃2
2

)
+

ρ3
2r3

(
M2

3 − M̃2
3

)
+

ρ4
2r4

(
M2

4 − M̃2
4

)
≤ −c1V + c2

(33)

where

c1 = min

{
k1, k2 −

1

2
, k3 −

1

2
, k4 −

1

2
, ρ1, ρ2, ρ3, ρ4

}
By choosing proper parameters, we can ensure that c1 > 0
and c2 > 0. Solving inequality (33) yields

0 ≤ V (t) ≤
[
V (0)− c2

c1

]
e−c1t +

c2
c1

(34)

where V (0) is the initial value of V . Note that if V (0) ≤
c2/c1, the upper bound of V (t) is c2/c1, and the upper
bound can be arbitrarily small by designing proper pa-
rameters. The system state s1 will converge to a small
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region around zero due to the positive definitive of all
terms in (31). This indicates that the LOS angular rate

will converge to zero. If V (0) > c2/c1, then V̇ (0) < 0,
which means that V is monotone decreasing. If V satisfies
V > c2/c1 for all time, the closed loop system is stable.
If V ≥ c2/c1, the situation turns to be the previous case.
Therefore, we can conclude that the closed-loop system is
asymptotically stable.

5. SIMULATION RESULTS

In this section, nonlinear numerical simulation results
are presented to demonstrate the effectiveness of the
proposed IGC controller. The superior performance of
the proposed IGC controller is verified by comparing the
performance to a finite time convergence(FTC) guidance
law (Zhou et al. (2009)) plus three-loop autopilot structure
and an IGC controller without adaptive terms(IGCWAT).
Finally, Monte Carlo simulations are carried out to test
the robustness of the proposed IGC controller.

5.1 Simulation Parameters and Physical Limited

The required kinematics are set as R (0) = 1077m, missile
initial position (0m, 16000m), λ (0) = 21.8 deg, γM (0) =
0 deg, γT (0) = 10 deg, VM = 3.5Ma, where the Sonic
is 297.05m/s, VT = 900m/s, aT = 25 sin (0.6t) m/s. The
missile dynamics in (3) and (8) are set as α (0) = 10 deg,
ωz (0) = 0deg/s, θ (0) = 10 deg, τs = 0.01, and the fin
deflection angle is limited as |δz| ≤ 30 deg. The nominal
aerodynamic parameters are listed as follows (Hou et al.
(2013); He et al. (2017b)):

Cαy,n = 0.3487, Cδzy,n = 0.068,Mα
z,n = −17.801,

Mωz
z,n = −0.2741,Mδz

z,n = −31.267

The IGC controller parameters are set as follows:

k1 = 0.8, k2 = 10, k3 = 10, k4 = 50
r1 = 0.3, r2 = 1.5, r3 = 1.5, r4 = 2
ρ1 = ρ2 = ρ3 = ρ4 = 0.01

In order to alleviate the control command chattering,
the discontinuous function sgn (s) can be replaced by the
sigmoid function (kumar and Ghose (2015))

sgmf (s) = 2

(
1

1 + exp−as −
1

2

)
, a > 0 (35)

where the parameter a is chosen as 20.

5.2 Comparison with FTC Guidance Law Plus Three-loop
Autopilot and IGC Controller without Adaptive Terms

The compared FTC guidance law is defined as

amc = −NṘλ̇+ aT maxsgn
(
λ̇
)

+ β
∣∣∣λ̇∣∣∣nsgn

(
λ̇
)

(36)

where amc denotes the missile acceleration command, the
other design parameters are set as: N = 3.3, aT max =
25, β = 4, n = 0.5. The three-loop autopilot is de-
signed through the pole placement method. The compared
IGCWAT is almost the same with IGC controller besides
the adaptive terms M̂1, M̂2, M̂3, M̂4 turn into constants
(Shima et al. (2006)), which we set as:

M̂1=M̂2=M̂3=M̂4=0.1

Fig. 2. Interception trajectories profiles of three guidance
laws

The simulation results, including the interception trajec-
tories, missile-target relative range profiles, LOS angular
rates profiles, fin deflection angle commands, and missile
accelerations of three different scenarios are present in
Fig.2-6. The simulation trajectories presented in Fig.2
show that the proposed IGC controller can provide small
miss distance interception in the presence of system un-
certainties and target maneuvering. The recorded miss dis-
tances of the proposed IGC controller, IGCWAT and FTC
guidance law plus three-loop autopilot in Fig.3 are 0.084m,
2.34m and 0.305m, respectively, demonstrate the superior
performance of the proposed IGC controller. Fig.4 presents
the LOS angular rate variation during the interception
engagements obtained from three methods. It is obvious
that the LOS angular rate of the proposed IGC controller
converges to zero faster than the FTC guidance law. The
LOS angular rate of IGCWAT controller converges to zero
the same with proposed IGC controller at the beginning
of the engagement. Due to the decrease of missile-target
relative range and unknown target maneuver, the LOS
angular rate of all methods diverge at the end of the
interception engagement. The fin deflection angle com-
mands are present in Fig.5. From this figure, it can be
seen that the proposed IGC controller generates smoother
command than other two methods. The missile acceler-
ation response curves are shown in Fig.6, demonstrate
that the proposed IGC controller can generate near-zero
acceleration at the end of the interception, while the other
two methods require large missile acceleration at the end
of the interception engagement. Based on the results, we
can conclude that the proposed IGC controller performs
better than other two approaches.

5.3 Monte Carlo Simulation

Monte Carlo simulation method is introduced in this sub-
section to analyze the robustness of the proposed IGC
controller against aerodynamic uncertainties, fin servo dy-
namic uncertainty and target maneuvering uncertainty.
The parameters of the controller and the differentiator are
the same with the previous case. The aerodynamic param-
eters Cαy , C

δz
y ,M

α
z ,M

ωz
z ,Mδz

z , fin servo time constant τs
and target acceleration aT have random variations within
±10% with respect to their nominal values.
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Fig. 3. Missile-target relative range profiles of three guid-
ance laws

Fig. 4. LOS angular rates of three guidance laws

Fig. 5. Fin deflection angle commands of three guidance
laws

The interception trajectories of 100 Monte Carlo runs are
shown in Fig.7. The simulation results demonstrate that
the proposed IGC controller provides an acceptable in-
terception accuracy even with aerodynamic uncertainties,
fin servo dynamic uncertainty and target maneuvering
uncertainty. Through statistic calculations, the average
miss distance is 0.1863m and the standard deviation of
the miss distance is 0.1125m. The missile accelerations are
presented in Fig.8. These results sufficiently demonstrate

Fig. 6. Missile accelerations profiles of three guidance law

Fig. 7. Interception trajectories profiles of Monte Carlo
simulations

Fig. 8. Missile accelerations profiles of Monte Carlo simu-
lations

that the proposed IGC controller is highly robust against
several conventional uncertainties.

6. CONCLUSION

A novel integrated guidance and control controller is pro-
posed for the terminal phase of intercepting a maneuver-
ing target based on adaptive backstepping method and
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SSOSMD in this paper. Fin servo dynamic and missile
aerodynamic are taken into consideration by using the
backstepping technique. By taking all uncertainties as
disturbances and then compensating by adaptive terms,
the proposed IGC controller requires no information on
target maneuver in implementation. These properties pro-
vide the robustness against the model uncertainties. A
novel SSOSMD is also proposed to calculate the derivatives
of virtual control laws. This simplifies the formulations
and avoids the explosion of terms in typical backstepping
design. The closed-loop stability analysis is also proved by
Lyapunov stability theory. Finally, simulation results with
some comparison analysis and Monte Carlo simulations
demonstrate the effectiveness and robustness of proposed
integrated guidance and control law.
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