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Abstract: Condition monitoring of electric motor driven mechanisms is of great importance in industrial
machines. The knowledge of the actual health state of such components permits to address maintenance
policies which results in better exploitation of their actual operational life span and consequently in
maintenance cost reduction. In this paper, we exploit the way electric cams are implemented on the
vast majority of PLC/Motion controllers to develop a suitable condition monitoring procedure. This
technique relies on computing the higher-order differences of the current absorbed by slave motors to
get signals that do not depend on a priori knowledge of the cam trajectory and of the mechanism nominal
model. Subsequently, we will use these data in the Model-of-Signals framework, to gather information
on the mechanism’s health condition, which in turn can be used to perform predictive maintenance
policies. The differenced signal is modelled as an ARMA process and the model capabilities in condition
monitoring are then shown in simulation and experimental application. Besides, this framework allows
exploiting the edge-computing capabilities of the machinery controllers by implementing recursive
estimation algorithms.
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1. INTRODUCTION

Prognostic and Health Management (PHM) of systems within
the Industry 4.0 framework has grown in importance so to be-
come one of the main driving concepts in industrial automation
firm R&D branches and in academia. Machinery parts are likely
to fail when put through heavy-duty working cycles. Diagnosis
of their health state and prognosis of their remaining useful
life (RUL) is a widely addressed problem in the research field
(Gouriveau et al., 2016). This has been made possible by the
increased computational capacity of computers, both on-board
(edge-computing) and outside the machine (PCs and cloud-
computing).
Condition Monitoring (CM) refers to the evaluation of equip-
ment or component health condition when the machinery is
executing operations and jobs. Research is particularly oriented
to the diagnosis and prognosis of faults occurring on machine
main elements: from bearings to gears to drives’ mechanical
parts to electrical equipment. We refer to (Lee et al., 2014) for a
comprehensive discussion, however, it is possible to summarise
the main methods employed in condition monitoring within
three main typologies depending on how they exploit (math-
ematically) the physical knowledge related to systems: Model-
Based, Data-Driven and Hybrid methods.
Model-Based methods (Isermann, 2005) rely on physical mod-
elling to build mathematical approximations, of increasing de-
gree of complexity, to characterise its input/output behaviour.
These methods run in parallel with the machinery under mon-
itoring to provide information on the internal state of the ma-
chine. Physical modelling is particularly effective in terms of
diagnosis and prognosis of faults, however its complexity may

result prohibitive for edge-computing, particularly concerning
the automatic machine field. Data-Driven methods (Cerrada
et al., 2018) exploit signals measured on-board to perform CM,
mainly by means of signal processing and machine learning
techniques. The implementation of such strategies is simpler
and requires, in general, less time and resources. Finally, hybrid
methods combine the previously mentioned ones.
Any monitoring procedure requires significant sensor measure-
ments, suitable data processing algorithms and appropriate ser-
vicing choices (either automated or with human intervention).
Condition-Based Maintenance (CBM) (Jardine et al., 2006)
and Predictive Maintenance (PM) encapsulate formally those
concepts by defining a broader picture of the course of actions
involved by dividing it into three macro-steps
(1) Data acquisition.
(2) Data processing.
(3) Maintenance decision-making.

In this work, we focus mostly on the first two steps supply-
ing the foundations to perform the third. The technique we
exploit belongs to the data-driven methods and employs black
box system identification theory: it is referred to as Model-of-
Signals and was introduced by (Isermann, 2006). As the name
suggests, it relies on the signals measured on-board the mon-
itored machine to build dynamic models by means of system
identification algorithms (Söderström and Stoica, 1989). The
main reasons behind the use of this approach revolve around
two of its main properties: the models carry inherent informa-
tion about the system physical content and the availability of
recursive algorithms permits the implementation directly on the
PLC, exploiting its edge-computing capabilities. Furthermore,
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Model-of-Signals methods compress signals information into
models that are easier to handle. This allows the use of dis-
tributed computing frameworks with models becoming features
for other data-driven algorithms.
Following our previous studies on Model-of-Signals (Barbieri
et al., 2018, 2019a,b), we present a different application of the
approach that aims at exploiting how electric cams are executed
on PLCs to monitor electric motor driven mechanism condi-
tions employing applied torque as source of information. The
use of the torque (i.e current) measurement for monitoring elec-
tric motor components (e.g. cage, windings, resistance, bearing
and shaft faults) is long-established (Nandi et al., 2005) and
typically makes use of model-based, frequency-based and data-
driven techniques with high-end servo drives starting to include
them within their controllers. However, due to the unknown
task they will have to accomplish in their final application, the
above mentioned techniques are only related to the motor inter-
nal health state and not to the mechanism attached to it, which
is also subject to failure. The condition monitoring technique
we propose aims at providing the manufacturer with a PLC
practicable solution for drive-mechanism fault detection.
The main idea is the following: the majority of electric cam mo-
tion tasks for servo drives are implemented as piece-wise poly-
nomial trajectories with order lower or equal to 7. Therefore,
in the case of linear mechanisms the ideal torque demanded by
their motion is linked to the second derivative of such curves.
In real applications, however, another component is present
alongside the ideal torque: smaller with respect to the latter,
but necessary to achieve the desired motion. Our conjecture on
that additional contribution is that it contains information about
the mechanism health condition and it can be modelled by a
set of Auto-Regressive (AR) models. Its analysis require the
ideal contribution to be removed in order to prevent it from
masking changes within the useful one (in this domain, the
ideal torque is the ”noise” perturbing the informative signal).
A simple subtraction of the ideal torque could be arranged in
this respect, however, it would depend on the given cam tra-
jectory and on the equivalent inertia of the mechanism. In this
work, we propose to compute the difference of suitable order
of the torque measurement (which is linked to the order of the
trajectory polynomial profile minus 2, therefore 5 at worst) to
get rid of its ideal contribution without any cam and mechanism
detailed knowledge. Then, the useful part of the signal will be
modelled as an AR process, which will be proven to became
an Auto-Regressive Moving-Average (ARMA) with particular
structure when differencing. This allows Model-of-Signals to
be applied following its basic idea as in Barbieri et al. (2018,
2019a,b).
The remainder of the paper is organised as follows: Section
2 describes the reasoning behind our condition monitoring
proposition using slave torque. Then, in Section 3, the signal
modelling and identification approach is illustrated and tested
via simulation in Section 4. In Section 5 we apply the proposed
procedure to real data in a laboratory setup whose outcomes are
shown in Section 6. Finally, conclusions are drawn in Section
7.

2. FROM ELECTRIC CAMS TO DIAGNOSIS

The majority of industrial machines rely on cams to perform
complex tasks that require synchronisation among the various
mechanisms involved. Cams can be divided into mechanical
and electrical. The use of the latter to perform synchronised op-
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Fig. 1. Example of piece-wise polynomial cam: via-points in blue, master and
slave positions are in degrees [deg], while the acceleration is in [deg−1]

erations is increasing in the last decades due to their comparable
precision and greater flexibility, with respect to mechanical
ones. Electric cams allow to coordinate the motion of different
mechanisms independently driven by electrical motors. This is
possible because servo drives have become able to precisely
track given position profiles commanded via fieldbus by the
PLC, allowing the synchronisation of movements via software.

2.1 Electric cams PLC implementation

Electric cams are performed by linking together the trajectories
of the different motors involved in the synchronised task: a
leader, known as master, performs the guiding trajectory while
one or more followers, called slaves, move accordingly. The
coupling is established geometrically so that any given master
trajectory point corresponds to a given slave trajectory point.
This coupling is usually programmed by the user on the PLC
vendor Integrated Development Environment (IDE). The typi-
cal implementations rely on the definition of via-points within
the trajectory, which are then connected through mathematical
functions which depend on the trajectory constraints. In most
cases, polynomial functions, with their smoothness degree de-
pendent on the number of constraints, are used. The constraints,
in this case, originate from the required trajectory derivatives
at those via-points. For instance, to build a master-slave syn-
chronisation we need the master trajectory in position, p(·) and
the relative slave position evolution, defined as q (p(·)). This
definition allows to geometrically connect the two trajectories,
while time enters indirectly with the master position, allowing
speed variations without affecting synchronisation. Obviously,
also the physical limits of the system affect the trajectory (e.g.
the maximum allowed speed and acceleration) and have to be
taken into account during the design phase. An example of
synchronisation definition procedure is given as follows:
q1(0◦) = 0◦, q2(180◦) = 360◦, q3(360◦) = 0◦,

q̇1(0◦) = 0, q̇2(180◦) = 0, q̇3(360◦) = 0,

q̈1(0◦) = 0◦
−1

, q̈2(180◦) = 0◦
−1

, q̈3(360◦) = 0◦
−1

,

(1)
in which q1 is connected to q2 with a polynomial function
of order 5 since there is a total of 6 constraints. The same
reasoning can be done for the cam piece between q2 and q3,
with the final result shown in Fig.1. If we assume that master
speed is constant (as typically happens in real applications),
ṗ(t) = const = Vp, then the x-axis can be directly translated
in time by means of t = p(t)/Vp. We refer to (Biagiotti and
Melchiorri, 2008) for a complete discussion on how trajectories
are generated.

2.2 The Torque for Monitoring

Suppose that the controller of the motors we want to synchro-
nise is correctly designed and tuned. The master operates at
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constant speed followed by the slave with a trajectory defined
as in (1) driving a linear mechanism. The ideal torque required
to perform the task in this case is:

τ(t) = Jα(t) = J ¨q(t), (2)
where J > 0 is the moment of inertia and α(t) = q̈(t).
As a consequence, τ(t) is a piece-wise polynomial trajectory
based on M couples of master-slave points and their con-
straints with the former converted into their time counterparts
t ∈ [t1 . . . tM ] following the constant speed assumption.
Therefore, ideal torque trajectory segments correspond to the
second derivative of the related position profile piece scaled by
the inertia factor J . This can be formally described as follows:

τ(t) =



P1
k(1)(t) t ∈ [t1, t2]
...

...
Pmk(m)(t) t ∈ [tm, tm + 1]

...
...

PM−1
k(M−1)(t) t ∈ [tM−1, tM ]

, (3)

where m = 1, . . . ,M − 1 is the index of the polynomial piece
represented as Pmk(m)(t) with degree k(m) = d(m)− 2, where
d(m) is the degree of the respective position polynomial.
The torque measurement from the slave axis is readily available
in PLCs implementing electrical cams. Typically, this signal
carries the ideal torque profile required by the mechanism, as
in (2), with parametric uncertainties in J in addition to un-
modelled ones (e.g friction, control adjustments and induced
vibrations). As stated in the introduction, our conjecture is that
information about the machine state of health is contained in
this unknown part. If we are able to take out the ideal cam con-
tribution, the remaining signal can then be used in the Model-
of-Signals fashion to perform diagnosis. Our proposition starts
from the idea that computing the (k + 1)th difference of the
ideal torque profile (with k the maximum degree of the poly-
nomials in τ(t)), will result in a zero signal. Then, in the real
case, we propose to model the torque measurement as an AR
process containing information about the system plus the cam
nominal torque, which we can get rid of by computing the
(k + 1)th difference. Therefore we consider that AR process
as representative of the machine health state. The difference
computations affect the AR process turning it into an ARMA
process. Nevertheless, it is still possible to extract that piece of
information with recursive system identification algorithms, as
we show in the next section. Notice that it may be advisable, in
the difference calculation, to avoid the cam via-points, where
the discontinuities generate steps and impulses. This filtering
will be used in simulation, while in the real case it is not
required since the physics of the system directly filters this
contribution.

3. DEFINITION AND IDENTIFICATION OF THE SIGNAL
MODEL

Following our reasoning we assume the torque signal τ(t) to be
composed by polynomials with the addition of an AR process:

τ(t) = Pmk(m)(t) + e(t), (4)

with Pmk(m)(t) compactly denoting (3) and

e(t) = −a1e(t−1)−· · ·−ane(t−n)+w(t) =
w(t)

A(z−1)
, (5)

is an AR process of order n with driving white noise w(t)
and A(z−1) = 1 + a1 z

−1 + · · · + an z
−n, where z−1 is the

backward-shift operator, i.e. z−1e(t) = e(t− 1). From now on
we drop the symbol k(m) to address the polynomial degree and
just use k for the sake of clarity. This modelling permits to take
into account the uncertainties derived from the real case. Now,
if we apply the difference operator (1− z−1) to (2) we obtain

(1− z−1) τ(t) = (1− z−1)

[
Pmk (t) +

w(t)

A(z−1)

]
(6)

which becomes

τ (1)(t) = Pmk−1(t) +
(1− z−1)w(t)

A(z−1)
. (7)

Then, by applying again the difference operator k times, we get
the (k + 1)th-order difference of τ(t):

τ (k+1)(t) =
(1− z−1)k+1w(t)

A(z−1)
, (8)

in which the polynomial contribution disappears and the re-
maining part is nothing but the following ARMA model:

y(t) = τ (k+1)(t) =
D(z−1)

A(z−1)
w(t), (9)

where the coefficients of D(z−1) are known and correspond to
the ones of the binomial expansion of (1− z−1)k+1.
At this point, the problem to be solved consists in estimating
the coefficients of A(z−1) that, as already said, provide infor-
mation about the health state of the machine. This identification
problem can be solved by employing the Instrumental Variable
(IV) method (Söderström and Stoica, 1989; Ljung, 1999). The
adopted identification procedure can be summarised as follows.
First, the signal y(t) is obtained by performing the (k + 1)th

difference of τ(t) in (8) and its expression in (9) becomes:
y(t) = −a1y(t− 1)− · · · − any(t− n)+

+ (−1)0
(
k + 1

0

)
w(t) + (−1)1

(
k + 1

1

)
w(t− 1) + . . .

+ (−1)k+1

(
k + 1

k + 1

)
w(t− k − 1), (10)

which in regressor form is:
y(t) = ϕTy (t)θA + ϕTw(t)θD (11)

with
ϕy(t) = [−y(t− 1) . . . − y(t− n)]T (12)

ϕw(t) = [w(t) . . . w(t− k − 1)]T (13)

θA = [a1 . . . an]T . (14)
Now, if we choose the following vector of instruments
ϕ̄y(t) = [−y(t− k − 2) . . . − y(t− k − 1− n− q)]T , (15)

with q ≥ 0, the IV estimate of θA, when N samples of y(t) are
available, is given by

θ̂A = R̂+ ρ̂, (16)
where

R̂ =

N∑
τ=τ0

ϕ̄y(τ)ϕTy (τ), ρ̂ =

N∑
τ=τ0

ϕ̄y(τ)y(τ), (17)

τ0 = n + q, and R̂+ denotes the pseudoinverse of the matrix
R̂. The choice of the instrument vector (15) guarantees the con-
sistency of the estimate for N → ∞ (Söderström and Stoica,
1981, 1989). Note that if q > 0, the solution (16) becomes an
extended IV method (Söderström and Stoica, 1989).
In this paper, we make use of the extended IV version proposed
in (Friedlander, 1984), called Overdetermined Recursive Instru-
mental Variable (ORIV), which happens to be a robust recursive
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Fig. 2. [Top] Torque signal obtained as in (2) of 3 cams until the 5th difference. The ideal signal is in orange and the noisy one in blue. [Bottom] Poles of the
identified θ̂A for the noisy signal (blue), of the applied noise (violet). Notice: the difference signals are processed so to avoid impulses to appear on the cam
via-points.

form suitable for PLC implementation. In (Barbieri, 2017) it
is shown how to realise the Recursive Least Squares (RLS) in
machinery controllers, therefore some slight modifications are
required to build the ORIV. To introduce the recursive version
of the OIV algorithm we first rewrite (16) as follows:

θ̂A(t) = P̂ (t)R̂T (t)ρ̂(t) (18)
with

ρ̂(t) =

t∑
τ=τ0

ϕ̄y(τ)y(τ) (19)

R̂(t) =

t∑
τ=τ0

ϕ̄y(τ)ϕTy (τ) (20)

P̂ (t) =
[
R̂T (t)R̂(t)

]−1

. (21)

Finally, the recursive version of the algorithm is the following.
Algorithm 1. (ORIV).

1) θ̂A(t) = θ̂A(t− 1) +K(t)
[
v(t)− φT (t)θ̂A(t− 1)

]
2) K(t) = P (t− 1)φ(t)

[
Λ(t) + φT (t)P (t− 1)φ(t)

]−1

3) φ(t) = (η(t) ϕy(t))
4) η(t) = RT (t− 1)ϕ̄y(t)

5) Λ(t) =

(
−ϕ̄Ty (t)ϕ̄y(t) 1

1 0

)
6) v(t) =

(
ϕ̄Ty (t)ρ(t− 1)

y(t)

)
7) R(t) = R(t− 1) + ϕ̄y(t)ϕTy (t)
8) ρ(t) = ρ(t− 1) + ϕ̄y(t)y(t)
9) P (t) = P (t− 1)−K(t)φT (t)P (t− 1)

The initial step may be defined in the following way

θ̂A(0) = 0 P (0) = ψI
ρ(0) = 0 R(0) = 0

(22)

with ψ any large positive number.

Note that the algorithm requires no inversion of a variable
dimension n × n matrix, while the 2 × 2 matrix inversion at
step 2) can be easily implemented.

4. SIMULATION

The validation of the proposed Model-of-Signals approach in
simulation is done utilising the cam from the example (1)
repeated 100 times, with a master working at constant speed
Vp = 1440[◦/s]. We compute the torque τ(t) required to
perform the task with a linear mechanism as in (2) with iner-
tia J = 0.0044[kg/m2]. The sampling time adopted in this
simulation is Ts = 0.001[s], which is commonly used on PLCs
implementing electric cams in their programs. The ideal torque
signal, in this case, will be composed of polynomials of the 3rd

degree:
τ(t) = Pm3 (t). (23)

The torque signal simulating a real case, as in (4), will also have
an AR process of order n = 2 in addition, whose parameter
vector is the following:

θA = [1.058 0.81]
T
, (24)

with driving noise variance σ2
w = 10−8 and the following

couple of complex conjugate poles:
σ
(
A(z−1)

)
= [0.9ei0.7π, 0.9e−i0.7π]. (25)

Finally, the simulation has been performed by applying Algo-
rithm 1, with the hyperparameter q = 2. The Normalised Root
Mean Square Error (NRMSE) index:

NRMSE =

√√√√∥∥∥θ̂A − θA∥∥∥
‖θA‖

, (26)

has been used to evaluate the performance in obtaining a θ̂A as
close as to the value set in (24). The results of the simulation
are shown in Fig. 2. It is possible to observe how in the (k +
1 = 4)th-order difference the ideal torque contribution (orange)
turns to zero, while the real torque signal (blue) becomes a zero
mean ARMA process characterised by the polynomial A(z−1)
and then by the same coefficients θA of the AR process, see (9)
and (11). The application of Algorithm 1 to τ (4)(t) results in
the identification of the AR process added to the torque with
an error of 0.6% (NRMSE = 0.006). Therefore, we are able
to isolate the model of the AR signal and discard the nominal
torque piece of information. In this way, given an electric
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Fig. 3. Experimental linear rigid mechanism setup. Variable weights are
attached to the flywheel on the left side of the shaft using bolts.

cam application, the contribution of the uncertainties may be
extracted and used for condition monitoring in the Model-of-
Signals framework.

5. EXPERIMENTAL SETUP

The experimental setup utilised is presented in Fig. 3 and is
composed by, from right to left: electrical motor, rigid joint,
shaft and flywheel with two half-moon shaped weights, the
cabled encoder seen in the figure is not used in this experimen-
tal analysis and is not taken into account. The inertia of the
system can be divided into two parts: one is fixed, with a value
of Jfix = 0.0015[kg/m2], and one is variable Jw = Jw1

+
Jw2

depending on the two weights, Jw1
and Jw2

, attached.
The mechanism is driven by B&R equipment: the PLC is the
Automation PC 910 connected to an ACOPOS P3 servo
drive controlling a 8LSA36 DB030S000-3 brushless mo-
tor. The electric cam utilised is the same as in example (1)
performed using a virtual master running at constant speed
Vp = 1080◦/s. The synchronised motion task time was chosen
to be Ts = 0.0008s since the system only allows time-steps
of 0.0004s or multiples and that was the recommended setting.
Therefore, the measurement of the torque signal has the same
resolution and is collected by means of the tracing system
provided by B&R IDE, Automation Studio, with a sampling
frequency of 1250Hz and can be directly saved into .mat
format. To test the proposed monitoring approach we sampled
the slave drive torque during the synchronised motion of the
system with both symmetric and asymmetric (i.e unbalanced)
load. The former being the healthy reference operating point
and the latter being the faulty one achieved by modifying one
of the two half-moon shaped weights with a slightly thicker and
a slightly thinner one. In addition, in the symmetrical case, one
of the two weights has been loosened by sightly unfastening the
bolts that keeps it in place to simulate a fault with increased
degree of severity. Those unbalanced loads should generate
changes in the informative part of the torque measurement
which in turn should be captured by the models. The four tested
configurations are depicted below:
Config. (1) Symmetric load:

Jw1
= 7.1305 · 10−4, Jw2

= 7.1305 · 10−4[kg/m2] (27)
Config. (2) Asymmetric increased load:

Jw1
= 7.1305 · 10−4, Jw2

= 7.5030 · 10−4[kg/m2] (28)
Config. (3) Asymmetric decreased load:

Jw1
= 7.1305 · 10−4, Jw2

= 6.1725 · 10−4[kg/m2] (29)
Config. (4) Loose Symmetric load: same as Config. (1) but

with loosened bolts in one of the weights.
Various measurements of the slave torque were collected during
operations in all configurations. Then, they were processed by

simulating a PLC implementation via Matlab. In particular, the
main steps of the finite state machine involved in the processing
are the following:
(1) Sample the slave torque in a buffer of N = 10000

elements;
(2) Compute the signal model with Algorithm 1;
(3) Compute the NRMSE distance index, as in (26), with

respect to the reference model.
The reference model is computed as the mean value of the first
10 models obtained during known healthy operating conditions
by exploiting steps (1) and (2). Algorithm 1 is executed with
the following hyperpameters: n = 2 as the AR model order,
obtained with AIC criterion (Akaike, 1974), q = 6 more equa-
tions in its overdetermined part and N = 10000 as number
of samples. Each model is the outcome of the algorithm after
N sample are processed. The buffer and process architecture
is applicable to any PLC since it allows the storage of N data
samples to be coded within the main priority task, in this case
with a sampling time of Ts = 0.0008s, and the implementation
of their processing in a secondary task of lower priority, without
affecting significantly the system memory and the control pro-
gram computational load. This keeps the condition monitoring
task on-line, still able to check machine health state with respect
to degrading faults. For instance, a model is obtained every
few seconds while mechanism degradation due to friction or
wearing or heat typically takes minutes to hours to even days.
In this fashion, the reference AR model computed while the
system is in healthy working conditions is then compared with
the models obtained while operating in the previously depicted
load configurations.

6. RESULTS

The data collected from the depicted processing are here shown
and analysed. The torque signal measured during healthy oper-
ations and its computed differences are shown in the top row of
Fig.4. Due to the higher power of the AR part with respect to the
ideal torque demand, the signals have approximately constant
mean already at τ (2)(t). This results in acceptable fault detec-
tion from the 2nd difference if we use the NRMSE indicator
with a threshold of Th = 0.1, as we can see in the last row
of Fig.4. However, in τ (2−3)(t) case, a false healthy condition
may appear for Config. (3), despite τ (2)(t) being the best in
pointing out Config. (4). This can be also deduced within the
model plots, in the middle row of Fig.4, who show how close
they are to the healthy ones. The best indicator in this respect
is obtained in the case of τ (4)(t) where faults have separate
levels revealing satisfactory fault detection when Th is applied.
In particular, it turns out to be the most suitable to perform the
monitoring task validating our proposition.

7. CONCLUSION

The aim of this work was to provide a procedure to monitor
servomotor driven mechanisms in PLC controlled machines by
means of their absorbed torque. We exploit the way electric
cams are programmed to get rid of the nominal torque con-
tribution by computing its (k + 1)th-order difference and use
the remaining signal as representation of the machine health
state in the Model-of-Signal framework. This allows condition
monitoring of the servo mechanism system without any detailed
knowledge of the electric cam (only the maximum polyno-
mial degree) and the related mechanism and equivalent inertia.
Moreover, it does not require the addition of diagnosis sensors
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Fig. 4. [Top] Signals: the healthy signal of 3 cams and its computed differences are shown. [Middle] Models: the collected models for the four configurations are
shown. [Bottom] NRMSE: the collected indexes are shown, a1 in blue and a2 in orange. The dashed lines divide one configuration from the other. They are,
from left to right, Config. (1) to (4) respectively.

on board and permits to perform fault detection locally on the
PLC by means of recursive algorithms. Finally, the models
obtained can be fed, in a networked architecture, to computer
able to draw more information and add fault isolation and prog-
nosis providing the foundations to build intelligent maintenance
systems. The next steps are involving the actual coding of the
procedure and its employment in industrial prototypes.
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