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Abstract: The field of human-robot interaction is a typical application of elastic robots,
as they reduce the risk of injuries and physical damage in case of a collision. Elasticities,
however, also impose high demands on underlying joint controllers to guarantee minimal
vibration during regular operation. Numerous control concepts assume a sufficiently high
ability to control vibrations, by e.g., dedicated actuators or special kinematic structures. This
work presents an online, optimization-based trajectory planning approach that concentrates
on maximizing this ability for elastic manipulators without additional damping actuators or
certain kinematic structures. The planning algorithm utilizes a modified quadratic objective
function to incorporate the controllability of vibrations as a secondary goal. The effectiveness
of the approach is demonstrated on a real 3-DOF, link-elastic robot for different set-points
subject to disturbances. The results show that the approach successfully generates elasticity-
aware motions and improves the vibration damping capabilities of the underlying controllers.
Especially for critical configurations in which the controllers usually have little or no influence
on the vibrations, vibration damping is improved or even made possible.

Keywords: Online Trajectory Planning, Elastic Links, Robotic Manipulators, Model Predictive
Control, Vibration Damping.

1. INTRODUCTION

More and more application scenarios for collaborative ma-
nipulators emerge in industrial as well as domestic and
care applications. The comparatively low potential risk
of injuries and physical damage enables fast and flexible
operations, which, however, also place additional require-
ments on trajectory planning. Conventional methods that
detect collisions and initiate recovery actions are generally
able to fulfill the task but reduce acceptance and efficiency.
In contrast, online feedback motion planning introduces a
more preventive class of approaches towards collision-free
operation in increasingly crowded and changing environ-
ments. Still, cases remain where collisions are unavoidable,
for example, when the robot is not fast enough to retreat
from an obstacle or with increasing uncertainties about
the state of the environment. At this point, elastic robots
minimize the consequences of collisions and benefits safe
physical human-robot interaction.

Elasticities arise from joints (e.g., series elastic actua-
tors) or flexible links. Both convert the kinetic energy
into potential energy during collisions but also lead to
deflections and vibrations during regular operation, which
must be damped using dedicated controllers. Depending
on the geometry and actuation of the robot, configura-
tions occur in which vibration damping by the robot’s
joints is hindered or even infeasible (cf. Tosunoglu et al.,
1992). This is especially relevant for robots that do not
have dedicated actuators for vibration damping, such as
piezoelectric elements. In this context, this article uses the

expression controllability of vibrations and a correspond-
ing metric for link-elastic robots to describe the ability
of a controller to damp vibrations – not to be confused
with controllability from control theory. To keep the best
possible controllability during operation, this work focuses
on considering it at the level of online motion planning.

1.1 Related Work

Model predictive control has proven to be promising for
vibration damping as vibrations are predicted and opti-
mized. The prediction model, which describes the rela-
tionship between states and controls for joints as well as
optional piezo elements, is of particular importance and
has been widely studied: The most common approach is to
apply the assumed modes method and derive a differential
equation that approximates elasticities (Abdolvand and
Fatehi, 2012). Elliott et al. (2014) utilize dynamic matrix
control as a special type of model predictive control based
on step response representation for the prediction model.
Dubay et al. (2014) extend this to a model that is based
on finite elements to describe elasticities. Since the payload
has a considerable influence on the damping behavior of
elastic robots, Pradhan and Subudhi (2014); Schnelle and
Eberhard (2017) present adaptive approaches to identify
model parameters continuously. On the other hand, data-
based models such as neural networks are used, for exam-
ple, by Song and Koivo (1999).

Online trajectory optimization and model predictive con-
trol overlap in principle if, in the former, the related
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controls are sent instead of the trajectory itself. If the
frequency of online planning is sufficiently high, only the
most recent control is applied, like in model predictive
control. Online trajectory optimization imposes additional
requirements on the prediction horizon, collision avoid-
ance, including distance calculations, and other constraints
regarding states and controls. The computational com-
plexity of the models above is usually too high for online
operation when trajectory planning becomes part of the
process. Several approaches plan optimal trajectories for
elastic robots offline and pass them to a tracking controller
(Esfandiar and Korayem, 2016; Boscariol et al., 2013; Cao
and Liu, 2018).

Cascaded approaches finally allow combining online tra-
jectory optimization and vibration damping by separating
both problems. The inner cascade linearizes the system
behavior and provides vibration damping, while the outer
cascade performs online trajectory optimization based on a
simplified model. There is a wide range of control concepts
for the inner cascade such as state feedback (e.g. Lambeck
and Sawodny, 2007) or Lyapunov-based controller (e.g.
Reyhanoglu and Hoffman, 2016). As an extension to the
classical PID controller, Fareh et al. (2019) use a sliding
mode based active disturbance rejection control approach
similar to feedback linearization.

1.2 Contribution and Outline

Approaches for vibration damping usually assume suffi-
cient controllability of all vibrations. This assumption is
adequate if the robot shows a specific geometry, in which
a joint is always able to control the vibration plane of the
following link, or additional actuators such as piezoelectric
elements are used. Adding more and more linearly inde-
pendent vibration planes up to an omni-elastic structure
for better energy absorption, or merely having a different
geometry, controllability is no longer guaranteed by design
and might become configuration-dependent. This work
aims at maximizing the configuration-dependent control-
lability introduced by John et al. (2017) and integrates it
into an optimization-based approach for elasticity-aware
online trajectory planning. The concept follows state of
the art by using two cascades, as shown in figure 2. The
outer one performs online trajectory optimization, and the
inner one carries out vibration damping as well as joint
velocity control via a dedicated control concept, which is
based on a previous publication by Muster et al. (2019).
By elasticity-aware motion planning, vibration damping
requires less special kinematic structures and no dedicated
actuators. The experimental evaluation focuses on the
interaction between both cascades considering a real 3-
DOF robot with two elastic links and two intentionally
orthogonal vibration planes. The experimental setup is
shown in figure 1, highlighting the links’ vibration planes
in orange and green.

The remainder of this paper is structured as follows. The
next section briefly introduces the overall system and the
inner cascade with velocity controller and vibration damp-
ing. Section 3 introduces the general trajectory optimiza-
tion problem, which is then specialized for controllability
of vibrations and joint space objectives. The results of
several real experiments are presented and discussed in
section 4. A summary and outlook follow in section 5.
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Fig. 1. TUDORA (TU Dortmund Omni-elastic Robot
Adapted) with N = 3 DOF and P = 2 elastic links
in a configuration with maximum controllability.
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Fig. 2. System and signal overview.

2. VIBRATION DAMPING AND VELOCITY
CONTROL

Figure 2 illustrates the inner and outer cascade along
with the corresponding signals, giving a general overview
of the planning and control system. The inner cascade
implements a PI velocity controller based on the actual
joint angle velocities q̇(t) ∈ RN and references µ(t) ∈ RN
for a robot with N joints. For further information on the
PI controller design, please refer to Malzahn (2014).

A vibration plane si := (ni, ti) for i = 1, 2, . . . , P consists
of a normal vector ni ∈ R3 and a point on the plane
ti ∈ R3 with respect to the world frame. It describes the
operating range of the additional degrees of freedom of an
elastic link due to deflections. Figure 1, for example, shows
a 3-DOF robot with two vibration planes highlighted in
orange and green.

The velocity feedback ξ(t) ∈ RN for vibration damping is
produced based on the zero-mean strain signals δ(t) ∈ RP
on P elastic links, measured by strain gauges or optical
strain sensors. Consider ξj :R 7→R as the vibration-related
velocity feedback to joint qj and j = 1, 2, . . . , N :

ξj(t) =
∑
i∈Ij

δi(t) kj,i, (1)

in which the index set Ij ⊂ N collects all vibration planes
si that can be controlled by joint qj . The vibration-related
feedback components are lumped together in ξ(t) ∈ RN .
The proportional gains kj,i ∈ R are tuned e.g., by a genetic
algorithm during movements around a configuration with
the highest controllability of joint j on vibration plane i.

The resulting control outputs ν(t) ∈ RN correspond to the
motor voltages and generate the torques.

3. MOTION PLANNING

Recap figure 2 for the general overview and the interfaces
of the outer cascade. The outer cascade receives the
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target joint configuration qref(t) for planning. Starting
from the current joint configuration q(t), the outer cascade
optimizes an elasticity-aware motion using environmental
information like obstacles. This section starts with the
general trajectory optimization problem, which is then
specialized for controllability and joint space objectives.

3.1 Trajectory Optimization Problem

Trajectory planning in this paper is based on previous
work by Krämer et al. (2020) and optimizes a discrete
trajectory τ 0:K consisting of K + 1 joint angles xk ∈ X
and K ∈ N joint angle velocities uk ∈ U :

τ 0:K :=

(
x0:K := x0,x1, . . . ,xk, . . . ,xK

u0:K−1 := u0,u1, . . . ,uk, . . . ,uK−1

)
, (2)

with sets X ⊆ RN and U ⊆ RN defining the robot’s state
space with respect to box constraints:

X :=
{
x ∈ RN | xmin ≤ x ≤ xmax

}
,

U :=
{
u ∈ RN | umin ≤ u ≤ umax

}
.

(3)

By considering joint angles and velocities, most common
motion constraints and set-points can be taken into ac-
count during planning. The following uniform grid estab-
lishes the time law of (2):

t0 < t1 < . . . < tk < . . . < tK = T,

tk+1 − tk = ∆t.
(4)

Both, joint angles xk and piecewise constant joint veloci-
ties uk are introduced as explicit optimization parameters
of the nonlinear program:

min
u0:K−1,
x0:K

J(x0:K ,u0:K−1) (5a)

subject to
xk+1 − xk −∆t uk = 0, (5b)

uk ∈ Ua, (5c)

xk ∈ Xc(tk), (5d)

x0 = q(t0). (5e)

Refer to Nocedal and Wright (2006) for necessary and
sufficient optimality conditions.

Expression J(·) in (5a) reflects the overall cost for opti-
mization and is further addressed for planning towards
joint space set-points qref in section 3.3. Equality con-
straint (5b) states the forward-euler difference equation
between xk and uk, based on the assumption that the com-
manded joint velocity sufficiently matches the actual joint
velocity. The assumption requires sufficient compensation
of cross-couplings via, for example, a centralized control
scheme or high gear ratios. In addition, the influence
of vibration damping on the respective vibration planes
must be ensured, which in turn is part of this approach.
Equation (3) already implicitly adds box constraints for
xk and uk to the optimization problem. To also limit joint
accelerations, (5c) places additional constraints on uk:

Ua :=

{
uk ∈ U | amin ≤

uk − uk−1
∆t

≤ amax

}
. (6)

In case that k = 0 the control u−1 equals u0 of the
previous optimization or 0 in case of the first run. To
avoid collisions, (5d) introduces the set Xc ⊆ X that
comprises all feasible joint configurations with sufficient
clearance between links themselves and obstacles at time

tk. From a practical point of view, (5d) is implemented as
inequality constraints for the distances between objects,
which are calculated using forward kinematics. For the
sake of simplicity, a detailed description of Xc is not within
the focus of this paper.

Consider tn as closed-loop time instances for n ∈ N0, that
indicate the n-th trajectory optimization during online
planning, with tn+1−tn = ∆t. By setting tk for k = 0 equal
to tn, and considering (4), the trajectory time tk starts
at the current closed-loop time and consistently extends
into the future. This furthermore implies that (5e) ensures
that planning starts from the most recent robot joint angle
q(t0 = tn). Consider u(t) as the continuous-time control
trajectory of u0:K−1:

u(t) := uk = const. for t ∈ [tk, tk+1). (7)

Then, after each optimization, a portion of the optimal
continuous-time control trajectory u?(t) is sent to the
inner cascade:

µ
(
q(t)

)
:= u?(t)

∣∣∣
t0=tn

for t ∈ [tn, tn+1). (8)

3.2 Controllability of Vibrations

To evaluate the ability of the present joints to dampen
vibrations of the robot’s elastic links, the configuration-
dependent geometric controllability metric introduced by
John et al. (2017) is considered. This metric is preferred
over others by its less computational burden, the circum-
vention of deriving a complete dynamic model of the robot,
and the unique mapping of each vibration plane to the
respective actuator with the most significant influence in
the current configuration. This enables time-critical ap-
plications such as vibration damping or elasticity-aware
motion planning.

Consider the j-th joint with rotation axis zj ∈ R3 with
respect to the world frame, then the controllability of
vibrations in plane si is worst, if zᵀjni = 0. Conversely,

the best controllability is achieved at |zᵀjni| = 1, assuming

|zj | = |ni| = 1 without limitation of generality. The
function fj,i(q) :RN 7→ [0, 1] encodes this relationship:

fj,i(q) := |zᵀj (q)ni(q)|, (9)

with fj,i(q) inheriting the dependency on q from forward
kinematics to get the rotation axis and normal vector with
respect to the world frame. Depending on the kinematic
structure of the robot, it may be more convenient to use
the angle variant instead:

fj,i(q) := | cos(θj,i)|, (10)

in which θj,i ∈ R reflects the angle between zj and ni.
The geometric controllability matrix C(q) ∈ RN×P now
captures the influences of all joints (rows) on all vibration
planes (columns):

C(q) :=


f1,1(q) f1,2(q) . . . f1,P (q)
f2,1(q) f2,2(q) . . . f2,P (q)

...
...

. . .
...

fN,1(q) fN,2(q) . . . fN,P (q)

 . (11)

The final objective function cC(q) :R 7→ [0, NP ], which is
used in the next section for motion planning, is defined as:
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cC(q) :=

P∑
i=1

N∑
j=1

(1− fj,i(q)). (12)

Maximum controllability fj,i(q) = 1 ∀ i, j, leads to
cC(q) = 0. In the opposite case, fj,i(q) = 0 ∀ i, j leads
to cC(q) = NP . See section 4.1 for implementation details
about a smooth approximation of | · |.

3.3 Joint Space Motion Planning

Consider cQ(x) :X 7→R+
0 as the common quadratic objec-

tive function to ensure that the trajectory, planned at
closed-loop time tn, tends towards the joint space set-point
xf = qref(tn) ∈ Xc:

cQ(x) = (x− xf)
ᵀ
Q (x− xf) for Q ∈ RN×N . (13)

As stated in section 3.2, the controllability cost cC(x)
also depends on x (respectively q) and thus generally
competes with cQ(x). Simply adding both terms might
result in xf not being the actual global minimum anymore,
which means never reaching it. When planning offline, one
could use an additional final state constraint to force the
end of the trajectory to match xf. However, this is not
possible online, since the planning stage only commands
the beginning of the control sequence while the constraint
merely affects the end.

One possibility to resolve competing objectives online is
to fade between them. Time-optimal planning also often
utilizes fading to avoid rattling around the set-point. This
work considers fading out cC(x) while cQ(x) tends to zero:

c(x) = cQ(x)(α+ β cC(x)), (14)

with weights α, β ∈ R+. The new objective function c(x)
has the following properties:

For cQ(x) = 0 and cC(x) ≥ 0⇒ c(x) = 0,

For cQ(x) > 0 and cC(x) ≥ 0⇒ c(x) ≥ cQ(x).
(15)

In addition to c(x), the overall costs also consider
cR(u) :U 7→R+

0 to avoid unnecessary motions, especially
in the vicinity of the optimum:

cR(u) = uᵀRu for R ∈ RN×N . (16)

The costs J(·) for joint space set-points are then defined
as follows:

J(x0:K ,u0:K−1) :=

K−1∑
k=0

cR(uk) + c(xk). (17)

From (13) and (15) it directly follows that c(x) = 0 only
if x = xf. The same holds for cR(u) = 0, if u = 0, which is
generally true when x = xf during planning. Although
(15) states that c(x) has only one global minimum, it
might have several local minima because of cC(x). These
local minima depend on α as well as β. However, α
and β also determine the importance of controllability
and, therefore, cannot be chosen arbitrarily. Consider the
following equilibrium endpoint constraint:

xK = xf, (18)

which is added to (5) to enforce asymptotic stability.
Assuming zero model mismatch and a sufficiently long
horizon K, so that (5) and (18) are fulfilled, it follows
from the properties of (17) that the minimum cost of each
iteration tn, decreases in each subsequent iteration tn+1

and xf is reached (cf. Grüne and Pannek, 2017).

Table 1. Parameters

Parameter Value Note

k1,1 0.0022 Vibration Damping
k3,2 −0.0075 Vibration Damping

xmax

(
3 0.8 2.6

)ᵀ
rad

xmin

(
−3 −4 −2.6

)ᵀ
rad

umax,umin ±0.5 rad s−1 Same for all joints
amax,amin ±1.0 rad s−2 Same for all joints
K 80 Planning Horizon
∆t 0.05 s
ε 0.001
α 1
β 1.5
Q diag(1, 1, 1) Diagonal matrix
R diag(1, 1, 1) Diagonal matrix

4. EVALUATION

This section introduces the experimental setup and eval-
uates the results of the experiments for joint space set-
points.

4.1 Experimental Setup

Figure 1 shows the robot that is used for experiments. It
consists of N = 3 joints and two elastic links. Attached
strain gauges measure the deflections of the P = 2 vi-
bration planes. An additional payload of 300 g is mounted
to the end effector. The bounding volumes for collision
avoidance are selected in a way that links do not protrude
even in case of deflections. For a detailed list of robot
parameters, please refer to Muster et al. (2019). Matrix
C(q) for this robot is:

C(q) =

[| cos(q2)| 0
0 | cos(q3)|
0 1

]
. (19)

Since f3,2(q) = 1, the third joint always has sufficient
control on the second vibration plane and thus f2,2(q) is
neglected in the experiments. This simplifies cC(q) to:

cC(q) = 1− | cos(q2)| ≈ 1−
√

cos2(q2) + ε. (20)

Note the approximation of | · | for a small ε ∈ R+ to make
cC(q) differentiable for gradient-based solver.

The velocity control loop and vibration damping of sec-
tion 2 run on a MATLABR©/SimulinkR© Real-TimeTM tar-
get with 2 kHz. The motion planner of section 3.1 runs on a
computer equipped with an Intel i5-6500 CPU at 3.2 GHz
using 8 GB RAM under Ubuntu 16.04. A previously pub-
lished hypergraph representation encodes the nonlinear
optimization problem (5) to exploit sparsity (cf. Rösmann
et al., 2018). The optimization problem is solved by the
interior point solver IPOpt (Wächter and Biegler, 2006)
with a tolerance of 0.001 and up to 25 iterations using
the linear solver MA27 from Harwell Subroutine Library
(2018). Table 1 summarizes the parameters used for the
following experiments. Note, that Q is the identity matrix,
since α and β are used for weighting.

4.2 Experiments

The first three experiments examine the effectiveness of
(17) considering the first three pairs of start and target

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10118



Table 2. Pairs of start and target configura-
tions

No. Start Configuration q(0) Target Configuration qref(t)

1
(
−π

2
0 π

2

)ᵀ (
π
2

0 π
2

)ᵀ
2

(
−π

2
−π

4
π
2

)ᵀ (
π
2

−π
4

π
2

)ᵀ
3

(
−π

2
−π

2
π
2

)ᵀ (
π
2

−π
2

π
2

)ᵀ
4

(
−π

2
0 0
)ᵀ (

π
2

−π
2

π
2

)ᵀ
configurations from table 2, respectively. For these set-
points, the robot only requires to move the first joint.
However, those three pairs differ in the second joint angle
to investigate the transition behavior for different levels
of controllability. Each pair is performed once without
considering controllability (conventional) and once with
cC(q).

Figure 3 shows the controllability f1,1(q) for the first three
experiments. In the first experiment (light grey), the con-
trollability is already at its maximum, and both variants
do not differ. The second experiment (dark grey) begins
and ends with a controllability of 0.7. However, motion
planning with cC(q) (solid) increases controllability tem-
porarily up to almost 1 while it remains static for conven-
tional motion planning (dashed). The same effect appears
even stronger in the third experiment (black), for which
the robot starts and ends with 0 controllability. Figure 4
shows the joint angle trajectories of this experiment with
(solid) and without (dashed) considering controllability.
Although the second joint starts at the target value, the
modified cost function temporarily deviates it from −π2 to
increase controllability. The first joint converges directly
while the second joint remains on its set-point as they
both have no impact on the controllability.

To illustrate the advantage of elasticity-aware planning for
vibration damping, the first vibration plane is perturbed
by an initial disturbance. Figure 5 shows the measured
deflections in the first vibration plane during the disturbed
motion of the third experiment with (black) and without
(gray) considering controllability. While the deflections are
almost identical for both variants during the first second,
the amplitudes start decreasing noticeably faster if motion
planning takes controllability into account. As can be seen
in figure 3 from the solid black line, this is approximately
the time at which controllability raises, and the control
interventions of vibration damping become more and more
effective.
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No.2
No.3

Fig. 3. Controllability f1,1(q) during motion in three dif-
ferent experiments with (solid) and without (dashed)
elasticity-aware planning.
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Fig. 4. Joint trajectories of the third experiment with
(solid) and without (dashed) elasticity-aware plan-
ning.

While during the previous experiments, controllability was
equal for start and target configuration, the fourth experi-
ment forces it from 1 to 0. Figure 6 shows the correspond-
ing joint trajectories with (solid) and without (dashed)
considering controllability. While the first and the third
joint proceed almost identical, there are again differences
in the second joint. Through the evaluation of controlla-
bility, the motion of the second joint is delayed compared
to the conventional case. Additionally, figure 7 illustrates
for this experiment how elasticity-aware planning keeps
controllability at a higher level for a longer time. This
successfully allows vibration damping to be more effective
for a longer part of the total motion resulting in better
damping performance.

Motion planning takes an average of 19 ms to calculate
the next velocity command and therefore has sufficient
resources to also react to external influences.
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−600
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−200

0
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1 ]
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Fig. 5. Deflections in the first vibration plane for an initial
disturbance during the third experiment with (black)
and without (gray) elasticity-aware planning.
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Fig. 6. Joint trajectories of the fourth experiment with
(solid) and without (dashed) elasticity-aware plan-
ning.
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Fig. 7. Controllability of the fourth experiment with (solid)
and without (dashed) elasticity-aware planning.

5. CONCLUSION AND OUTLOOK

This paper contributes an online elasticity-aware motion
planning approach for link-elastic manipulators, which
successfully increases the effectiveness of control inter-
ventions for vibration damping by penalizing poor con-
trollability of vibrations. As a result, the amplitudes of
vibrations caused by disturbances decay noticeably faster
than with conventional planning. The cascaded concept
consists of an optimization-based motion planner and a
low-level velocity controller, including vibration damping.
The effectiveness of vibration damping is quantified by
a configuration-dependent metric and optimized during
motion planning in the form of a modified quadratic cost
function. The results show that even constant components
of set-points temporarily deviate in favor of higher con-
trollability. The approach furthermore extends phases of
higher controllability for motions towards set-points with
poor controllability. Future work will concentrate on the
conversion of the equilibrium endpoint constraint into gen-
eral stabilizing terminal conditions and the introduction
of a terminal region to allow shorter planning horizons.
Additionally, it is planned to consider an adaptation for β
depending on the deflections, to only increase controllabil-
ity when it is needed.
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