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Abstract: This paper investigates robust observer based H∞ control problem for uncertain
discret-time Takagi-Sugeno fuzzy systems. By using fuzzy Lyapunov functions and some special
derivations, Sufficient relaxed conditions for synthesis of a fuzzy observer and a fuzzy controller
for T-S fuzzy systems are derived in terms of a set of linear matrix inequalities (LMIs) which
can be solved using a single-step procedure. The proposed approach provides more relaxed
conditions comparing with the existing techniques in literature which use a quadratic Lyapunov
function and the so-called two-step procedure, also ensures better H∞ control performance.
Simulation example is presented to show the effectiveness of the proposed design method.
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1. INTRODUCTION

In recent years, the Takagi–Sugeno (T–S) fuzzy model has
been proved to be a good representation of a wide class of
nonlinear dynamic systems. The TS fuzzy dynamics model
is a system described by the fuzzy if-then rules which
gives local linear representations of nonlinear systems. In
(Chang et al., 2011; Benzaouia and El Hajjaji, 2016), the
stability analysis and synthesis problems for the T–S fuzzy
models are studied by using the LMI technique.

According to the T–S fuzzy model, the concept of PDC
(Benzaouia and El Hajjaji, 2016; Benzaouia et al., 2010;
Benzaouia and El Hajjaji, 2011) was employed to design
the observer-based fuzzy controller (Benzaouia and El Ha-
jjaji, 2016; Lo and Lin, 2004). In the state feedback control
theory, the whole information of the state are assumed as
known and measurable. But, in many practical nonlinear
control systems, some states are often unavailable. For
this reason, the output feedback (Benzaouia and El Ha-
jjaji, 2016; Nachidi et al., 2011) and the observer design
technique (Lo and Lin, 2004; Benzaouia and El Hajjaji,
2016) are used. Applying the observer design approach,
the fuzzy controller can be designed by the PDC tech-
nique with estimated states. In general, the design problem
of the observer-based fuzzy controller cannot be directly
solved by the linear matrix inequalities (LMIs) technique.
Therefore, In (Lo and Lin, 2004), conditions guaranteeing
the existence of observer-based H∞ controllers are given in
terms of bilinear matrix inequalities (BMIs), which are not

convex and NP-hard to solve. Besides, the so-called two-
step procedure which appears as a drawback is proposed
based on a single-quadratic Lyapunov function approach
to both continuous and discrete-time problems with or
without uncertainty. For discrete-time fuzzy systems with-
out uncertainties, (Chang et al., 2011) has proposed a
new design method of robust observer-based control based
on H∞ norm and on a non-quadratic Lyapunov function.
However, their technique uses also two steps for solving the
stability conditions. An improvement of the control design
method using one step procedure is proposed in (El Haiek
et al., 2017).

This work presents a novel approach for the fuzzy observer-
based H∞ control for a class of uncertain discrete-time
T–S fuzzy systems. By applying the fuzzy Lyapunov
function instead of a single-quadratic Lyapunov function
approach together with some special derivations, relaxed
stabilization conditions are proposed in terms of a set of
LMIs, which gives less conservative results than that in (Lo
and Lin, 2004). Furthermore, single-step procedure is used
instead of the so-called two-step procedure. Simulation
example and a comparison with some existing results are
given to illustrate the merits of the proposed method.

The organization of this paper is as follows. Section 2
presents the structure of uncertain fuzzy system and gives
some preliminaries. Section 3 contains the main result
where new stability conditions for an uncertain fuzzy sys-
tem via an observer-based robust H∞ control are given.
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In Section 4, simulation example is provided to illustrate
the design effectiveness. Finally, the conclusion is given in
Section 5.

Notations : X = XT < 0 (X = XT ≤ 0) means the
matrix X is symmetric and negative definite (symmetric
and negative semi-definite). XT denotes the transpose of
X. sym(M) means M+MT . The symbols I and 0 represent
the identity and zero matrix with appropriate dimensions,
respectively. The symbol ’*’ represents the symmetric term
in a block matrix. The notation Yh stands for

∑r
i=1 hi(k)Yi

and Yh∆ for Yh + ∆Yh.

2. PRELIMINARIES

Consider a discrete-time T–S fuzzy dynamic model with
uncertainties, in which the ith fuzzy IF-THEN rule is
described as follows:

Ri : if ξ1(k) is M1i and ... ξp(k) is Mpi then
x(k + 1) = (Ai + ∆Ai)x(k) + (Bi + ∆Bi)u(k) + (Ei + ∆Ei)w(k)

z(k) = (C1i + ∆C1i)x(k) + (Di + ∆Di)u(k) + (Fi + ∆Fi)w(k)

y(k) = (C2i + ∆C2i)x(k) + (Ri + ∆Ri)w(k)

(1)

where x(t) ∈ Rn is the state variable, z(t) ∈ Rq is the
controlled output variable, w(t) ∈ Rv is the disturbance
variable, u(t) ∈ Rm is the input variable, y(t) ∈ Rc is
the output variable. Matrices Ai ∈ Rn×n Bi ∈ Rn×m,
C1i ∈ Rq×n, Di ∈ Rq×m , C2i ∈ Rc×n , Ei ∈ Rn×v ,
Fi ∈ Rq×v, Ri ∈ Rc×v are known real constant matrices,
Mdi, i = 1, 2, ..., r, d = 1, 2, ..., p are the fuzzy sets,
r is the number of fuzzy rules, and ξd, d=1,2,...,p are
premise variables. We assume that the premise variables
do not depend on the state variables estimated by a fuzzy
observer and control input vector.

∆Ai, ∆Bi, ∆Ei, ∆C1i, ∆Di, ∆Fi, ∆C2i, ∆Ei represent
the time-varying uncertain matrices of appropriate dimen-
sions, and can describe the modeling errors of the nonlinear
system or the identification errors between an original
nonlinear system and its local linear representation. We
adopt the following form of uncertainties described in (Lo
and Lin, 2004) :[

∆Ai ∆Ei ∆Bi

∆C1i ∆Fi ∆Di

∆C2i ∆Ri

]
=

[
M1i

M2i

M3i

]
∆(k)

[
N1 N2 N3

]
(2)

Where the uncertain matrix satisfies ∆(k)T ∆(k) ≤ I and
Mki, Nk, k = 1, 2, 3 are known real matrices of appropriate
dimensions.

The T–S fuzzy model (1) is inferred as follows:
x(k + 1) = Ah∆x(k) +Bh∆u(k) + Eh∆w(k)

z(k) = C1h∆x(k) +Dh∆u(k) + Fh∆w(k)

y(k) = C2h∆x(k) +Rh∆w(k)

(3)

The normalized membership functions are given by :

hi(ξ(k)) =
wi(ξ(k))
r∑

i=1

wi(ξ(k))

, wi(s(k)) =
∏p

d=1
Mdi(ξd(k))

where Mdi(ξd(k)) is the grade of membership of ξd(k) in
Mdi.

By definition, we have : 0 ≤ hi(s(k)) ≤ 1,
r∑

i=1

hi(s(k)) = 1,

∀i ∈ {1, ...., r}

The following fuzzy observer is proposed to deal with the
state estimation of system (3) :x̂(k + 1) = Ahx̂(k) +Bhu(k) + Lh(y(k)− ŷ(k))

ŷ(k) = C2hx̂k)

(4)

where x̂(k) and ŷ(k) are the estimated state and esti-
mated output, respectively. Lh =

∑r
i=1 hi(ξ(k))Li, Li ∈

Rn×c, i = 1, ...., r are the observer gains .

The following fuzzy controller which based on the PDC
concept is employed :

u(k) = −Khx̂(k) (5)

where Kh =
∑r

i=1 hi(ξ(k))Ki, Ki ∈ Rm×n, i = 1, ...., r are
the controller gains to be determined.

By defining the estimation error as :

e(k) = x(k)− x̂(k) (6)

And the the augmented state as : x̃(k) =

[
x(k
e(k))

]
The closed-loop fuzzy system, comprising of plant (3),
observer (4) and PDC controller (5), becomes :[

x̃(k + 1)
z(k)

]
=

[
Ahh Bhh

Chh Dhh

] [
x̃(k)
w(k)

]
(7)

=

([
Ahh0 Bhh0

Chh0 Dhh0

]
+

[
∆Ahh ∆Bhh

∆Chh ∆Dhh

])
∗
[
x̃(k)
w(k)

]
Where

Ahh0 =

[
Ah −BhKh BhKh

0 Ah − LhC2h

]
, Bhh0 =

[
Eh

Eh − LhRh

]
Chh0 =

[
C1h −DhKh DhKh

]
, Dhh0 = Fh

∆Ahh =

[
∆Ah −∆BhKh ∆BhKh

∆Ah −∆BhKh − LhCh2 ∆BhKh

]
∆Bhh =

[
∆Eh

∆Eh − Lh∆Rh

]
, ∆Dhh = ∆Fh

∆Chh =
[
∆Ch −∆DhKh ∆DhKh

]
For the formulation of the main result, we recall the fol-
lowing definition and lemmas.

Definition 1. (Gao and Wang, 2005) The closed-loop fuzzy
system (7) is said to be asymptotically stable with an
H∞ performance γ > 0 if it is asymptotically stable with
w(k) ≡ 0, and under zero initial condition, satisfies the
following inequality:

∞∑
k=0

zT (k)z(k) < γ2

∞∑
k=0

wT (k)w(k) (8)

Lemma 2. (Chang et al., 2015) For matrices T , Q, U , and
W with appropriate dimensions and scalar β. Inequality

T +QW +WTQT < 0 (9)

is fulfilled if the following condition holds:
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[
T ∗

βQT + UW −βU − βUT

]
< 0 (10)

Lemma 3. (Petersen, 1987) Let X, Y and ∆(k) be real
matrices with appropriate dimensions and ∆T (k)∆(k) ≤
I. Then, for any scalar ε > 0

X∆(k)Y + Y T ∆T (k)XT ≤ ε−1XXT + εY TY (11)

Lemma 4. (Tuan et al., 2001) Suppose Φijl, i, j, l = 1, ..., r,
are symmetric matrices. Inequality

r∑
l=1

r∑
i=1

r∑
j=1

hl(k + 1)hi(k)hj(k)Φijl < 0 (12)

is fulfilled if the following conditions hold

Φiil < 0, i, l = 1, ..., r (13)

1

r − 1
Φiil +

1

2
(Φijl + Φjil) < 0, i, j, l = 1, ...., r i 6= j (14)

3. MAIN RESULTS

The control objective of this paper is to develop a new
conditions in terms of strict LMIs which can be solved in
one step to determine the fuzzy controller and observer
gains (Ki, Li) such that closed-loop augmented system
(7) is stabilizable by based-observer controller (5) in the
presence of bounded disturbances.

Lemma 5. Closed-loop fuzzy system (7) is asymptotically
stable with an H∞ performance γ > 0 if there exist
positive scalars ε1ijl, ε2ijl, symmetric matrices P1i(P2i),
P1l(P2l), matrices G1, G2, G3, Yi, and Kj , for i, j, l =
1, 2, ..., r, such that the following conditions are satisfied

r∑
i=1

r∑
j=1

r∑
l=1

hi(k)hj(k)hl(k + 1)Ωijl < 0 (15)

Where

Ωijl =



−P1i ∗ ∗ ∗ ∗
0 −P2i ∗ ∗ ∗
0 0 −γ2I ∗ ∗

Ω41 G1BiKj G1Ei Ω44 ∗
0 Ω52 Ω53 0 Ω55

Ω61 G3DiKj G3Fi 0 0

0 0 0 MT
1i MT

1i

0 0 0 0 −MT
3iL

T
j

Ω91 ε1ijlN3Kj ε1ijlN2 0 0
ε2ijlN1 0 ε2ijlN2 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
−I ∗ ∗ ∗ ∗
MT

2i −ε1ijl ∗ ∗ ∗
0 0 −ε2ijl ∗ ∗
0 0 0 −ε1ijl ∗
0 0 0 0 −ε2ijl


< 0 (16)

Ω41 = G1Ai −G1BiKj Ω52 = G2Ai − YiC2j

Ω61 = G3C1i −G3DiKj Ω91 = ε1ijlN1 − ε1ijlN3Kj

Ω53 = G2Ei − YiRj Ω55 = −G2 −GT
2 + P2l

Ω44 = −G1 −GT
1 + P1l Li = G−1

2 Yi

Proof.

From (Lo and Lin, 2004; Chang et al., 2011), the closed-
loop fuzzy system is asymptotically stable via observer-
based control with the required H∞ constraint if the
following conditions hold :−Ph ∗ ∗ ∗

0 −γ2I ∗ ∗
Ahh0 Bhh0 P−1

h
∗

Chh0 Dh0 0 −I


︸ ︷︷ ︸

Jhhh

+

 0 ∗ ∗ ∗
0 0 ∗ ∗

∆Ahh ∆Bhh 0 ∗
∆Chh ∆Dh0 0 0


︸ ︷︷ ︸

∆Jhh

< 0 (17)

From (2), ∆Jhh can be given by :

∆Jhh = sym(S1∆(t)T1) + sym(S2∆(t)T2) (18)

Where :

S1 =
[
0 0 0 MT

1h MT
1h MT

2h

]T
T1 =

[
N1 −N3Kh N3Kh N2 0 0 0

]
S2 =

[
0 0 0 0 (−LhM3h)T 0

]T
T2 =

[
N1 0 N2 0 0 0

]
The equation (17) can be written as follows :

Jhhh +
[
S1 S2

]︸ ︷︷ ︸
S

[
∆(t) 0

0 ∆(t)

] [
T1

T2

]
︸︷︷︸

T︸ ︷︷ ︸
L

+LT

︸ ︷︷ ︸
Z

< 0 (19)

By applying Lemma (3), it comes that:

Z < Jhhh + ε−1
hh
SST + εhhT

TT (20)

< Jhhh + (−)
[
S TT

] [−εhh 0

0 −ε−1
hh

]−1 [
ST

T

]
︸ ︷︷ ︸

X

Where : εhh =

r∑
i=1

r∑
j=1

hi(k)hj(k)

[
ε1ij ∗

0 ε2ij

]
Applying the

Schur complement, X is equivalent to:

[
Jhhh ∗ ∗
ST −εhhh ∗
T 0 −ε−1

hhh

]
< 0 (21)

Substituting each term of (21), we have the following
conditions :

r∑
i=1

r∑
j=1

r∑
l=1

hi(k)hj(k)hl(k + 1)Γijl (22)
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Where

Γijl =



−P1i ∗ ∗ ∗ ∗
0 −P2i ∗ ∗ ∗
0 0 −γ2I ∗ ∗

Ai −BiKj BiKj Ei −P−1
1l

∗
0 Ai − LiC2j Ei − LiRj 0 P−1

2l
C1i −DiKj DiKj Fi 0 0

0 0 0 MT
1i MT

1i

0 0 0 0 −MT
3iL

T
j

N1 −N3Kj N3Kj N2 0 0
N1 0 N2 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
−I ∗ ∗ ∗ ∗
MT

2i −ε1ijl ∗ ∗ ∗
0 0 −ε2ijl ∗ ∗
0 0 0 −ε−1

1ijl
∗

0 0 0 0 −ε−1
2ijl


< 0 (23)

It is noted that

(−V −Q)Q−1(−V −Q)T ≤ 0 Q > 0,

implies that

−V Q−1V T ≤ −V − V T +Q

Thus, Pre-and post-multiplying (22) by

diag{I, I, I,G1, G2, G3, I, I, ε1ijl, ε2ijl} and its transpose,
respectively, and using the previous inequality, we can see
that Γijl ≤ Ωijl, It follows that if (15) holds, then (22) is
satisfied. This completes the proof.

Inequalities Ωijl are expressed by a set of bilinear matrix
inequalities (BMIs) which are very hard to solve numer-
ically due to the existence of the bilinear (i.e., product)
terms G1BiKj , G3DiKj and ε1ijlN3Kj . In the literature,
the so-called two-step design approaches is used to handle
these bilinearities. In this paper , a new H∞ performance
synthesis criterion is presented in the following theorem,
where the obtained conditions are given by a set of LMIs
which can be solved using a single-step procedure.

Theorem 1. Closed-loop fuzzy system (7) is asymptoti-
cally stable with an H∞ performance γ > 0 if there exist
a known scalar β, positive scalars ε1ijl, ε2ijl, symmetric
matrices P1i(P2i), P1l(P2l), matrices G1, G2, G3, H1, H2,
U , and Yi, for i, j, l = 1, 2, ..., r, such that the following
conditions are satisfied :

r∑
i=1

r∑
j=1

r∑
l=1

hi(k)hj(k)hl(k + 1)Φijl < 0 (24)

Where

Φijl =



−P1i ∗ ∗ ∗ ∗
0 −P2i ∗ ∗ ∗
0 0 −γ2I ∗ ∗

Φ41ij BiHj G1Ei Φ44l ∗
0 Φ52ij Φ53ij 0 Φ55l

Φ61ij DiHj G3Fi 0 0
0 0 0 Φ74i Φ75i

0 0 0 0 Φ85i

Φ91j N3Hj ε1ijlN2 0 0
ε2ijlN1 0 ε2ijlN2 0 0
−Hj Hj 0 Φ114i 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

Φ66 ∗ ∗ ∗ ∗ ∗
Φ76i −ε1ijlI ∗ ∗ ∗ ∗

0 0 −ε2ijlI ∗ ∗ ∗
0 0 0 −ε1ijlI ∗ ∗
0 0 0 0 −ε2ijlI ∗

Φ116i 0 0 Φ119 0 Φ1111



Φ41ij = G1Ai −BiHj Φ61ij = G3C1i −DiHj

Φ91j = ε1ijlN1 −N3Hj Φ52ij = G2Ai − YjC2i

Φ53ij = G2Ei − YjRi Φ44l = −G1 −GT
1 + P1l

Φ74i = MT
1iG

T
1 Φ114i = β(G1Bi −BiU)T

Φ55l = −G2 −GT
2 + P2l Φ75i = MT

1iG
T
2

Φ85i = MT
3iY

T
j Φ66 = −G3 −GT

3 + I

Φ76i = MT
2iG

T
3 Φ116i = β(G3Di −DiU)T

Φ119 = β(ε1ijlN3 −N3U)T Φ1111 = −βU − βUT

the controller and observer gains are given by Kj =

U−1Hj and Lj = G−1
2 Yj , respectively.

Proof. Suppose that inequality (24) holds. The feasible
solution of this inequality satisfies−βUT−βUT < 0, which
implies that the matrix U is non-singular.

By Lemma (2) with :

Q =
[
0 0 0 QT

14 0 QT
16 0 0 QT

19 0
]T

W = U−1
[
−Hj Hj 0 0 0 0 0 0 0 0

]

T =



−P1i ∗ ∗ ∗ ∗
0 −P2i ∗ ∗ ∗
0 0 −γ2I ∗ ∗

Φ41ij BiHj G1Ei Φ44l ∗
0 Φ52ij Φ53ij 0 Φ55l

Φ61ij DiHj G3Fi 0 0
0 0 0 Φ74i Φ75i

0 0 0 0 Φ85i

Φ91j N3Hj ε1ijlN2 0 0
ε2ijlN1 0 ε2ijlN2 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Φ66 ∗ ∗ ∗ ∗
Φ76i −ε1ijlI ∗ ∗ ∗

0 0 −ε2ijlI ∗ ∗
0 0 0 −ε1ijlI ∗
0 0 0 0 −ε2ijlI


Where :
Q14 = G1Bi −BiU , Q16 = G3Di −DiU

Q19 = ε1ijlN3 −N3U

the inequality in (24) leads to:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6349



T =



−P1i ∗ ∗ ∗ ∗
0 −P2i ∗ ∗ ∗
0 0 −γ2I ∗ ∗

Φ41ij BiHj G1Ei Φ44l ∗
0 Φ52ij Φ53ij 0 Φ55l

Φ61ij DiHj G3Fi 0 0
0 0 0 Φ74i Φ75i

0 0 0 0 Φ85i

Φ91j N3Hj ε1ijlN2 0 0
ε2ijlN1 0 ε2ijlN2 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Φ66 ∗ ∗ ∗ ∗
Φ76i −ε1ijlI ∗ ∗ ∗

0 0 −ε2ijlI ∗ ∗
0 0 0 −ε1ijlI ∗
0 0 0 0 −ε2ijlI



+sym





0
0
0

G1Bi −BiU
0

G3Di −DiU
0
0

ε1ijlN3 −N3U
0


U−1

[
−Hj Hj 0 0 0 0 0 0 0 0

]

︸ ︷︷ ︸
R


(25)

By defining Kj = U−1Hj , R can be written as follows:

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−G1BiKj +BiHj G1BiKj −BiHj 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−G3DiKj +DiHj G3DiKj −DiHj 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−ε1ijlN3Kj +N3Hj ε1ijlN3Kj −N3Hj 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(26)

from (25) and (26) we can see that inequality (15) in
Lemma 5 holds.

Theorem 2. Closed-loop fuzzy system (7) is asymptoti-
cally stable with an H∞ performance γ > 0 if there exist
a known scalar β, positive scalars ε1ijl, ε2ijl, symmetric
matrices P1i(P2i), P1l(P2l), matrices G1, G2, G3, H1, H2,
U and Yi, for i, j, l = 1, 2, ..., r, such that the following
conditions are satisfied :

Φiil < 0, i, j, l = 1, 2, ..., r (27)

1

r − 1
Φiil+

1

2
(Φijl+Φjil) i, j, l = 1, 2, ..., r, i 6= j (28)

the controller and observer gains are given by Kj =

U−1Hj and Lj = G−1
2 Yj , respectively.

Proof. The proof follows directly from Theorem 1 by
applying Lemma 4

Remark 1. Theorem 2 presents a new condition for design-
ing observer-based H∞ controllers for uncertain discrete-
time T–S fuzzy systems which is of LMIs and can be
effectively solved via LMI Control Toolbox. In contrast
with the so-called two step approach (Lo and Lin, 2004), a
single approach based on a fuzzy lyapunov function and a
slack variables have been used which may help in reducing
of the conservatism in the derived results.

Remark 2. It is noted that when ∆ = 0, the result of
Theorem.2 reduces to that of Theorem 3.3 in (El Haiek
et al., 2017).

4. NUMERICAL EXAMPLE

To illustrate the obtained results, consider the following
numerical T-S fuzzy system (Chang et al., 2011) with
uncertainties composed of two subsystems:

R1 : if ξ1(k) is M11 thenx(k + 1) = (A1 +M1∆N1)x(k) +B1u(k) + E1w(k)

z(k) = C11x(k) +D1u(k) + F1w(k)

y(k) = (C21 +M3∆N1)x(k) +R1w(k)

(29)

R2 : if ξ1(k) is M12 thenx(k + 1) = A2x(k) +B2u(k) + E2w(k)

z(k) = C12x(k) +D2u(k) + F2w(k)

y(k) = C22x(k) +R2w(k)

(30)

Where :

A1 =

[
1 −α
−1 −0.5

]
A2 =

[
1 α
−1 −0.5

]
B1 =

[
5 + α

2α

]
D1 = 0.5

B2 =

[
5− α
−2α

]
E1 =

[
−0.3
0.1

]
E2 =

[
−0.3
0.1

]
D2 = 0.5

C11 =

[
−0.1
0.05

]T
C12 =

[
−0.1
−0.05

]T
C22 =

[
1
0

]T
C21 =

[
1
0

]T
R1 = −0.1 R2 = 0.1 F1 = 0.4 F2 = 0.4

M1 =

[
0.2 0.1
0.1 0.1

]
M3 =

[
0.1
0.1

]T
N1 =

[
0.1 0.1
0 0.1

]
‖∆‖ ≤ I

h1(k) =
x1(k) + α

2α

h2(k) = 1− h1(k)


w(k) = 0.01 sin(k)

x1(k) ∈
[
−α α

]
We apply Theorem 4 (Lo and Lin, 2004) and Theorem 2
to this fuzzy model. By Theorem 4 (Lo and Lin, 2004), a
solution is obtainable when α ≤ 1.488 , while by Theorem
2, a solution is obtainable when α ≤ 1.503. It implies
that Theorem 2 is more relaxed than Theorem 4 (Lo and
Lin, 2004) for this example. For example, by MATLAB
LMI toolbox, choosing α = 1.488 (A1 is an unstable sub-
system matrix and A2 is a stable sub-system matrix.), the
minimum H∞ attenuation level calculated by Theorem 4
(Lo and Lin, 2004) is γmin = 15.3020 whereas by Theorem
2 is γmin = 4.1275. It comes that Theorem 2 ensures better
H∞ performance than Theorem 4 (Lo and Lin, 2004) for
this example. In other hand, when α = 1.503 (the two sub-
system matrices are unstable), we cannot find a feasible so-
lution for Theorem 4 (Lo and Lin, 2004), but for Theorem
2 with β = 1.31, the closed-loop system is asymptotically
stable with H∞ performance γmin = 15.7276 as we can
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Fig. 1. State trajectories of the closed-loop model.
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Fig. 2. System control signal u(k).

see in Figures 1, 2 and 3. Figure 1 shows the evolution of
the closed-loop states and the estimated states. It is seen
that the estimated states (dashed lines) converge to the
true states (solid lines) starting from the initial conditions
x(0) = [0.5 1.2]T , x̂(0) = [0.1 0.7]T in the presence of
the disturbance signal w(k). Control signal u(k) is shown
in Figure 2. The obtained matrices are :

K1 =
[
0.0758 −0.2619

]
K2 =

[
0.1295 0.3382

]
L1 =

[
1.0996 −0.8776

]T
L2 =

[
1.5000 −1.0132

]T
P11 =

[
6.9504 0.6207
0.6207 2.7353

]
P12 =

[
6.7987 0.8037
0.8037 3.0982

]
P21 =

[
10.2958 −0.1524
−0.1524 153.5840

]
P22 =

[
11.1647 5.7938
5.7938 137.3817

]
From Figure 3, we can see that the H∞ performance
∞∑

k=0

zT (k)z(k) < γ2
∞∑

k=0

wT (k)w(k) is achieved.

5. CONCLUSION

In this paper, a stability analysis and design of uncer-
tain discrete time T-S fuzzy system via an observer-based
controller satisfying the H∞ performance requirement has
been investigated. Controller and observer gains are ob-
tained by solving a set of strict LMIs using single-step

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025
z'(k)z)k))

2
 w'(k)w(k)

Fig. 3. H∞ performance.

method. Less conservative results have been obtained by
considering a fuzzy Lyapunov function and slack vari-
ables. Numerical example has been given to illustrate the
effectiveness of the proposed method. Extension of the
proposed approach to time-delay TS fuzzy systems can
be the focus of our future work.
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