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Abstract: An autonomous underwater vehicle (AUV) or a multi-AUV system performing
autonomous seafloor exploration missions by a side-scan sonar need to perceive their envi-
ronment in order to replan the mission if they detect interesting objects in sensor data. Several
anomalous/salient object detection methods mostly used for natural images are here applied to
sonar images. All methods were firstly benchmarked on a 1500 simulated side-scan sonar images
dataset. Precision-recall and processing time analysis was conducted in order to choose the best
suited method in such controlled conditions. The performance of the best performing detection
method was then validated on a 350 real side-scan sonar images dataset. This method was then
implemented and optimized for the computer onboard an AUV. It turned out to be fast enough
for online processing of large volumes of sonar data.
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1. INTRODUCTION

Side-scan sonar is often used in marine monitoring and
exploration missions. This includes exploration of bio-
sphere, exploration of underwater archaeological sites, ma-
rine safety, and many other applications. Side-scan sonar
survey missions are executed either by a tethered towfish
equipped with a side-scan sonar, Plets et al. (2013), or by
using remotely operated vehicles (ROVs) or autonomous
underwater vehicles (AUVs), Ludvigsen et al. (2014). De-
ploying a tethered towfish from a boat requires hiring a
boat and its crew: a towfish operator, a side-scan operator,
and of course experts who can interpret sonar data online
and tag interesting objects to be revisited later on in a
high detail mission.
Deploying an AUV is another option. Since communi-
cation bandwith is a significant constraint on the AUV
operations and fast transmission of large sonar data vol-
umes is still not possible, sonar data is typically stored on
board the vehicle. This introduces an inability of on-the-
fly manual high detail mission (re)planning by the sonar
data interpreter, since all the sonar data can be processed
only after the initial survey mission, Chapple (2008).
The best option is to deploy an AUV with side-scan sonar
which would autonomously cover some area of seafloor,
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i.e. process sonar data online and autonomously make
decisions how to replan the mission to record in more detail
some interesting objects detected in sonar imagery. Au-
tomatic detection and classification techniques are being
developed for several reasons: to provide reliable and con-
sistent detection of objects on the seabed; to free human
analysts from time-consuming and tedious detection tasks;
and to enable autonomous in-field decision-making and
mission (re)planning based on observations of the detected
objects, Chapple (2008).
In authors’ previous work, several online side-scan sonar
data-driven coverage path planning (CPP) algorithms
were proposed for monitoring and surveying large-scale
(over 1km2) seafloor regions by an AUV and published
in Kapetanović et al. (2019). One of the task execution
algorithms needed for AUV to autonomously map some
area of interest is a module which detects interesting
objects in side-scan sonar data. For a given seafloor area’s
side-scan sonar imagery, this module should output the
coordinates of the interesting objects (if detected) in
the area and send them to the coverage path planning
module which then replans the AUV’s path in order
to inspect those objects in more detail. The goal is to
implement all the these modules for Lupis AUV, shown
in Fig. 1, which Laboratory for Underwater System and
Technologies (LABUST) acquired by from OceanScan -
MST company.
Considering side-scan pings stacked together (in a so-
called "waterfall view") as a grayscale image, in this pa-
per the authors implemented and tested various methods
for interesting object detection. Contrast-based saliency
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Fig. 1. AUV Lupis

method in Zhai and Shah (2006), Itti-Koch saliency in
Itti et al. (1998), and SIMP-SAL saliency in Harel (2019
(accessed February, 2019) as a simplification of Itti-Koch
method, are almost exclusively used for natural images.
The anomaly detection method in Kaeli (2016), and graph-
based visual saliency (GBVS) saliency in (Harel et al.,
2006) were, however, used on side-scan sonar data. In this
paper, contrast based saliency method from Zhai and Shah
(2006), originally used on single-scale natural images, is
extended for use on multiple resolution scales of side-scan
sonar images. Also, processing time of the anomaly detec-
tion method from Kaeli (2016) is significantly improved.
The above mentioned methods were benchmarked in Mat-
lab on a dataset of 1500 simulated side-scan sonar images
containing a single and also multiple objects of various
sizes and at various positions. The anomaly detection
method from Kaeli (2016) had the best precision and recall
performance on simulated sonar images dataset. Its perfor-
mance was then validated on a dataset of 350 real side-scan
sonar images and it also had satisfactory recall-precision
performance. After prototyping and performance testing
phase, the method was implemented using OpenCV li-
brary and integrated into Robot Operating System (ROS)
environment in order to benchmark its processing time on
the computer onboard AUV Lupis. It turned out to be fast
enough to process 1 megapixel (MP) in 1.5 − 2s which is
fast enough for large volumes of sonar data being recorded.
The rest of the paper is organized as follows: a short
introduction to the terms saliency and anomaly is given
in Section 2. Stateflow developed for using saliency de-
tection methods on side-scan sonar images is given in
Section 3. Section 4 presents the performance metrics
used to assess how well do the mentioned methods detect
salient/anomalous objects in simulated side-scan sonar
images. The best performing method from Section 4 is
then validated on real side-scan sonar image dataset in
Section 5. This method is reimplemented to run on the
target hardware of AUV Lupis, and its processing time,
crucial for online applications, is analyzed in Section 6.
Concluding remarks are given in Section 7.

2. OVERVIEW OF SALIENCY METHODS

In order to design algorithms for interesting objects de-
tection in sonar images, it is first needed to understand
how human visual system notices interesting things which
pop up from the rest of the visual field. Our visual system
is selective, i.e., we concentrate on certain aspects of a
scene while neglecting other things. It is interesting to
note that human brain uses a tiny fraction (<1%) of the
collected visual information from the optic nerve to build
a representation of the environment. In the literature, two
main attention mechanisms are discussed: top-down and

bottom-up. Top-down is voluntary, goal-driven and slow,
i.e., typically in the range between 100ms and several
seconds. In contrast, bottom-up attention (also known as
visual saliency) is associated with attributes of a scene
that draw the attention to a particular location. These
attributes include motion, contrast, orientation, brightness
and color. Bottom-up mechanisms are involuntary, and
faster than top-down, Sharma (2015). In the past few
decades, modeling of visual saliency has generated a lot
of interest in the research community. It has paved the
way for a number of computer vision applications such
as: target detection, image and video compression, image
segmentation, context aware image resizing, robot localiza-
tion, image retrieval, image and video quality assessment,
dynamic lighting, advertisement, artistic image rendering
and human–robot interaction Sharma (2015).
On the other hand, similarly, anomaly detection refers
to the problem of finding patterns in data that do not
conform to expected behavior. The importance of anomaly
detection is due to the fact that anomalies in data translate
to significant (and often critical) actionable information
in a wide variety of application domains, Chandola et al.
(2009). It is thus safe to say that interesting objects in
sonar imagery are both salient and anomalous w.r.t. the
surrounding mostly sandy seafloor.
Two broad classes of salient/anomalous object detec-
tion/classification algorithm are in use: supervised algo-
rithms, requiring training data with target objects in
known locations, and unsupervised algorithms. Unsuper-
vised saliency map and anomaly detection algorithms ap-
plied in the field of computer vision use a number of mod-
els, i.e. Bayesian, cognitive, decision theoretic, graphical,
information theoretic, pattern classification, spectral anal-
ysis, and many other types of models. Interested reader is
referred to (Sharma (2015)) and (Chandola et al. (2009))
survey papers on unsupervised saliency and anomaly de-
tection methods. Supervised saliency map and anomaly
detection algorithms are implemented as artificial neural
networks (ANNs) which need exhaustive training data
sets to have good performance and generalization under
arbitrary circumstances as in Ji et al. (2018) and Huang
et al. (2015).
Techniques for computer-aided detection/ classification
(CAD/ CAC) in sidescan sonar imagery are under devel-
opment since the early 1990s. The most successful tech-
niques rely on the presence of a coupled acoustic high-
light and shadow associated with an object sitting on the
seabed, Chapple (2008). In the context of detecting inter-
esting objects or targets in side-scan sonar images, several
saliency/anomaly detection methods have been developed,
both unsupervised as well as supervised, e.g. Reed et al.
(2003), Mishne et al. (2015), Zhu et al. (2019), Goldman
and Cohen (2004), Noiboar and Cohen (2007), Zhu et al.
(2017), Kaeli (2016), Mishne and Cohen (2013).

3. STATEFLOW OF THE INTERESTING OBJECT
DETECTION METHODS ADAPTED FOR

SIDE-SCAN SONAR IMAGES

In this paper five anomalous/salient object detection
methods were implemented and tested. Contrast-based
saliency method (CON-SAL) from Zhai and Shah (2006),
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graph-based visual saliency (GBVS-SAL) from (Harel
et al., 2006), Itti-Koch saliency (ITTI-SAL) from Itti
et al. (1998), and SIMP-SAL saliency from Harel (2019
(accessed February, 2019) as a simplification of Itti-Koch
method are usually used for natural images. However,
the anomaly detection method (ANOMALY) from Kaeli
(2016) was used exclusively for side-scan sonar imagery.
It is worth noting that other methods have also been
tried out, namely Mishne and Cohen (2013), which uses
diffusion maps for anomaly detection, but was too slow
to be considered for online use on-board an AUV, even
though it detected anomalous interesting object quite
good. Method for generating image signatures based on
highlighting sparse salient objects in an image, Hou et al.
(2012), was much worse than the other methods when
used on side-scan sonar images. Also, translating side-
scan sonar grayscale image (or its parts) into its fractal
dimension to differ naturally occurring objects and man-
made objects based on method Liu et al. (2014) was a few
orders of magnitude slower than the other methods even
for small portions of sonar images.
The reason why artificial neural networks (ANNs) were not
considered as a potential method for anomaly detection
was that problem of anomalous object detection is much
more general than classification problem, and the dataset
of 350 real side-scan sonar transect images that was
available to the authors was in their opinion insufficient
training set which may lead to the lack of generalization
capabilities of the ANN. Also, simulated side-scan sonar
images could most probably not cover many variations of
seafloor types and objects, which would again lead to an
insufficiently diverse training dataset.
A generic stateflow was developed in order to use any of the
five methods on any side-scan sonar image. Pseudocode of
this stateflow is given in Algorithm 1. All of the above
mentioned methods process side-scan sonar image img
which is pre-proceesed by removing nadir part (line 2 in
Algorithm 1). Then an along- and across-track normal-
ization is performed by a moving average filter (of length
params.mavg_M) to compensate for the attenuation of
the returned signal towards the edges of the sonar range
(line 3 in Algorithm 1). After that, the image is smoothed
by Gaussian filter of kernel params.gauss_kernel to ad-
ditionally suppress noise (line 4 in Algorithm 1). The
saliency/anomaly detection method params.sal_method
(any of: ITTI-SAL, CON-SAL, ANOMALY, GBVS-SAL,
or SIMP-SAL) is then applied to the pre-processed sonar
image (line 5 in Algorithm 1).
After the saliency/anomaly map salMap is computed, it is
then thresholded w.r.t. its mean value params.saliency_th
(line 6 in Algorithm 1). Edge detection is then applied to
extract all edges of the most salient areas in the sonar im-
age (line 7 in Algorithm 1). Those edges are then thinned
down to remove a few pixel objects by a median filter
defined by params.median_kernel (line 8 in Algorithm
1). The edges are then segmented into separate contours
(line 9 in Algorithm 1). Contours which enclose area less
than a predefined parameter params.areath are then dis-
carded (line 10 in Algorithm 1). Next step discards the con-
tours whose interior pixels’ mean brightness is less than a
predefined parameter params.brigth (line 11 in Algorithm
1). Finally, the oriented bounding boxes of the remaining

Algorithm 1 Stateflow for anomalous object detection
1: function detectAnomalies(img, params)
2: img ← img.removeNadir
3: img ← img.normalizePings(params.mavg_M)
4: img ← img.smooth(params.gauss_kernel)
5: salMap← img.getSalMap(params.sal_method)
6: salMap← salMap.threshold(params.sal_th)
7: edges← salMap.detectEdges()
8: edges← edges.median(params.median_kernel)
9: contours← edges.segment()

10: contours← contours.threshold(params.areath)
11: contours← contours.threshold(params.brigth)
12: bboxes← contours.getBBoxes(contours)
13: return bboxes

contours are computed for easier representation (line 14
in Algorithm 1). The results this stateflow’s performance
testing are given in the following sections.
Pseudocode of the ANOMALY method from Kaeli (2016),
here named getAnomalyMap method, is given in Al-
gorithm 2, and is called in Algorithm 1 in line 5 as
img.getSalMap(’ANOMALY’). This algorithm scales down
a sonar image to params.nscales resolution levels (line 4 in
Algorithm 2) and each time applies Laplacian of Gaussian
(LoG) filtering (line 5 in Algorithm 2). Then it scales up
the image to its original size (line 6 in Algorithm 2) and
normalizes it w.r.t. to its mean value (line 7 in Algorithm
2). The resulting image is stored into a so-called filter
bank f_bank (line 8 in Algorithm 2). After the filter bank
has been computed, the anomaly map salMap of local
pixel histogram differences is computed. The histogram
difference metric for local variation of a pixel w.r.t. its
neighbors (lines 9 − 11 in Algorithm 2), defined in Kaeli
(2016) as `1 norm, is that algorithm’s serious bottleneck.
It is here approximated as an Nd kernel diffkernel (lines
9−10 in Algorithm 2). The resulting salMap is computed
as a convolution of the filter bank f_bank with the kernel
diffkernel, which gives similar results to the original `1
norm in Kaeli (2016), but in a fraction of the time.
CON-SAL method is here extended for use on side-scan
sonar images and also on multiple resolution levels. It is
called in Algorithm 1 in line 5 as img.getSalMap(’CON-
SAL’). Pseudocode of the CON-SAL method is almost the
same as Algorithm 2. The only difference between CON-
SAL and ANOMALY method is in line 5 of Algorithm 2.
Instead of LoG filtering, the extended CON-SAL method
computes the brightness distance map.

Algorithm 2 Multiscale anomaly map
1: function getAnomalyMap(img,params)
2: f_bank ← zeros(img.size(), params.nscales)
3: for i← 1 to params.nscales do
4: imgsd ← img.scaleDown(params.scales[i])
5: imglog ← imgsd.LoG(params.log_kernel)
6: imgsu ← imgsd.scaleUp(params.scales[i])
7: imgsu ← imgsu.normalize()
8: f_bank[i]← imgsu

9: diffkernel = ones(3, 3, params.nscales)
10: diffkernel(2, 2, :) = −8
11: salMap← convolve(f_bank, diffkernel)
12: return salMap
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4. SIMULATED DATASET RESULTS

The first step to deciding which method is best used
for the problem at hand, a simple side-scan sonar im-
ages dataset of 1500 2MP images was generated, mostly
as noisy grayscale images with a few (1 − 5) ob-
jects and their simulated sonic shadows of various sizes
(1x1, 1.5x1.5, ..., 10x10m2) and position distributions in
the sonar image. With the assumed 50m across-track range
of the side-scan sonar, the resolution of each pixel was
taken as 5×5cm. Performance benchmarking of the above
mentioned five methods for salient/anomalous object de-
tection was performed on a computer with a quad-core
2.8GHz CPU with 16GB of RAM and 4GB GPU. Soft-
ware used for benchmarking on the simulated dataset was
MATLAB with its Image Processing Toolbox and Parallel
Computing Toolbox with CUDA GPU Processing Sup-
port. All five methods used to detect interesting objects in
side-scan sonar images were optimized for execution on a
GPU in order to perform as fast as possible. This was done
having in mind that these methods would also be used
in Gazebo simulator in which AUV simulator, Manhães
et al. (2016), and side-scan sonar simulator, Bore et al.
(2019), would be integrated with the sonar image process-
ing module, the online coverage path planning module,
Kapetanović et al. (2019), as well as the control module,
Kapetanović et al. (2017).
All five methods were applied to the simulated side-scan
sonar image dataset, and were compared to the known
ground truth of interesting objects pixels indices. An
example of such simulated side-scan sonar image and
five methods’ performance in detecting interesting objects
standing out in those images is given in Fig. 2. It is clear
that the anomaly detection method from Kaeli (2016)
gives the most accurate and precise detection results
compared to other methods. In order to formalize this,
a precision-recall analysis was conducted. The so-called F
harmonic mean metric (Sokolova and Lapalme (2009)) was
used to aggregate these two metrics, which is defined as:

F = 2× precision× recall

precision + recall
. (1)

Results from all 1500 tests conducted are shown in Fig. 3.
Mean values of recall-precision performance of all 5 meth-
ods are given in Fig. 3a. It is clearly visible that at 93% F-
measure, the anomaly detection method from Kaeli (2016)
is much better than Itti-Koch, GBVS, as well as contrast
based saliency method. SIMP-SAL is the closest with
76% F-measure. Fig. 3b shows execution times of all 1500
runs for each of the chosen 5 methods normalized by the
image size in MP . It is obvious that SIMP-SAL is much
faster than all other benchmarked methods, and anomaly
detection method is second fastest, but significantly more
precise and accurate in its detections. Taking into account
that the target hardware on-board AUV Lupis is roughly
10− 50 times slower than a high performance workstation
computer used for benchmarking, even then anomaly de-
tection method running 2− 10s/MP is considered by the
authors to be fast enough taking into account its winning
precision/recall performance as well.

Fig. 2. An example of interesting objects detection in
simulated side-scan sonar data by interesting object
detection methods. Colorbar represents each saliency
metric normalized by its mean value to visualize which
areas are the most interesting. Since anomaly and
contrast methods practically detect edges in multiple
scales, the anomaly/saliency values plots in the upper
subfigures are covered with detection bounding boxes.

(a) (b)

Fig. 3. (a) Comparison of mean recall, precision, and
combined metric usually used in interesting object
detection methods. (b) Distributions of processing
times normalized by sonar image size.

5. REAL DATASET RESULTS

To the best of authors’ knowledge, standardized bench-
marks for object detection specifically in the case of side-
scan sonar imagery do not (yet) exist. Thus, in order to
validate the results mentioned in Section 4, numerous real
side-scan sonar datasets were acquired from field trials
with the AUV in mostly underwater archealogical sites
near Cavtat, Croatia, Baiae Bay, Italy, Peristera island,
Kikinthos island, Glaros and Tilegraphos Capes in Greece,
as well as around Pelješac Penninsula and Biograd na
Moru in Croatia. Anomaly detection method from Kaeli
(2016) as the best method on simulated data was applied
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(a)

(b)

Fig. 4. An example of interesting objects detection in real
side-scan sonar data by interesting object detection
methods. Colorbar represents each saliency metric
normalized by its mean value to visualize which areas
are the most interesting. Since anomaly detection
method Kaeli (2016) detects edges in multiple scales,
the anomaly values plot is covered with detection
bounding boxes.

to this dataset and using the same computer as for the
simulated dataset.
The resulting interesting objects detection results are given
in Fig. 4. The ground truth of what is interesting in the
given sonar images was obtained from human operators
circling the objects standing out from the ususal clutter
and noise in the side-scan sonar images. It can be noted
that the anomaly detection method gives intuitive results
for interesting objects’ detection in the real side-scan sonar
data as well, i.e. of all five methods it matches the human
perception of “salient” and “outstanding” objects in the
noisy side-scan sonar data the best.

6. RUNNING ON TARGET HARDWARE

After prototyping and performance testing phase, the
anomaly detection method was implemented using OpenCV
library and integrated into Robot Operating System
(ROS) environment in order to benchmark its processing
time on the target hardware onboard AUV Lupis, namely
UDOO DUO. UDOO has a dual-core 1GHz CPU, 1GB of
RAM, and a Vivante GPUs for 2D, 3D and vector graphics.
Additional changes were made to the OpenCV imple-
mented anomaly detection algorithm, namely converting
the Nd convolution described in Section 3 into N 2D
convolutions for computing local pixel histogram differ-
ence through the whole filter bank, since they are linearly
separable and OpenCV did not offer a straightforward
Nd convolution method. Also, Contrast-Limited Adaptive

Fig. 5. Unit processing time per megapixel UDOO vs.
computer.

Histogram Equalization (CLAHE) algorithm, Pizer et al.
(1990), was used to normalize the brightness of the sonar
images, thus improving the contrast at image edges.
Processing time for anomalous/salient object detection
algorithm on UDOO is on average 50 − 60 times slower
than the processing time for anomaly detection on the
computer, see Fig. 5. Still, UDOO manages to process
2− 3MP side-scan sonar images from our real dataset in
around 5−10s which is fast enough for mission replanning
purposes. It is also interesting to analyze processing time
in a relative sense normalized by the size of an image in
MPs. Fig. 5 shows that, on average, UDOO processes
1MP in 1.5−2s. This can be used as a mission parameter.
Knowing the expected size of the sonar image per one
track of the lawnmower survey mission and the time
needed to process 1MP , mission operator can decide to
cut the sonar image of the whole line in smaller subregions
in order to maintain the online sonar image processing
and consequential mission (re)planning in case something
interesting appears in sonar data.
CPU usage on UDOO when anomaly-detector node enters
the getAnomalyMap method (see Section 3, Algorithm 2)
is at most 90−100% but only on one core of UDOO’s CPU,
leaving the other core unblocked for other operations.
Memory usage is primarily affected by the depth nscales of
the filter bank, defined Section 3. In the tests, the average
size of an image was 10MB. Anomaly detector node used
on average (nscales + 1) × 10MB. UDOO has 1GB of
RAM and 1GB of swap memory, and since effective filter
depth for anomaly detection was empirically proven to be
nscales < 4, this is enough RAM for such applications.

7. CONCLUSION

An AUV or a multi-AUV systems performing autonomous
seafloor exploration missions need to perceive their envi-
ronment in order to be able to replan the mission based on
sensor data. For large-scale areas of seafloor exploration
one of the most often used sensors is side-scan sonar.
Stacked pings of side-scan sonar can be represented as a
grayscale image. In this paper the authors implemented
and tested five different anomaly/saliency detection meth-
ods. Two of the chosen methods were ever applied to
side-scan sonar images, while the other three were mostly
applied to natural images. Benchmarking of precision-
recall performance of the above mentioned methods was
performed on a dataset of 1500 simulated side-scan sonar
images. The anomaly detection method from Kaeli (2016)
had the best precision and recall performance on simulated
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sonar images dataset. Its performance was then validated
on a dataset of 350 real side-scan sonar images on which it
also had good recall-precision performance. The anomaly
detection method from Kaeli (2016) was then implemented
using OpenCV library and integrated into Robot Oper-
ating System (ROS) environment in order to benchmark
its processing time on computer onboard AUV Lupis. It
turned out to be fast enough to process 1MP of sonar
image in 1.5− 2s which the authors deem fast enough for
large volumes of sonar data.
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