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Abstract:
In this paper we present a study about the robustness of event-based discrete PI controllers.
Our approach is based on Sampled Describing Function technique, which has been used to
characterize the non-linear effect of the Symmetric Send on Delta (SSOD) sampling strategy on
the control loop. Through several examples this technique is proven to produce accurate results
in predicting limit cycle oscillations and to provide guidelines to avoid them, either by detuning
the controller or increasing the sampling period.
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1. INTRODUCTION

On distributed control systems, event based controllers are
a promising alternative to classical time driven approach
because the former allows to reduce the data flow through
digital networks, reducing the data drop out in the form of
packet losses and decreasing the delays introduced by the
communication network. This is due to the characteristics
of event based control systems (EBC) of sending new data
only when significant changes are detected on the state of
the system, instead of the periodical sampling required by
the classical time-driven control loops.
Specially important in the EBC is the event generation
technique, which is in charge of generating the events for
the execution of the controller’s algorithm. Among these
sampling strategies the ones based on the signal quan-
tification have become more important because of their
ease of implementation. One of the most important is the
send-on-delta (SOD) sampling, which sends data whenever
the signal changes more than a value δ from the last
sample. This sampling technique has been used in several
works proving its effectiveness in terms of control per-
formance and communication reduction (Dormido et al.
[2008], Ploennigs et al. [2010]). A variation of SOD was
presented in (Beschi et al. [2012]) known as symmetric-
send-on-delta (SSOD), which fixes the thresholds δ and
introduces a hysteresis of the same value δ.
One of the main points in the analysis and design of
event-based control systems is the existence and avoidance
of limit cycle oscillations in the closed loop response.
To perform this analysis, the Describing Function (DF)
technique has been applied in previous works by the
authors (Romero et al. [2014], Romero and Sanchis [2016]),
obtaining tuning methods for PI controllers within a
? This work has been supported by the projects UJI-B2018-39 and
ACIF/2018/244.

structure with a SSOD sampler. The use of the DF allows
to extend some concepts of the classical control theory,
such as the gain and phase margins, to the analysis and
design of EBC systems.
Until now, in all the published studies about the SSOD
based control systems a continuous approach is adopted to-
wards the controller implementation (Beschi et al. [2014],
Romero et al. [2014]), i.e. the controller is considered to be
continuous and therefore all the results have been obtained
under this assumption. In networked control systems,
however, the controller is implemented in micro-processor
based devices considering a discrete approximation where
the execution period plays an important role.
In this paper we address the robustness of SSOD based
control systems when using discrete PI controllers. The
approach consists in assuming the PI to be implemented
in any standard control device (PLC, microcontroller,...),
as is almost always the case in actual applications, and no
longer considering it as a continuous controller. The results
shed light on the importance of the sampling period on the
robustness against limit cycle oscillations and prove the
suitability of the Sampled Describing Function technique
to analyze this kind of systems.

2. PROBLEM STATEMENT

Consider the networked control system presented in Figure
1, where C(s) and G(s) are the controller and the process
transfer functions respectively, yr is the reference signal to
be tracked, y is the controlled output, and p is the distur-
bance input. It is supposed that the controller is located
near the actuator and the sensor sends measurements of
process output y (or more precisely of the tracking error e)
to the controller through a communication network using
the SSOD strategy. The ZOH block keeps in ē the last sent
value of process output e∗ until a new value is transmitted
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Fig. 1. Networked control system with SSOD sampling
strategy.

yr e y
G(s)
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Fig. 2. Sampled system configuration with SSOD non-
linearity.

by the SSOD block. Communication delays through the
network are represented by the term exp(−tds).
The control problem associated to this schema was first
proposed in (Beschi et al. [2012]) and it has been treated
in different ways in the literature. In (Beschi et al. [2014]) a
tuning method for this kind of structure based on AMIGO
(Hägglund and Åström [2002]) and SIMC (Skogestad
[2003]) tuning rules was presented. In (Romero et al.
[2014], Romero and Sanchis [2016]) the authors use the
DF technique to characterize the robustness of the SSOD
non-linearity and propose their own tuning method, but
other analysis tools can be used to better characterize the
system behavior (Miguel-Escrig et al. [2019]).
All the previous works consider a continuous controller
C(s), but in practice the PI is implemented in micropro-
cessor based devices such a PLC or other electronic cards.
This fact modifies the system in Figure 1, because the
signal ē is now periodically sampled by the controller to
recalculate the control action, which keeps constant during
the sampling time.
With the considerations described above, the system in
Figure 1 admits the Hammerstein-Wiener representation
presented in Figure 2, being the block SSOD_ZOH the
combination of the SSOD and ZOH blocks, the network
delay has been included in the process transfer function
G(s), and the implementation of the dicrete PI being
modeled by

C(z) = Kp +Kp
Ts

Ti

z

z − 1
. (1)

This configuration represents more accurately the actual
problem behind the implementation of networked control
systems. A possible drawback of this kind of systems is the
existence of limit cycles induced by the SSOD sampling.
In Figure 3 a limit cycle oscillation is shown, and it can
be seen that, the error signal e is not only quantified by
the SSOD non-linearity, resulting in ē, but also sampled
afterwards, obtaining the samples ē∗, which are used to
compute and actualize the control action.

3. SAMPLED DESCRIBING FUNCTION

According to (Gelb and Van der Velde [1968]), for non
linear systems that include sampling elements, as that

−2δ
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e(t) ē(t) ē∗(t) Samples

Fig. 3. Sine wave in black, quantified by the SSOD_ZOH
block in dashed blue, and sampled according to a
given sampling period in red (sampling time indicated
with red arrows).

in Figure 2, two extensions of the Describing Function
technique can be used to study the existence of limit cy-
cles: the z-transform describing function and the sampled
describing function. Due to its simplicity we have chosen
the later approach for this work.
The condition to avoid limit cycle oscillations is defined
by:

Gol(jω) 6= − 1

N
; ∀ω, (2)

where Gol(jω) represents the open-loop transfer function
including the controller, the process and the ZOH. N
is the sampled describing function that characterizes the
SSOD_ZOH block and the sampler.
N is calculated according to the expressions presented in
Appendix A. From those expressions it can be concluded
that the shape of 1/N is affected by the number of levels
m crossed by oscillations with amplitude A (m = bA/δc),
the lag τ introduced by the sampling (see Figure 3) and
the ratio between the oscillation period and the sampling
period r = To/Ts = ωs/ωo. Specially important is the
effect of the sampling period Ts, which proportionally
scales N .
Figure 4 shows the shape of −1/N for different values of
r. As can be observed, the locus of −1/N is composed of
several branches, one for each value of m. Higher values
of m tend to approximate the corresponding branches to
the point (−Ts, 0). On the other hand, as m is reduced the
branches expand towards the third quadrant. A very illus-
trative case is the one presented in the Figure 4d, where
the branches for each m are well defined and reassembles
the DF of the SSOD without periodical sampling that was
presented by the authors in (Romero and Sanchis [2016]).
This happens because for values of r high enough the effect
of the sampling can be negligible. Nevertheless, it can be
seen how decreasing r tends to widen the branches, making
them unintelligible from one another.
Remark 1. According to (Gelb and Van der Velde [1968]),
for non-integer values of r the oscillation may contain
harmonic components with frequencies lower than the
fundamental frequency, which cannot be discarded with
the filtering hypothesis, making the DF technique not
suitable for the analysis of the system. Therefore, this
approach only predicts the oscillation corresponding to
integer values of r.
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(a) r = 10. (b) r = 20.

(c) r = 50. (d) r = 100.
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Fig. 4. Sampled DF traces for different values of r, all of
them considering Ts = 1.

Remark 2. In those cases where r is considered to be odd,
the samples taken in each semi-period of the oscillation
are different, affecting the symmetry of the oscillation, and
therefore, the resemblance of the error signal e(t) with a
ideal sinusoid. Nevertheless, with a linear part with good
filtering capabilities the DF still provides good results in
predicting limit cycles.

4. STABILITY ANALYSIS

The condition (2) means that if there are not intersections
between Gol(jω) and −1/N in a polar plot diagram, then
cycle limit oscillations will not take place. With regard to
the non-linear part, the fact that all the range of ω should
be considered for the stability analysis implies that, for
a given sampling period, different values for the ratio r
must be considered since each frequency ω is susceptible
of becoming the oscillation frequency.
Nevertheless, the range of ω, and thus, the range of r,
can be easily calculated. Firstly, since the DF traces lie
in the third quadrant, the minimum value of r which has
to be considered is rmin = dωs/ωcpe, where ωcp is the
phase crossover frequency. Secondly, as it has been seen
in Figure 4, increasing r more than a certain value does
not modify significantly the shape of the DF traces. In
addition, the intersection between the traces of the DF
and Gol(s), in the case where it happens, occurs in a given
range of frequencies, therefore, the minimum possible
oscillation frequency to consider, which will produce the
maximum value for r, will be placed in the third quadrant,
but not further than the extension of the DF traces.
With regard to the linear part of the system in Figure 2,
the open loop transfer function Gol(s) that includes the
discrete controller C(z), the ZOH and the system G(s)
must be obtained. The transfer function of the ZOH is:

ZOH(s) =
1− e−sTs

s
.

Furthermore, for the transfer function of the discrete con-
troller, given by equation (1), its starred transfer function
C∗(s) is obtained by doing the transformation z = esTs

on C(z). Then:

Gol(s) =
1− e−sTs

s
C∗(s)G(s). (3)

Due to the characteristics of −1/N described in the
previous section, for PI controllers with reasonable tuning
in terms of phase and gain margin, the shape of Gol(s) is
generally such that the non intersection with the branches
of m = 1 guarantees no intersections for m > 1. This
fact was pointed out in (Romero and Sanchis [2016]) for
the case of continuous PI and it holds for the system under
study in this paper. Therefore, only the branches of m = 1
need be considered.

5. SIMULATION STUDY

To clarify the analysis of robustness to limit cycles of the
system in Figure 2 using the concepts presented until now,
let us introduce the following examples.
Example 1. Consider a process whose transfer function is:

G(s) =
1

(s+ 1)3
.

A continuous PI controller is tuned according to the
method proposed in (Romero and Sanchis [2016]), which
takes into account the SSOD sampling strategy. The
requirements are set to Φm,SSOD = 15◦ for the phase
margin to the non-linearity and γcg = 6 dB for the gain
margin, obtaining the following parameters: Kp = 1.28
and Ti = 2.52. It is worth remarking that implementing
the continuous controller with these parameters assures
the avoidance of limit cycle oscillations.
Now consider a discrete implementation of the PI con-
troller using the previous parameters. To show the influ-
ence of this kind of implementation the sampling period
has been chosen to be Ts = 0.75 seconds. The open
loop transfer function obtained from equation (3) has a
phase crossover frequency of ωcp = 1.06. Therefore, the
possible frequency of limit cycles are lower than this value,
which makes Tcp = 5.9236 and thus the initial value of
rmin = dTcp/Tse = d5.9236/0.75e = d7.8982e = 8. The
following values of r to consider will be greater because
as we consider frequencies deeper on the third quadrant
this ratio increases. As it has been commented before, as
r increases, the variation between Sampled DF’s traces is
minor, so it is not necessary to sweep all the possible range
of frequencies.
A quantification threshold δ = 0.1 will be considered for
the sampler in all the examples. In Figure 5 it can be seen
the traces of −1/N for r ∈ [8, 16] and Gol(s). As it can
be appreciated it exists an intersection between the DF
traces and Gol(s) and therefore a limit cycle oscillation
can occur.
The system has been tested in simulation and effectively it
presents a limit cycle oscillation as it can be seen in Figure
6. The controlled output of the system to step changes
in reference and disturbance inputs can be seen in the
upper figure and the respective control action is presented
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Fig. 5. Intersection between the traces of −1/N and Gol(s)
with Ts = 0.75. Oscillation point showed in red.
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Fig. 6. Experiment considering step changes in the refer-
ence and disturbance inputs. Controlled output in the
upper figure and control action in the lower figure.

in the lower image. Here, effectively, a limit cycle can be
observed and its oscillation frequency ωo = 0.5984 [rad/s]
correspond to the red dot in Figure 5.

As we have seen in the precedent example, the choice
of the sampling period Ts and the tuning parameters is
not trivial, even in those systems where this choice seems
reasonable. The limit cycle oscillations presented are a
direct consequence of this choice, because this controller
implemented in a continuous form, i.e. without the sam-
pling, does not make the system enter an oscillatory state.
In most applications, the sampling period is a system
restriction, and thus it cannot be changed. For those kind
of systems the solution to avoid limit cycle oscillations is to
detune the controller, by reducing Kp until no intersection
with the traces of the DF are observed. The key point
here is that reducing Kp results in a radial shrink of
Gol(s) without changing the frequencies at a given phase
arg(kGol(jω)) = arg(Gol(jω)), k ∈ <+. This implies that
the range of r does not change, and therefore, that the
traces of the DF to consider remain the same.
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Fig. 7. Traces of −1/N for r ∈ [8, 16] and Gol(s) with the
detuned controller.

To show this detuning procedure let us introduce the
following example.
Example 2. Consider for this example the process and
controller from the previous example. As it has been
demonstrated, this system presents limit cycle oscillations,
and for the sake of this example let us consider that the
sampling period is a strong constraint and it cannot be
lowered.
As it has been commented before, to avoid limit cycle
oscillations, the proposed solution consists in detuning the
controller by reducing the proportional gain which assures
that the DF traces obtained in the precedent example
remain the same.
Thus, we have chosen to reduce the proportional gain Kp

in such way that it assures the no intersection with the
traces of the inverse negative of the describing function,
being the new value Kp = 0.844. In Figure 7 it can
be seen the Nyquist diagram representing the system
with the detuned controller and the DF traces. It can
be appreciated that there is no intersection between Gol

and the DF traces and thus no limit cycle oscillations are
expected to appear.
This has been confirmed through simulation, in Figure 8
it can be observed the response of the controlled output
y(t) and the control action u(t) to a unitary step change
in the reference input and in the disturbance input p(t) at
t = 50s, and it can be seen that no limit cycle oscillations
appears.

Nevertheless, in some applications the user has some
freedom regarding to the choice of the sampling period.
In those cases, the controller tunned for the continuous
case can be kept and the sampling period can be adjusted
to avoid limit cycle oscillations.
Example 3. Consider the same process and controller than
in Example 1. To avoid limit cycle oscillations, and if
the hardware requirements allows it, we can increase the
sampling frequency, fixing for example Ts = 0.25 seconds.
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Fig. 8. Experiment considering a unitary step change in
the reference input and in the disturbance input at
t = 50 s. Controlled output in the upper figure and
control action in the lower figure.
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Fig. 9. Traces of −1/N for r ∈ [21, 47] and Gol(s) with
Ts = 0.25.

Making this change, the phase crossover frequency changes,
because it modifies the open loop transfer function Gol(s),
modifying the range of r to evaluate which now starts at
rmin = 21. As we have seen in the previous section, the
effect of increasing r makes the DF traces to be closer and
reduce its dispersion. This can be seen in Figure 9, where
the traces of −1/N have been represented for r ∈ [21, 47],
and as it can be seen there is no intersection between
those traces and Gol(s), therefore, for this system choosing
Ts = 0.25 avoids the limit cycle oscillations produced by
the discrete controller implementation.
This system has been tested in simulation and as it can be
seen in Figure 10 it does not present limit cycle oscillation.
In the experiment presented in this figure a unitary step
change has been applied to the reference input yr(t) and
to the disturbance input p(t) at t = 50 s, and as the DF
predicted, no limit cycle oscillation took place.
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Fig. 10. Experiment considering a unitary step change in
the reference input and in the disturbance input at
t = 50 s. Controlled output in the upper figure and
control action in the lower figure.

6. CONCLUSION

In this contribution an initial approach to study the
robustness of discrete event based systems is proposed.
Unlike other proposals, in this study the controller is
supposed to be implemented in a standard control device,
and thus, the controller is no longer considered to be
continuous for the robustness study.
The proposal is based on the Sampled Describing Function
technique, which allows to use some tools of the classical
control theory, such as the Nyquist plot, which is used to
determine the existence of limit cycle oscillations.
The validity of the approach in predicting steady-state
oscillations is shown through several examples in which
a system with a controller tuned with a specific tuning
method for controllers with a SSOD sampler is used. The
predictions made with the Sampled DF are confirmed
through simulation.
Finally, some guidelines are given to avoid limit cycle
oscillations. Namely, detune the controller by reducing the
proportional gain or, in those cases where it is possible
increase the sampling period.
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Appendix A. CALCULATION OF N

The sampled describing function which relates the input
and output of the non-linear element in the system can be
computed in the following way:

N =
Phasor of fundamental component of ē∗

Phasor representation of e
.

Firstly, the phasor representation of e can be easily ob-
tained:

e(t) = A sin(ωot) = A cos

(
ωot+

3π

2

)
= <

{
Ae

j
(
ωot+

3π
2

)}
.

(A.1)
For the phasor representation of the fundamental compo-
nent of ē∗, an harmonic analysis using Fourier series has
been done. Expressing ē∗(t) as:

ē∗(t) = ē(t) · δPT (t),

where the pulse train δPT is defined as:

δPT (t) =

∞∑
k=−∞

δD(t− τ − kTs),

where δD is the Dirac delta function, Ts is the sampling
period and τ the time lag between the initial zero-crossing
of e(t) and the first sample (which is bounded between 0
and Ts).
To obtain the fundamental component of ē∗(t), firstly we
obtain the Fourier series representing ē(t):

ˆ̄e(t) = − δ

jπ

∞∑
n=−∞

1

n

{
m∑
i=1

i
[
e−jnωoti+1 − e−jnωoti

]
+

2m−1∑
i=m+1

(2m− i)
[
e−jnωoti+1 − e−jnωoti

]}
ejnωot,

where tn are the times where level switches are produced.
And secondly, we obtain the Fourier series representation
of δPT is:

δ̂PT (t) =
1

Ts

∞∑
k=−∞

ejkωs(t−τ).

Multiplying both:

ˆ̄e∗(t) =
−δ

jπTs

∞∑
k=−∞

∞∑
n=−∞

1

n

{
m∑
i=1

i
[
e−jnωoti+1 − e−jnωoti

]
+

2m−1∑
i=m+1

(2m− i)
[
e−jnωoti+1 − e−jnωoti

]}
ejnωotejkωs(t−τ).

To obtain the fundamental harmonic from this expression
we have to pay attention to the exponents that imply the
variable t, which can be grouped in a single expression:

j(nωo + kωs)t− jkωsτ.

Then, the coefficient of t has to be the fundamental
frequency, i.e. either +ωo or −ωo. Taking r as the ratio
between the oscillation and sampling period (r = To/Ts),
we can obtain the relation between the harmonics of the
sampling (k) and of the signal ē(t) (n) to obtain the
fundamental frequency of ē∗(t):

nωo + kωs = ωo nωo + kωs = −ωo

n+ k
ωs

ωo
= 1 n+ k

ωs

ωo
= −1

n = 1− kr n = −1− kr

Thus the relation of harmonics to consider are both n =
1−kr and n = −1−kr. The expression of the fundamental
harmonic of ē∗(t) is:

ˆ̄e
∗
(t) =

jδ

πTs

∞∑
k=−∞

{
ejωot

1− rk
(A+ B)

−e−jωot

1 + rk
(C +D)

}
e−jkωsτ , (A.2)

where:

A =
m∑
i=1

i
[
e−j(1−rk)ωoti+1 − e−j(1−rk)ωoti

]
,

B =

2m−1∑
i=m+1

(2m− i)
[
e−j(1−rk)ωoti+1 − e−j(1−rk)ωoti

]
,

C =

m∑
i=1

i
[
e−j(−1−rk)ωoti+1 − e−j(−1−rk)ωoti

]
,

D =

2m−1∑
i=m+1

(2m− i)
[
e−j(−1−rk)ωoti+1 − e−j(−1−rk)ωoti

]
.

The values of N can be calculated using the equations
(A.1) and (A.2).
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