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Abstract: The recently proposed Dynamic Regressor Extension and Mixing (DREM) algo-
rithm can be used to estimate the parameters of structured uncertainties contained in the
mathematical model of a plant. In order to provide an adaptation that is less sensitive to the
unavoidable mismatch between a plant and its model a least-squares based modification of the
DREM estimator is proposed in this paper. The modified estimator yields significantly better
estimation results as illustrated by the conducted real-world experiment and its parameter
estimates also converge within finite time.
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1. INTRODUCTION

Although the Dynamic Regressor Extension and Mix-
ing (DREM) algorithm was proposed relatively recently
in Aranovskiy et al. (2017), it already has been imple-
mented in several real-world applications, e.g. Yi et al.
(2018), Borisov et al. (2017), Bazylev et al. (2018) and
Schiffer et al. (2018). In terms of the estimation of a vector
of constant parameters two interesting properties of the
DREM are:

• The absolute value of each element of the parameter
estimation error vector is monotonically decreasing as
shown in detail in Belov et al. (2018).
• There is a condition for global asymptotic stability of

the parameter estimation errors at zero which does
not require persistent excitation.

However, the DREM is derived under the assumption
that there is no mismatch between the plant and its
mathematical model. As such a mismatch is unavoidable
considering real-world plants, a modification of the DREM
algorithm is proposed in this paper which is optimal with
respect to a cost function similar to the “Least-Squares
With Exponential Forgetting” described in Slotine and Li
(1991). While maintaining the aforementioned advantages
of the DREM in the case of ideal conditions, the modified
algorithm yields significantly better estimation results in
the presence of a mismatch between plant and model as
illustrated by the conducted real-world experiment.

When the mismatch between plant and model is included
in the originally proposed estimator dynamics, the mono-
tonicity of the elements of the parameter estimation error
vector can no longer be guaranteed and the condition for
global asymptotic stability no longer applies (both with
and without the least-squares modification). An estimator

dynamics, similar to the discontinuous gradient algorithm
from Rueda-Escobedo and Moreno (2016), is proposed in
this paper. Combining the proposed estimator dynamics
with the aforementioned least-squares modification yields
two conditions for each element of the parameter estima-
tion error vector:

• A condition for its absolute value to be monotonically
decreasing.

• A condition such that it becomes zero within finite
time.

Both conditions do not require persistent excitation and
are, from a practical point of view, straight forward
to realize. However, the parameter estimation error has
to be redefined as the difference between the estimated
parameter vector and the optimal solution (which is not
generally equal to the actual parameter vector).

2. THE DREM PARAMETER ESTIMATION
METHOD

2.1 A brief review of the DREM method

As an illustrative example, consider the system

ẋ(t) = f(x(t)) + g(x(t))
(
u(t) + mT(x(t), u(t))Θ

)
, (1)

where x(t) is the scalar state variable which depends on
time t, u(t) is the scalar actuating signal f(x), g(x), and
mT(x, u) are given functions and

Θ = [Θ1 . . . Θq]
T

is a vector of q unknown constants.

Assuming that g(x(t)) 6= 0 ∀t ≥ 0, i.e., the actuating signal
u and the structured uncertainty mTΘ have an impact on
the dynamics of the state variable ∀t, equation (1) can be
written as
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y(t) =
ẋ(t)− f(x)

g(x)
− u(t) = mT(x, u)Θ, (2)

where, in a standard parameter estimation framework, the
introduced function y(t) is assumed to be known/measured.
Based on the representation given in (2) and assuming suf-
ficient excitation, the Dynamic Regressor Extension and
Mixing (DREM) algorithm proposed in Aranovskiy et al.
(2017) can be used to estimate Θ. This is done by applying
q stable linear filters to both y and mT. Denoting the
outputs of the ith filter as yfi(t) and mT

fi(t), respectively,
the system of equations

[yf1 . . . yfq]
T︸ ︷︷ ︸

Ye

= [mf1 . . . mfq]
T︸ ︷︷ ︸

Me

Θ (3)

can be generated, where, for the purpose of readability, the
time argument is skipped. This can be multiplied with the
adjoint matrix of Me, i.e., adj (Me), which, furthermore
yields q scalar decoupled equations

Yi = φΘi, i = 1, ..., q, (4)

where

[Y1 . . . Yq]
T

= adj (Me) Ye (5)

φ = adj (Me) Me = det (Me) ∈ R. (6)

Following the estimator dynamics proposed in Aranovskiy
et al. (2017), the estimates Θ̂i for each unknown parameter
Θi are governed by

˙̂
Θi = γiφ

(
Yi − φΘ̂i

)
, (7)

with the tuning parameter γi > 0. As Θ̇ = 0, the dynamics
of the estimation errors Θ̃i = Θ̂i −Θi are given by

˙̃Θi =
˙̂
Θi = −γiφ2Θ̃i, i = 1, ..., q. (8)

A detailed analysis of those dynamics as well as a discus-
sion about the characteristics of φ for ensuring estimation
error convergence is given in Aranovskiy et al. (2017).

2.2 A modification of the originally proposed dynamics

Since the evolution of φ can not be expected to be similar
for different experiments, its impact on the estimator dy-
namics is not desired. In this paper the modified parameter
estimation dynamics

˙̂
Θi = γi

φ

max {φ2, φ2
max}

(
Yi − φΘ̂i

)
, (9)

where φmax also is a positive constant, is proposed. This
yields

˙̃Θi =
˙̂
Θi =


−γiΘ̃i |φ| ≥ φmax

−γi
(

φ

φmax

)2

Θ̃i else
(10)

with the additional tuning parameter φmax > 0. Hence, the
function φ only influences the estimator dynamics when
|φ| < φmax.

3. DREM EMBEDDED LEAST SQUARES
APPROACH

A mathematical model always represents an approxima-
tion of the considered system and, in addition, measured

variables are corrupted by noise. This mismatch can be
taken into account by extending (2) to

y(t) = mT(x(t), u(t))Θ + w(t), (11)

where w(t) represents the mentioned mismatch between
system and model as well as a noisy measurement of
y. Assembling the system of equations as described in
Section 2 now yieldsyf1

...
yfq


︸ ︷︷ ︸

Ye

=

mT
f1
...

mT
fq


︸ ︷︷ ︸

Me

Θ +

wf1

...
wfq


︸ ︷︷ ︸

We

(12)

where wfi denotes the output signal of the ith filter due
to the impact of w. Decoupling those equations using the
adjoint matrix of Me now yields

Yi = φΘi +Wi, i = 1, ..., q, (13)

where [W1 . . . Wq]
T

= adj (Me) We. This illustrates that
following the proposed DREM approach, the influence of
the additional unknown terms Wi on the estimation results
is difficult to be analyzed in detail. In this paper, a similar
system of equations is constructed in a way that already
takes the additional uncertainty term into account.

As w(t) is unknown, it can not be guaranteed that an
estimation of Θ will converge towards the true value of
Θ. However, an estimation Θ̂ which converges towards an
optimal approximation Θ̂opt(t) of Θ is proposed in this
section. This approximation is optimal in the sense that it
minimizes the cost function

J(Θ̂(t)) =

t∫
τ=0

(
y(τ)−mT(τ)Θ̂(t))

)2

h(t− τ)dτ, (14a)

Θ̂opt(t) = arg min
Θ̂(t)

J(Θ̂(t)). (14b)

A similar cost function is used in the “Least-Squares With
Exponential Forgetting” algorithm described in Slotine
and Li (1991). The cost function is the integral over the
quadratic error weighted by the function h(t − τ) which
needs to satisfy the following properties:

• h(t) ≥ 0 ∀t so the weighting of the error never
becomes negative.
• h(t) is the impulse response of a BIBO stable filter

(this filter will be implemented).

For example the function h(t−τ) = e
τ−t
T with T > 0 can be

used: the weighting of previous errors exponentially decays
and h(t) = e−

t
T is the impulse response of a PT1 filter.

The gradient of the cost function with respect to Θ̂(t) is
zero at the optimum, i.e.,[

∇Θ̂(t)J(Θ̂(t))
] ∣∣∣∣

Θ̂opt(t)

= 0, (15)

which yields an equation system of the structure
Ye = MeΘ̂opt(t) and is given by
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t∫
τ=0

m(τ)y(τ)h(t− τ)dτ

︸ ︷︷ ︸
=(my∗h)(t)=:Ye

=

t∫
τ=0

m(τ)mT(τ)h(t− τ)dτ

︸ ︷︷ ︸
=(mmT∗h)(t)=:Me

Θ̂opt(t)

(16)

where Me and Ye are both known functions filtered by a
BIBO stable filter which has the impulse response h(t).
This equation system can be decoupled by multiplying
with adj(Me) like in Section 2 yielding the q scalar
equations

Yi = φΘ̂opt,i, i = 1, ..., q. (17)

The dynamics of the q estimates Θ̂i for Θi can again be
chosen as given in (7) or as proposed in (9).

It is interesting to note that in contrast to the approach
based on (3), a generalization to the higher dimensional
case y(t) = M(t)Θ with y ∈ Rn and M ∈ Rn×q is straight
forward: applying the same steps like in the scalar case also
yields an equation system Ye = MeΘ̂opt(t) with Ye ∈ Rq
and Me ∈ Rq×q.

A different approach to make the DREM algorithm robust
with respect to noise is presented in Wang et al. (2019).
Instead of obtaining the equation system via optimization,
it is assumed that (13) applies and then a dynamics for

Θ̂i is generated that is less susceptible to the noise term
Wi than the originally proposed dynamics. No such noise
terms remain when using (17) since the noise is considered

by replacing Θi with Θ̂opt,i instead.

4. MODIFIED ESTIMATOR DYNAMICS: FINITE
TIME CONVERGENCE

Instead of using the estimator dynamics given in (7) or (9)

the dynamics of Θ̂ now is assumed to be captured by

˙̂
Θi = γ̃i sign

[
φ
(
Yi − φΘ̂i

)]
, (18)

which is similar to the discontinuous gradient algorithm
presented in Rueda-Escobedo and Moreno (2016). Of
course, this can be applied whether Yi and φ are ob-
tained via the least-squares modification or as originally
proposed. In (18)

γ̃i =


γi |φ| ≥ φmax

γi

(
φ

φmax

)2

else
, (19)

where γi and φmax are positive tuning parameters. Under
ideal conditions, i.e., Yi = φΘi, the dynamics of the
estimation errors Θ̃i = Θ̂i −Θi are given by

˙̃Θi = −γ̃i sign
(
φ2
)

sign
(

Θ̃i

)
, i = 1, ..., q (20)

where it is important to remember that Θi is constant. If
|φ| > 0 then sign

(
φ2
)

= 1 and γ̃i > 0 so |Θ̃i| decreases.
Note that |φ| > 0 is equivalent to “the solution of (14b)
is unique”, i.e., “there is a unique least-squares solution”
when using the least-squares modification.

The convergence properties of the different DREM based
estimation algorithms are investigated in the next section
of this paper since |φ| > 0 is not sufficient for finite time

convergence and, additionally, the dynamics of Θ̃i are no
longer given by (20) when the mismatch between plant
and model is considered.

5. STABILITY ANALYSIS

5.1 Unperturbed case

The dynamics of the estimation errors of the originally
proposed DREM under ideal conditions are given by (8).
As shown in Aranovskiy et al. (2017) it is characterized by
the estimation error property

lim
t→∞

Θ̃i(t) = 0 ⇔ lim
t→∞

t∫
τ=0

φ2(τ)dτ =∞. (21)

Also under ideal conditions, the dynamics of the estima-
tion errors of the DREM using the dynamics for finite time
convergence are given by (20). Similar to Barabanov and

Ortega (2017), this is investigated for Θ̃i(t) 6= 0 and yields
the dynamics

d

dt
|Θ̃i| = sign

(
Θ̃i

)
˙̃Θi = −γi

φ2

max {φ2, φ2
max}

(22)

which has the solution

|Θ̃i(t)| = |Θ̃i(0)| − γi

t∫
τ=0

φ2(τ)

max {φ2(τ), φ2
max}

dτ. (23)

Therefore Θ̃i(t) becomes zero if there exists Ti s.t.
Ti∫

τ=0

φ2(τ)

max {φ2(τ), φ2
max}

dτ =
|Θ̃i(0)|
γi

(24)

where |Θ̃i(0)| is not known but finite. If Θ̃i(Ti) = 0 then

Θ̃i(t) = 0 ∀t ≥ Ti since, as of (20), also ˙̃Θi(t) = 0 ∀t ≥ Ti.
Therefore (24) is a necessary and sufficient condition for

the estimation error Θ̃i to converge to 0 within finite time
under ideal conditions.

5.2 Perturbed case

While above results illustrate the advantages of the dy-
namics for finite time convergence in (18), they no longer
apply when the mismatch between plant and model is
considered. As already mentioned in Section 3, this is not
investigated further for the originally proposed DREM.

Using the equations (17) obtained via the least-squares
modification and the dynamics (18), the dynamics of the

estimation errors Θ̃i = Θ̂i − Θ̂opt,i are now given by

˙̃Θi =
˙̂
Θi − ˙̂

Θopt,i = −γ̃i sign
(
φ2
)

sign
(

Θ̃i

)
− ˙̂

Θopt,i,

i = 1, ..., q. (25)

Investigating this for Θ̃i(t) 6= 0 yields the dynamics

d

dt
|Θ̃i| = sign

(
Θ̃i

)
˙̃Θi (26)

= −γi
φ2

max {φ2, φ2
max}

− sign
(

Θ̃i

)
˙̂
Θopt,i
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which has the solution

|Θ̃i(t)| = |Θ̃i(0)|−
t∫

τ=0

[
γi

φ2(τ)

max {φ2(τ), φ2
max}

+ sign
(

Θ̃i(τ)
)

˙̂
Θopt,i(τ)

]
dτ.

(27)

Therefore Θ̃i(t) becomes 0 within finite time if there exists
Ti s.t.

Ti∫
τ=0

[
γi

φ2(τ)

max {φ2(τ), φ2
max}

− | ˙̂Θopt,i(τ)|
]
dτ = |Θ̃i(0)|.

(28)

Additionally, it is obvious from (26) that |Θ̃i(t)| is strictly
monotonically decreasing on [t1, t2] if

φ2(t)

max {φ2(t), φ2
max}

>
| ˙̂Θopt,i(t)|

γi
∀t ∈ [t1, t2] (29)

and Θ̃i(t) 6= 0 on [t1, t2]. Both above conditions are
sufficient but not necessary.

6. REAL-WORLD EXPERIMENT

Different DREM based estimators are applied to an elec-
tric circuit in the laboratory, its schematic is shown in
Fig. 1. The circuit consists of the resistors R1, R2 and R3

and of the capacitor C. The input voltage is denoted by
u, the voltage drop at the capacitor is labeled as uC .

6.1 Mathematical model

The dynamics of the electric circuit are given by

iC = C
duC
dt

= i− i3 =
u− uC
R1 +R2

− uC
R3

, (30)

where iC , i and i3 denote the current through the capac-
itor, through the resistors R1 and R2 and through the
resistor R3 respectively. Using the definition x = uC the
above given dynamics of the electric circuit is captured by

ẋ = f(x) + g(x)
(
u+ mT(x, u)Θ

)
(31)

as specified in Section 2, where

f(x) = − x

CR1
, g(x) =

1

CR1
,

mTΘ = (−u)︸ ︷︷ ︸
m1

R2

R1 +R2︸ ︷︷ ︸
Θ1

+ x︸︷︷︸
m2

(
R2

R1 +R2
− R1

R3

)
︸ ︷︷ ︸

Θ2

. (32)

The input voltage u is used as actuating signal, the voltage
uC = x is measured. The parameters of this plant were
identified using offline identification procedures and are
given by R1 = 8.2kΩ, R2 = 1.8kΩ, R3 = 840kΩ and
C = 52µF . This yields Θ1 = 0.18 and Θ2 = 0.17.

6.2 Experiment

The voltages u and uC are recorded using a sampling
time of Ts = 10ms. In order to validate the mathematical
model, it is simulated using the recorded input voltage u
as input and a fixed step solver with step size Ts. The
recorded voltages and the simulation results are shown in
Fig. 2. This plot reveals that the mathematical model and

its parameters capture the dynamics of the electric circuit
system very accurately.

The discussed estimation schemes are also implemented
using a fixed step solver with step size Ts, the recorded
voltages are used as inputs.

6.3 Estimation with the originally proposed DREM

The equation system Ye = MeΘ for the estimation with
the originally proposed DREM is assembled as described
in Section 2 using two PT1 filters with the time constants
T1 = 50s and T2 = 25s, the transfer functions of those
filters are

Gi(s) =
1

1 + sTi
, (33)

with i = 1, 2. As

y =
ẋ− f(x)

g(x)
− u = CR1ẋ+ x− u (34)

can not be calculated since ẋ is not known, yfi is obtained
by

ȳfi(s) = Gi(s)ȳ(s)
= Gi(s)CR1sx̄(s) +Gi(s) (x̄(s)− ū(s)) ,

(35)

where s denotes the complex variable obtained by applying
the Laplace transformation to involved functions of time 1 .
This does not require ẋ to be known as

sGi(s) =
s

1 + sTi
(36)

can easily be implemented. Two different estimator dy-
namics are implemented. The originally proposed dynam-
ics from (7) with γ1 = γ2 = 107 and the modified dynamics
from (9) with γ1 = γ2 = 5 and φmax = 5 · 10−4. In
order to simulate ideal conditions, the estimator with the
1 In this paper, corresponding Laplace transformed functions are de-
noted by •̄(s), i.e., •̄(s) represents the Laplace transformed function
of •(t).

R1 R2

R3
C uC

u

iCi3
i

Fig. 1. Electric circuit used for the real-world experiment
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Fig. 2. Comparison of recorded and simulated voltages
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Fig. 3. Estimation of Θ1 as originally proposed.
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Fig. 4. Estimation of Θ2 as originally proposed.

modified dynamics is also implemented using uC from the
simulated model instead of the recorded voltage. Note
that the simulated voltage is not a piecewise constant
function, since the sampling process itself would already
be a mismatch between plant and model.

The estimation results are shown in Fig. 3 and Fig. 4.
Using the originally proposed and the modified dynamics
yields similar estimation results, under ideal conditions the
parameters are perfectly identified. While the recorded and
the simulated voltages are almost the same, those results
already indicate the susceptibility of this estimator to even
very small mismatches between plant and model.

6.4 Comparison with the least-squares based DREM

The DREM estimator using the modified equation system
is also applied to the electric circuit experiment. Again,

y =
ẋ− f(x)

g(x)
− u = CR1ẋ+ x− u (37)

can not be calculated since ẋ is not known. Similar to (35),
the output yf of a PT1 filter with y as input is obtained.
This filter is also applied to m, which yields

yf (t) = mT
f (t)Θ + wf (t). (38)

With h(t− τ) = e
τ−t
T where T = 50s, the equation system

can be obtained as described in Section 3 using yf and mf

instead of y and m. Note that this causes an additional
error since the solution Θ̂opt will not be optimal with
respect to w but to wf , which is w filtered by the PT1 filter.
Therefore, this filter uses a relatively small time constant
of Tf = 10 · Ts = 0.1s. Another possible approach would
be the estimation of ẋ via a differentiator as outlined Cruz-
Zavala et al. (2011).

The least-squares based DREM is implemented using the
dynamics from (9) with γ1 = γ2 = 5 and φmax =
5 · 10−3. The estimation results are compared to the
results of the estimator from Section 6.3 which also uses
the dynamics from (9), i.e., the only differences between
those two estimators are the equation system (once as
originally proposed and once obtained via least-squares
optimization) and the value of φmax.

The estimation results are shown in Fig. 5 and Fig. 6. As
expected, the DREM using the new least-squares based
equation system yields significantly better results.

6.5 Estimation with finite-time convergent dynamics

The least-squares based DREM is implemented twice, once
as explained in Section 6.4 (i.e. using the dynamics form

0 5 10 15
0

0.05

0.1

0.15

0.2

Fig. 5. Estimation of Θ1 using the originally proposed and
the new (least-squares based) equation system.

0 5 10 15
0

0.05

0.1

0.15

0.2

Fig. 6. Estimation of Θ2 using the originally proposed and
the new (least-squares based) equation system.
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Fig. 7. Estimation of Θ1 with finite-time convergent dy-
namics compared to dynamics linear in Θ̃1.
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Fig. 8. Estimation of Θ2 with finite-time convergent dy-
namics compared to dynamics linear in Θ̃2.

(9) with γ1 = γ2 = 5 and φmax = 5 · 10−3) and once using
the dynamics for finite-time convergence from (25) with
γ1 = γ2 = 0.5 and φmax = 5 · 10−3. All estimators are
implemented in continuous-time while using a solver with
fixed step size, therefore some chattering can be expected
when using the finite time convergent dynamics.

The estimation results are shown in Fig. 7 and Fig. 8.
Those figures also show the results of an attempt to
calculate Θ̂opt = M−1

e Ye directly: if M−1
e does not exist,

the result from the previous simulation step for Θ̂opt is
used. The rates αi(φ) at which the estimates using the
finite-time convergent dynamics converge

˙̂
Θi = − γi

φ2

max {φ2, φ2
max}︸ ︷︷ ︸

=αi(φ)

sign
(

Θ̃i

)
(39)

are also shown in Fig. 7 and Fig. 8.

Since Θ̂opt = M−1
e Ye (if M−1

e exists), the absolute
value of φ = det (Me) can be interpreted as a measure

of the quality of the least-squares solution Θ̂opt. Given
this interpretation, the least-squares based DREM with
the finite-time convergent dynamics has the following
properties as illustrated by Fig. 7 and Fig. 8:

• If the quality of the solution of the least-squares op-
timization problem is considered high, the estimates
converge at a fast rate (up to the specified constants
γi) and within finite time.

• If the quality of the solution is considered low, the
estimates converge at a slow rate. This is also advan-
tageous considering the evolution of M−1

e Ye in the
respective sections of the experiment.

7. CONCLUSION

A modification of the DREM parameter estimation
method by embedding it into a least squares optimization
framework and enhancing it by a finite time parameter
estimation error dynamics is proposed in this paper. It
is demonstrated by real world experiments that the least
squares based DREM yields significantly better estimation
results, both with and without the finite time parameter
estimation error dynamics.
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