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Abstract: This paper presents methods for experimental design, control, and optimization of
perfusion bioreactors as well as the vision for their integration. After describing a generic model
of perfusion bioreactors, the paper proposes a control scheme via rate estimation and feedback
linearization with useful properties with respect to steady-state error, stability, and performance.
The paper also introduces data-driven and hybrid procedures for experimental design that are
tailored to the intended use of the model for steady-state optimization. Lastly, the methods are
illustrated via a simulation example of a perfusion bioreactor.
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1. INTRODUCTION

Continuous manufacturing has been indicated as an eco-
nomically optimal mode of operation for production of bio-
logics such as monoclonal antibodies. On the other hand, it
is more difficult to operate it so as to ensure reproducibility
and facilitate process validation (Pollock et al., 2013). One
of the key components in such a process is the production
of biologics via animal cell culture in perfusion bioreactors.
In these reactors, the cell culture remains in the reactor
owing to a cell retention device and the product of interest
is continuously harvested. Previous experimental work has
shown a very high viable cell density and a cell-specific
productivity comparable to fed-batch reactors in perfusion
bioreactors coupled to alternating tangential flow systems
(Clincke et al., 2013). The improvement of the cell-specific
productivity is the object of ongoing work since it highly
depends on the cell line and product of interest.

For this purpose, mathematical modeling and model-based
control and optimization are proposed as alternatives to
the exhaustive screening of culture media that is still the
industrial practice (Chotteau, 2015). However, there is no
consensus regarding the most appropriate procedures for
model identification, experimental design, and use of the re-
sulting mathematical model for control and optimization in
the context of perfusion bioreactors. This paper attempts to
deal with these challenges via an integrated approach that
encompasses procedures for experimental design, control,
and optimization of perfusion bioreactors.

The dynamic models used for control of processes such as
perfusion bioreactors are typically incomplete. The concept
of rate estimation can be used to estimate the unknown part
of the incomplete model without identifying its model. This
concept has already been developed and applied to con-
trol of continuous reactors (Rodrigues et al., 2018), using
an approach for control design via feedback linearization
(Farschman et al., 1998). This paper recalls the control
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strategy via rate estimation and feedback linearization pro-
posed and analyzed by Rodrigues and Hjalmarsson (2019)
and applies it to perfusion bioreactors.

One of the goals of this paper is the development of
procedures for mathematical modeling and experimental
design of perfusion bioreactors for use of the resulting
model to optimize the steady-state operation of perfusion
bioreactors. Hence, it makes sense to tailor the procedure
for experimental design to this intended goal. This idea is in
line with the notion advocated in the literature that process
models and the experiments performed to identify these
models should be tailored to their purpose, which is steady-
state optimization of perfusion bioreactors in this study
(Bonvin et al., 2016). For this reason, this paper shows how
one can design experiments to model for optimization.

The paper presents the generic model of perfusion bioreac-
tors and the multivariable control structure that deals with
the fact that perfusion bioreactors are typically described
by incomplete models. In addition, it introduces two algo-
rithms for experimental design that can be used to identify
models that are adequate for their intended purpose.

2. MODEL OF PERFUSION BIOREACTORS

In perfusion bioreactors, suspended cells are cultivated in
a liquid medium that is continuously renewed via the in-
lets and outlets. The goal is to make the cells generate
a certain product of interest and to recover that product
continuously. To avoid loss of productivity due to dilution of
biomass and to facilitate downstream processing, perfusion
bioreactors are coupled to a cell retention device. This en-
sures that the biomass remains in the reactor and the other
extracellular species, including the product of interest, are
continuously harvested. Moreover, a so-called bleed stream
is typically used to avoid accumulation of dead cells.

Hence, a perfusion bioreactor is a constant-volume, contin-
uous, agitated bioreactor that is intended to operate pre-
dominantly at steady state, but here its transient behavior
is shown as a dynamic model. In this biological reaction
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system with R reactions and S species and described by
the stoichiometric matrix N of dimension R × S, there
are Sec extracellular species and Sic intracellular species.
These species are selected using the selection matrices Sec of
dimension Sec×S and Sic of dimension Sic×S, respectively.
The stoichiometries of the reactions that affect the intra-
cellular and extracellular species are given by the matrices
Nic = NST

ic and Nec = NST
ec, respectively. For these

systems, a pseudo steady-state assumption for the intracel-
lular species is typically used. This means that the generic
dynamic model of a perfusion bioreactor is described by the
following system of differential-algebraic equations:

ċ(t) = NT
ecrc

(

c(t)
)

+Cin(t)ωin(t)−Ω(t)c(t), (1a)

0Sic
= NT

icrc
(

c(t)
)

, (1b)

where c(t) is the Sec-dimensional vector of bioreactor
concentrations of extracellular species including biomass
in moles per unit of volume, ωin(t) is the p-dimensional
vector of inlet rates in reactor volumes per unit of time,
Cin(t) is the Sec × p matrix of inlet concentrations of
extracellular species including biomass, Ω(t) := ωp(t)ISec

−
ωh(t)R(t), R(t) is the Sec-dimensional diagonal matrix of
retention factors for the extracellular species, and ωp(t) is
the perfusion rate in reactor volumes per unit of time, which
corresponds not only to the sum of the harvest rate ωh(t)
and bleed rate ωb(t) but also to the sum of inlet rates ωin(t),
that is, 1T

pωin(t) = ωp(t) = ωh(t) + ωb(t). Furthermore,

rc
(

c(t)
)

are reaction rates per unit of volume per unit
of time, and their dependence on the concentrations is
typically the only unknown part of the model, which needs
to be estimated from experiments via appropriate model

identification techniques. Also, r(t) = rc(c(t))
V C(t) are specific

reaction rates per cell per unit of time, shown without
the dependence on the concentrations, where V C(t) is the
viable cell concentration in viable cells per unit of volume.

In the case of biomass, cbiom(t) = fbiomV C(t) is its concen-
tration in moles per unit of volume, where fbiom is a scaling
factor. Biomass is selected from the extracellular species
using the Sec-dimensional selection vector sbiom such that
cbiom(t) = sTbiomc(t), the stoichiometries of the reactions
that affect it are given by the vector nbiom = Necsbiom,
its retention factor is Rbiom(t) = sTbiomR(t)sbiom = 1,
and its p-dimensional row vector of inlet concentrations is
cin,biom(t) = sTbiomCin(t) = 0T

p , which implies that

ċbiom(t) = nT
biomrc

(

c(t)
)

− ωb(t)cbiom(t). (2)

One can also model the perfusion bioreactor in terms of flux
modes (FMs). Let Rm denote the number of FMs, and let
Nm of dimension Rm × S and rank Rm denote the matrix
of stoichiometries of the FMs. Once Nm is chosen, one can
know which linear combinations of the stoichiometries in
the rows of N correspond to the stoichiometries of the FMs
in the rows of Nm. In other words, one can compute the
R×Rm matrix Em of rank Rm such that NTEm = NT

m.

One can show that the true reaction system can always be
described correctly by using the stoichiometry of the FMs
represented by a particularNm since there exists some Rm-
dimensional vector of rates ψ(t) such that r(t) = Emψ(t).

The remarks above and the fact that ψc

(

c(t)
)

are reaction
rates for the FMs per unit of volume per unit of time imply
that the model (1) can be equivalently written as

ċ(t) = NT
ecEmψc

(

c(t)
)

+Cin(t)ωin(t)−Ω(t)c(t), (3)

while ψ(t) = ψc(c(t))
V C(t) are specific reaction rates for the FMs

per cell per unit of time, shown without the dependence on
the concentrations. In the case of biomass, it is known that

ċbiom(t) = nT
biomEmψc

(

c(t)
)

− ωb(t)cbiom(t). (4)

Also, Sa extracellular species with concentrations ca(t) are
measured and correspond to the Sa×S selection matrix Sa

and the stoichiometric matrix Na = NST
a .

3. CONTROL BASED ON INCOMPLETE MODELS

System identification can be used to obtain a relatively
accurate description of the dynamic model of perfusion
bioreactors. However, this description remains subject to
some imprecision and requires experimental work that may
be time-consuming and expensive. Hence, the goal of this
section is to present a multivariable control structure that
deals with the fact that the models of perfusion bioreactors
may be incomplete and not only is simple to tune and
understand but also ensures good closed-loop performance.

Although a previous conference paper has already presented
most of the strategy for generic systems (Rodrigues and
Hjalmarsson, 2019), this section applies this method to the
particular case of perfusion bioreactors, where typically the
goal is to control the Sc linear combinations of outputs
cc(t) := Scca(t) to the setpoints csc(t) by measuring the
outputs ca(t) and manipulating the inputs ωin(t).

3.1 Problem description

Consider the nonlinear system that corresponds to a perfu-
sion bioreactor with nx := Sec states x(t) := c(t), nu := p
inputs u(t) := ωin(t), and ny := Sa outputs y(t) := ca(t).
The state dynamics are composed of an unknown part and
a known or available part, denoted by subscripts u and
a, and the outputs are known linear combinations of the
states. The dynamic model is written as:

ẋ(t) = fu
(

x(t),u(t)
)

+ fa
(

x(t),u(t)
)

, x(0) = x0, (5a)

y(t) = Cx(t), (5b)

where fa
(

x(t),u(t)
)

:= Cin(t)ωin(t)−Ω(t)c(t) is a known

function, fu
(

x(t),u(t)
)

:= NT
ecEmψc

(

c(t)
)

is an unknown

function, and C := SaS
T
ec is a known matrix. In addition,

(i) sa
(

y(t),u(t)
)

:= Cfa
(

x(t),u(t)
)

= SaS
T
ecCin(t)ωin(t)−

Ωa(t)ca(t) can be computed from the current outputs
and inputs, and (ii) su

(

x(t)
)

:= Cfu
(

x(t),u(t)
)

=

SaN
T
mψc

(

c(t)
)

is an unknown function of the states only.

Assuming that SaN
T
m is of full column rank Rm, one

writes su
(

x(t)
)

as linear combinations of nr := Rm rates

ru
(

x(t)
)

:= ψc

(

c(t)
)

, that is, su
(

x(t)
)

= Lru
(

x(t)
)

, where

ru
(

x(t)
)

is an unknown function and L := SaN
T
m is a

known ny ×nr matrix with rank nr, which implies nr ≤ ny

and there is an nr × ny matrix T such that T L = Inr
.

Hence, one defines the nr states xr(t) := T Cc(t) and the
outputs yr(t) := T ca(t) described by the dynamics

ẋr(t) = ru
(

x(t)
)

+ T sa
(

y(t),u(t)
)

, xr(0) = xr,0, (6a)

yr(t) = xr(t). (6b)

Suppose that the objective is to control the nc := Sc linear
combinations of outputs yc(t) := cc(t) to the setpoints
ys
c(t) := csc(t). These linear combinations are given by the
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nc×ny matrix S := Sc with rank nc, which implies nc ≤ ny.
Hence, one defines the nc states xc(t) := SCc(t) and the
outputs yc(t) := cc(t) described by the dynamics

ẋc(t) = Hru
(

x(t)
)

+ ha

(

y(t),u(t)
)

, xc(0) = xc,0, (7a)

yc(t) = xc(t), (7b)

where H := ScSaN
T
m and ha

(

y(t),u(t)
)

= Ba

(

y(t)
)

u(t) +

βa

(

y(t)
)

, with βa

(

y(t)
)

:= −Ωc(t)cc(t) and Ba

(

y(t)
)

:=

ScSaS
T
ecCin(t).

3.2 Control strategy

Unfortunately, the rate model ru
(

x(t)
)

:= ψc

(

c(t)
)

is
unknown and there is a difference between the system
inputs u(t) := ωin(t) and the actuator inputs ũ(t) :=
ω̃in(t) due to the input disturbances d(t) := u(t) − ũ(t)
and a difference between the sensor outputs ỹ(t) := c̃a(t)
and the system outputs y(t) := ca(t) due to the output
disturbances w(t) := ỹ(t) − y(t). However, one can deal
with these issues as shown below.

If the matrix Ba

(

ỹ(t)
)

is invertible, which implies nc = nu

and is typically true for the proposed choice of controlled
outputs yc(t), one can use the feedback linearization law

ũ(t) = Ba

(

ỹ(t)
)

−1
(

v(t)−Hr̂u(t)− βa

(

ỹ(t)
)

)

. (8)

For the rates of variation v(t), one can choose among other
alternatives the proportional control law with gain τ−1

c

v(t) = τ−1
c

(

ys
c(t)− ỹc(t)

)

, (9)

which would ensure exponential convergence of yc(t) to
ys
c(t) with the time constant τc in the ideal case of known

rate model ru
(

x(t)
)

and no input and output disturbances.

Several options exist for estimation of the rates ru
(

x(t)
)

, for
example sliding mode observers (Nuñez et al., 2013). Here,
the finite impulse response filter proposed by Rodrigues
and Hjalmarsson (2019) is adopted since the resulting rate
estimates r̂u(t) consist of the effect of w and a weighted
average of ru in [t−∆t, t], where ∆t is the size of the filter
window. The values r̂u(t) of the unknown rate signals are
estimated from the measured signals ỹr(t) := T ỹ(t) and
the available rates s̃a(t) computed from ỹ(t) and ũ(t):

r̂u(t) = ∫∆t
0

(

c(τ)
∆t2

ỹr(t−∆t+τ)−
b(τ)
∆t

T s̃a(t−∆t+τ)

)

dτ, (10)

where c(τ) and b(τ) are convolution functions. For the sake
of brevity, all the signals are presented as functions of time.

Under the assumptions stated by Rodrigues and Hjalmars-
son (2019), one can show that the functions c(τ) and b(τ)
that minimize the effect of measurement noise in w(t) are

c(τ) = 12 τ
∆t

− 6, (11a)

b(τ) = −6
(

τ
∆t

)2
+ 6 τ

∆t
, (11b)

with the matrix T =
(

L
TΣ−1

w
L
)

−1
L

TΣ−1
w

, where Σw is
the covariance matrix of the noise in w(t).

The presented control strategy requires only two design
parameters with a well-defined meaning: (i) ∆t is the
window size of the differentiation filter, which should be
small enough so that the unknown rates ru

(

x(t)
)

are
approximately constant in this window, but not too small
to prevent amplification of measurement noise; and (ii) τc
is the inverse of the controller gain and is expected to
be approximately equal to the dominant closed-loop time
constant if the rate estimation is accurate enough.

3.3 Stability and performance

The conference paper by Rodrigues and Hjalmarsson (2019)
provided a method to perform stability and performance
analysis for this control strategy. One can also show that
the closed-loop system eliminates the steady-state error.

In that paper, an example of a continuous stirred-tank
(nonisothermal) reactor with 4 species and 2 reactions was
presented. This system is described by a model with 5
states, 3 inputs, and 3 (controlled) outputs, the heat and
the numbers of moles of 2 species. The response of the
closed-loop system to step increases in the setpoints showed
that the controlled outputs converge to the new setpoint
values rather quickly, which means that no steady-state
error is present. Furthermore, it was shown that the closed-
loop performance becomes worse with increasing values of
τc and ∆t, but the stability is not compromised.

Although the model of this example includes fewer states,
inputs, and outputs than the model of a typical perfusion
bioreactor, the models are similar, which allows drawing
conclusions about the stability and performance of the con-
trol strategy for perfusion bioreactors from this example.

4. DESIGN OF EXPERIMENTS FOR OPTIMIZATION

One would like to tailor the procedure for experimental
design to the intended goal, that is, optimization of the
steady-state operation of perfusion bioreactors. This task
is simplified by a control strategy such as the one in the
previous section, which deals with the manipulation of the
inputs that is necessary for the controlled outputs to reach
certain setpoints at steady state and allows reducing the
degrees of freedom to the steady-state setpoints. Hence,
in this section, the focus is on designing experiments to
identify models that are adequate for optimization, that
is, to model for optimization. More precisely, the resulting
model should provide a solution to an optimization problem
with some steady-state setpoints as decision variables and
cost and constraints that depend on steady-state quantities.

4.1 Modeling for optimization

Suppose that one would like to model how the nπ steady-
state decision variables π̄ of a system affect its ny steady-
state attributes ȳp(π̄). For a closed-loop system with no
steady-state error, π̄ are some steady-state setpoints ȳs

c and
ȳp(π̄) are the steady-state inputs ūp(π̄) and uncontrolled
outputs ȳp

n(π̄). In the particular case of a perfusion biore-
actor where the outputs cc(t) are controlled to the setpoints
csc(t) by measuring the outputs ca(t) and manipulating the
inputs ωin(t) and the outputs cn(t) are uncontrolled, one
defines the steady-state setpoints ȳs

c := c̄sc that include
the steady-state decision variables π̄, and the steady-state
attributes ȳp(π̄) that consist in ω̄p

in(π̄) and c̄pn(π̄) since
c̄pc(π̄) = c̄sc in the case of control with no steady-state error.

We are modeling for optimization since the purpose of the
model is to find an optimum π̄∗ of the problem

max
π̄

φp(π̄), (12a)

s.t. gp(π̄) ≤ 0g, (12b)

with

φp(π̄) := φ
(

ȳp(π̄), π̄
)

, (13a)

gp(π̄) := g
(

ȳp(π̄), π̄
)

, (13b)
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where φ(ȳ, π̄) and g(ȳ, π̄) are the objective and constraint
functions that depend on the steady-state attributes and
decision variables, and the superscript p refers to the plant,
that is, the true experimental system, in contrast to the
superscript m that will be used below to refer to the model.

Furthermore, the gradients of φp(π̄) and gp(π̄) can be
computed from the gradients of ȳp(π̄) as follows:

∂φp

∂π̄
(π̄) = ∂φ

∂ȳ

(

ȳp(π̄), π̄
)

∂ȳp

∂π̄
(π̄) + ∂φ

∂π̄

(

ȳp(π̄), π̄
)

, (14a)

∂gp

∂π̄
(π̄) = ∂g

∂ȳ

(

ȳp(π̄), π̄
)

∂ȳp

∂π̄
(π̄) + ∂g

∂π̄

(

ȳp(π̄), π̄
)

. (14b)

For the model, φm(π̄) and gm(π̄) are defined as functions
of the steady-state model attributes ȳm(π̄) as shown for
the plant in (13), and the gradients of φm(π̄) and gm(π̄)
can be computed from the gradients of ȳm(π̄) similarly to
(14), by replacing the superscript p by the superscript m.
All the functions above are assumed to be differentiable.

Let gp
a(π̄) denote the ga active constraints at π̄ such that

gp
a(π̄) = 0ga , and assume that linear independence con-

straint qualification holds. From the Karush-Kuhn-Tucker
(KKT) conditions, it is known that, at a plant optimum
π̄p∗, gp(π̄p∗) ≤ 0g and there exists µ ≥ 0ga such that

µT ∂gp
a

∂π̄
(π̄p∗) = ∂φp

∂π̄
(π̄p∗). (15)

Hence, an adequate model for optimization φm(π̄), gm(π̄)
must ensure that gm(π̄) ≤ 0g and there exists µ ≥ 0ga

such that µT ∂gm
a

∂π̄
(π̄) = ∂φm

∂π̄
(π̄) if and only if π̄ = π̄p∗. In

particular, an adequate model must be such that gm(π̄p∗)

predicts correctly gp(π̄p∗) and ∂φm

∂π̄
(π̄p∗),

∂gm
a

∂π̄
(π̄p∗) predict

correctly ∂φp

∂π̄
(π̄p∗),

∂gp
a

∂π̄
(π̄p∗). For this reason, the modeling

effort should focus on the location of plant optima π̄p∗.

4.2 Data-driven algorithm for experimental design

To obtain an adequate model for optimization, it would be
helpful to have an idea about the location of plant optima
π̄p∗. However, the purpose of the model is precisely to
indicate the location of plant optima π̄p∗. In addition, the
design of new experiments is needed because one admits
that the model is poorly known or even unknown, thus not
even the location of any model optimum π̄m∗ is known.

However, even if the model is known, gradient-based op-
timization algorithms face the same situation before they
reach a model optimum. Hence, recall how a gradient-based
optimization algorithm works and note that all its steps
can be performed if the model is replaced with the experi-
mental system. This inspires the data-driven algorithm for
experimental design presented below, which uses the same
steps of a gradient-based optimization algorithm and the
experimental system to design the experimental points :

(1) Start from the experimental point π̄0 and set k = 0.
(2) Use experiments to measure ỹp(π̄k), ỹp(π̄1

k), . . .,

ỹp(π̄nπ

k ), and estimate yp(π̄k),
∂yp

∂π̄
(π̄k) as the solution

to ỹp(π̄l
k) =

[

yp(π̄k)
∂yp

∂π̄
(π̄k)

] [

1 (π̄l
k − π̄k)

T
]T

, for

l = 0, 1, . . . , nπ, with π̄
0
k = π̄k.

(3) Compute φp(π̄k), gp(π̄k),
∂φp

∂π̄
(π̄k),

∂gp

∂π̄
(π̄k) from

yp(π̄k),
∂yp

∂π̄
(π̄k) using (13) and (14).

(4) Test whether gp(π̄k) ≤ 0g and there exists µ ≥ 0ga

such that µT ∂gp
a

∂π̄
(π̄k) ≃

∂φp

∂π̄
(π̄k).

If so, end the experiments since π̄k is near π̄p∗.

(5) Use information φp(π̄k), gp(π̄k),
∂φp

∂π̄
(π̄k),

∂gp

∂π̄
(π̄k),

. . ., φp(π̄0), g
p(π̄0),

∂φp

∂π̄
(π̄0),

∂gp

∂π̄
(π̄0) to compute the

next experimental point π̄k+1.
(6) Set k = k + 1 and repeat Steps 2–5.

Note that Step 2 is experimental and requires estimating
plant functions and gradients at each nominal experimen-
tal point π̄k from measurements ỹp at π̄k and auxiliary
experimental points π̄1

k, . . . , π̄
nπ

k , while all the other steps
are computational. These auxiliary experimental points can
be evaluated in parallel if multiple instances of the same
experimental system are available. The drawback of this
algorithm is that the number of experimental points is
proportional to the number of iterates of an optimization
algorithm, which is typically low but potentially high. This
prompts the creation of a slightly different algorithm that
takes advantage of the model that is being constructed.

4.3 Hybrid algorithm for experimental design

As mentioned, an alternative is to combine experimental
data with the identified model. This results in the following
hybrid algorithm to design the experimental points :

(1-4) Use Steps 1–4 from the data-driven algorithm.
(5) Use information ỹp(π̄0

k), . . ., ỹ
p(π̄nπ

k ), . . ., ỹp(π̄0
0), . . .,

ỹp(π̄nπ

0 ) to identify a model ym(π̄).
(6) Adapt the model φm(π̄), gm(π̄) given by (13) (with

the superscript p replaced by m) such that ∂φm

∂π̄
(π̄k) =

∂φp

∂π̄
(π̄k), g

m(π̄k) = gp(π̄k),
∂gm

a

∂π̄
(π̄k) =

∂gp
a

∂π̄
(π̄k), by

adding zeroth-order and first-order modifiers as in

φm(π̄) = φ
(

ȳm(π̄), π̄
)

+ λφ
k (π̄ − π̄k) , (16a)

gm(π̄) = g
(

ȳm(π̄), π̄
)

+ εgk +Λ
g

k (π̄ − π̄k) , (16b)

where λφ
k := ∂φp

∂π̄
(π̄k) −

∂φ
∂ȳ

(

ȳm(π̄k), π̄k

)

∂ȳm

∂π̄
(π̄k) −

∂φ
∂π̄

(

ȳm(π̄k), π̄k

)

, εgk := gp(π̄k) − g
(

ȳm(π̄k), π̄k

)

,

and Λ
g

k := ∂gp

∂π̄
(π̄k) − ∂g

∂ȳ

(

ȳm(π̄k), π̄k

)

∂ȳm

∂π̄
(π̄k) −

∂g
∂π̄

(

ȳm(π̄k), π̄k

)

.
(7) Compute the next experimental point π̄k+1 as a solu-

tion to the problem maxπ̄ φm(π̄) s.t. gm(π̄) ≤ 0g.
(8) Set k = k + 1 and repeat Steps 2–7.

By using this algorithm, the number of experimental points
may decrease if good models are constructed.

Note that, without Step 6, it would be theoretically possible
that the model identified after Step 5 indicated that the
optimizer π̄k+1 in Step 7 is the same experimental point
as π̄k, which should not happen since Step 4 guarantees
that π̄k is not located near π̄p∗. Hence, Step 6 is needed
to ensure that, if it was verified in Step 4 that π̄k does not
satisfy the KKT conditions for the plant, then π̄k does not
satisfy the KKT conditions for the model in Step 7 and the
algorithm does not stay at the same experimental point.

These algorithms for experimental design are related to
methods for closed-loop evolutionary optimization, where
the goal is to use experimental measurements for optimiza-
tion in a way that exploits the model (Knowles, 2009).
Furthermore, one can also note that the data-driven and
hybrid algorithms for experimental design are related to
some iterative approaches for process optimization, namely,
extremum-seeking control and modifier adaptation, respec-
tively (Krstić and Wang, 2000; Marchetti et al., 2009).
However, the latter approaches focus on optimization of the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17122



process itself, whereas the focus of the current study is the
design of experiments for model identification in a lab-scale
system, knowing that this model is then used as a starting
point for optimization of the corresponding process.

4.4 Simulation example

In this section, a simulation testbed is used to compare
the proposed data-driven and hybrid algorithms and assess
the number of experimental points. This simulation testbed
corresponds to a slightly modified version of the bioreactor
model presented by Nolan and Lee (2011). This bioreactor
model includes R = 34 reactions and S = 39 species, from
which Sic = 24 are intracellular and Sec = 15 are extra-
cellular. The outputs y(t) correspond to the concentrations
ca(t) of Sa = 13 measured extracellular species.

The kinetic expressions and corresponding kinetic parame-
ters are given by Nolan and Lee (2011) for some reactions.
These postulated kinetic expressions are denoted as p(t)
and depend on the concentrations of measured extracellular
species except the ones of biomass cbiom(t) and monoclonal
antibodies cmAb(t). The concentrations of these Sc = 11
species, such as Glc (glucose) and Lac (lactose), are denoted
as cc(t) since they are controlled. More details about this
kinetic model are available from the author.

From the generic dynamic model (1) and the fact that the
dynamic model given by Nolan and Lee (2011) is such that

NT
icrc

(

c(t)
)

= 0Sic
and rc

(

c(t)
)

= rvc
(

cc(t)
)

V C(t), one
can derive the following steady-state model:

0Sec
= NT

ecrvc
(

c̄c
)

¯V C + C̄inω̄in + ω̄hR̄c̄− ω̄pc̄. (17)

For the biomass, we assume that ω̄b = ωdc

(

c̄c
)

¯V C for some

ωdc(c̄c
)

, thus 0 = nT
biomrvc

(

c̄c
)

¯V C − ωdc

(

c̄c
)

¯V Cc̄biom and

¯V C =
n

T

biomrvc(c̄c)
fbiomωdc(c̄c)

. (18)

In the remainder, we assume that Rc(t) = 0Sc×Sc
. This

implies that the steady state of the controlled outputs cc(t)

is given by 0Sc
= NT

c rvc
(

c̄c
)

¯V C + C̄in,cω̄in − ω̄pc̄c, where
ωin(t) are the manipulated inputs. Moreover, we assume

that ωp(t) is constant with ω̄p = 1 day−1 and there exist
as many inputs as controlled outputs, thus control of cc(t)
with no steady-state error can be implemented as shown in
Section 3, which allows stating that c̄c = c̄sc. Hence, one
does not need to consider the transient behavior to know
that the inputs ω̄in are a function of c̄sc given by

ω̄in = ω̄pC̄
−1
in,c

(

c̄sc −NT
c rvc(c̄

s
c)

n
T

biomrvc(c̄
s
c)

fbiomωdc(c̄sc)ω̄p

)

. (19)

Using a similar notation for the case of monoclonal anti-
bodies, it is known that 0 = nT

mAbrvc
(

c̄c
)

¯V C− ω̄pc̄mAb and

c̄mAb = nT
mAbrvc(c̄

s
c)

n
T

biomrvc(c̄
s
c)

fbiomωdc(c̄s
c)ω̄p

. (20)

In principle, any values can be freely chosen for the steady-
state setpoints c̄sc, which makes them an obvious choice as
decision variables of the steady-state optimization problem
that corresponds to the maximization of c̄mAb in this
example. The only constraint is that the steady-state inputs
ω̄in must be nonnegative since they correspond to inlet
rates. If there is a one-to-one correspondence between inlets
and species with controlled concentrations, both C̄in,c and

C̄
−1
in,c are nonnegative diagonal matrices, which implies that

ω̄in ≥ 0Sc
if and only if c̄in,c = ω̄−1

p C̄in,cω̄in ≥ 0Sc
.

Hence, according to the previous developments, the follow-
ing steady-state optimization problem is considered:

max
π̄

φp(π̄) := nT
mAbrvc

(

c̄sc
)

n
T

biomrvc(c̄
s
c)

fbiomωdc(c̄s
c)ω̄p

, (21a)

s.t. gp(π̄) := NT
c rvc

(

c̄sc
)

n
T

biomrvc(c̄
s
c)

fbiomωdc(c̄sc)ω̄p
− c̄sc ≤ 0g. (21b)

Then one can use the data-driven and hybrid algorithms for
experimental design. For better visualization of the results,
only 2 degrees of freedom out of the 11 steady-state set-
points c̄sc vary. More precisely, the algorithms vary only the
setpoints π̄ = (c̄sGlc, c̄

s
Lac). At each iteration k, the gradients

∂φp

∂π̄
(π̄k),

∂gp

∂π̄
(π̄k) are estimated via finite-difference ap-

proximations, which requires nπ = 2 auxiliary experimental
points π̄1

k, π̄
2
k for each nominal experimental point π̄k.

The step away from each nominal point to compute the
gradient with respect to a decision variable corresponds
to 2% of the initial value of that variable. Furthermore,
these perturbations are in the direction of smaller c̄sGlc and
larger c̄sLac because this direction represents a smaller risk
of violation of the constraint −c̄in,Lac ≤ 0.

It is assumed in this example that the steady-state inputs
ω̄

p
in(π̄) are noise-free since their transient values result from

high-frequency feedback control, while the steady-state un-
controlled outputs c̄pn(π̄) are assumed to be corrupted by
additive zero-mean Gaussian noise with a standard devia-
tion of 0.2% of its true value, which can be approximated in
practice by taking several replications for each experimental
point. Furthermore, it is assumed that each postulated
reaction rate at steady state p̄ that is modeled by the hybrid
algorithm is corrupted by additive zero-mean Gaussian
noise with a standard deviation of 0.2% of its true value.
Note that the rates p̄ can be computed from the quantities
¯V C, ω̄in, c̄c, c̄mAb by solving the relevant equations.

Figure 1 shows the progress of the data-driven algorithm.
This algorithm stops after evaluating 9 nominal experi-
mental points π̄k and 18 auxiliary points π̄1

k or π̄2
k, when

the cost value is more than 3000 times the predicted cost
improvement. Each blue circle represents one of the 27
experimental points, while the red line corresponds to the
progress over the iterations. Recall that nπ + 1 = 3 exper-
imental points are necessary at each iteration to compute
the gradients. Hence, most of the blue circles do not coincide
with the red line since they correspond to auxiliary points.

Figure 2 shows the progress of the hybrid algorithm. This
algorithm stops after evaluating 8 nominal experimental
points π̄k and 16 auxiliary points π̄1

k or π̄2
k, slightly

fewer than the data-driven algorithm. The model identified
in Step 5 of the algorithm possesses the structure p̄ =
p4 c̄Glc+p5c̄Lac+p6 c̄Glcc̄Lac

p1+p2c̄Glc+p3 c̄Lac+c̄Glcc̄Lac
for each postulated steady-state

reaction rate p̄, where p1, . . . , p6 are unknown parameters.
Note that the algorithm evaluates 2 nominal experimental
points, labeled 0 and 1 in Figure 2, and 4 other auxiliary
experimental points, that is, 6 experimental points in total,
before a valid model (with 6 parameters for each rate p̄) can
be identified, adapted, and used by the hybrid algorithm in
Steps 5, 6, and 7. Once such a model is available, the hybrid
algorithm follows the correct direction toward the plant
optimum, although the identified model is considerably less
complex than the true kinetic model.

By using either algorithm, one can measure steady-state
attributes, that is, concentrations c̄n and c̄in,c, for a number
of experimental points that are close to a plant optimum.
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Fig. 1. Evolution of c̄mAb as a function of c̄sGlc and c̄sLac
over the iterations of the data-driven algorithm, with
the infeasible region represented by the shaded area.
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Fig. 2. Evolution of c̄mAb as a function of c̄sGlc and c̄sLac
over the iterations of the hybrid algorithm, with the
infeasible region represented by the shaded area.

This allows the identification of a model that represents
well the plant, that is, the true perfusion bioreactor, in the
most interesting region of the space of decision variables.

5. CONCLUSIONS

This paper presented an integrated approach for experi-
mental design, control, and optimization of perfusion biore-
actors. The contribution and outlook are outlined below.

The control scheme that was applied in this paper takes
advantage of the knowledge about part of the model, is
rather simple to tune thanks to the clear meaning of its pa-
rameters, converges quickly to its setpoints, and eliminates
steady-state error. In future work, it would be interesting
to investigate how much one can improve the control per-
formance by using complete models of perfusion bioreactors
and other control structures. The different approches may
then be tested on a real perfusion bioreactor.

Two algorithms for designing experiments that use the opti-
mality conditions of the experimental system have been pre-
sented. One algorithm is purely data-driven, while the other

algorithm is a hybrid version that combines experimental
data with the identified model. Furthermore, a simulated
testbed has been used to compare data-driven and hybrid
algorithms and assess the number of experimental points.
In future work, it would also be interesting to compare
these algorithms to other approaches that optimize criteria
related to the Fisher information matrix with respect to
their ability to identify a model that can predict well the
optimality conditions of perfusion bioreactors.

This paper foresees that the ideal operation of perfusion
bioreactors consists in the integration of (i) a control ap-
proach with steady-state properties guaranteed via control
design and closed-loop stability and performance that can
be verified using an approximate dynamic model and (ii)
an approach for optimization of steady-state setpoints that
takes advantage of a steady-state model obtained via exper-
imental design and model identification techniques designed
for this purpose. Hence, the methods in this paper pave the
way for rational design of models for perfusion bioreactors
that are suited to their reliable and optimal operation.
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