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Abstract: In the paper, an approach to numerical integration of equations governing motion
of constrained mechanical systems is suggested. In the framework of this approach, unknown
reaction forces acting on the system are treated as controls, and the algebraic equations that
these reactions satisfy, as control goals. On the basis of the suggested approach, a technique for
numerical solving equations of rolling is developed. The discussion is illustrated by the example
of application of the algorithm to solving the problem of a heavy wheel with a pendulum (a
prototype of a ball-shaped robot) rolling along a curvilinear profile without slippage.
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1. INTRODUCTION

The problem of a wheel rolling on an uneven terrain is of
importance in many practical applications. A rising tide
of interest to this classical problem (Painlevé (1895)) is
due to appearance of robotic systems of a new type—ball-
shaped robots—and search for new actuators for such sys-
tems (Ylikopri et al. (2014)). To solve control problems for
a ball-shaped robot, one needs, in particular, methods for
numerical integration of equations governing ball rolling on
an uneven surface. A particular case of the above problem
is that of a heavy wheel rolling along a curvilinear profile.

The basic difficulty associated with the integration of the
rolling equations is that the reaction force and torque
acting on the wheel at the touching point are a priori un-
known. They are to be determined from certain algebraic
equations (constraints) resulting from additional assump-
tions that the rolling wheel is supposed to satisfy (Painlevé
(1895)). These constraints include both holonomic and
nonholonomic ones, which makes the direct application of
the Lagrange formalism to this problem difficult. In the
case of a flat surface, this problem was solved in quadra-
tures by Painlevé (1895). However, the method he used
cannot be directly extended to the case of an arbitrary
curvilinear profile. On the other hand, it is well known
that straightforward integration of equations of motion of
mechanical systems subjected to nonholonomic constraints
results often in the lack of stability and convergence of
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the computation process, as well as in the violation of
the constraints. The problem of constraint stabilization
was first set and solved in Baumgarte (1972). In this
work, the author suggested a stable algorithm of numerical
integration for the case of one constraint. The proposed
method had become very popular; however, its application
to a wider circle of problems revealed certain drawbacks
inherent in the method (see, e.g., Ascher et al. (1995)
and Petzold and Potra (1992) and references therein).
It was shown in Ascher (1995) that the direct use of the
technique suggested in Baumgarte (1972) does not ensure
stability of the process of construction of an approximate
solution, which makes it necessary to impose additional
restrictions relating stabilization parameters with the step
of integration. Additional restrictions were also introduced
in the works where attempts were made to extend the
approach to the case of an arbitrary number of constraints.
For instance, Ascher et al. (1995) consider multiple, but
only holonomic, constraints. In Muharlyamov (2011), both
holonomic and nonholonomic constraints are considered;
however, the latter are supposed to depend linearly on the
generalized coordinates. To the best authors’ knowledge,
there are no works where the general case of multiple con-
straints is considered, as well as works, where the technique
discussed is applied to numerical solving rolling equations.

The paper is organized as follows. In Section 2, we show
that finding solution to equations governing motion of a
constrained mechanical system reduces to solving a sys-
tem of differential–algebraic equations (DAE) and outline
the proposed technique for numerical integration of this
system. In Section 3, we discuss in detail the application
of this technique to solving the problem of a heavy wheel
with a pendulum rolling along a curvilinear profile. Results
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of numerical experiments demonstrating high accuracy of
the proposed method are presented in Section 4. Prospects
of future studies are discussed in Section 5.

2. OUTLINE OF THE PROPOSED APPROACH

2.1 Problem Statement

We consider a constrained mechanical system governed
by Newton’s or Lagrange equations. Let the equations of
motion be written in the state-space form as

Ẋ = F (X,N), X(0) = X0, t ∈ [0, t1], (1)

with the right-hand side of the system being linear in N ,

F (X,N) = B(X)N + F̃ (X). (2)

Here, X ∈ Rn is the state vector, an n×m matrix

B(X) and vector F̃ (X) are continuously differentiable
functions, and N ∈ Rm is an unknown vector of constraint
reactions. We assume that the constraints are specified as
m algebraic equations of the form

fi(X) = 0, i = 1, . . . ,m, (3)

and that the initial conditions in (1) satisfy these con-
straints. We also assume that functions fi(X) have con-
tinuous partial derivatives up to the order n and that
equations (3) determine a smooth manifold M in Rn, to
which the desired trajectory belongs.

Equations (3) together with (1) form a closed system
of n + m equations with respect to n + m unknowns
(X,N), with the algebraic equations (3) not depending
explicitly on N . For system (1)–(3), we state the problem
of finding an approximate solution. Following Filippov
(1987), under an approximate solution with accuracy δ
in an interval [0, t1], we mean vector functions X(t) and

N(t), Xi(t), Ni(t) ∈ C[0, t1], such that ||Ẋ−F (X,N)|| < δ
and |fi| < δ, ∀t ∈ [0, t1], ∀i = 1, . . . ,m.

Taking into account that the right-hand side of system
(1) includes unknown constraint reactions, solution to
this problem cannot be obtained by applying standard
numerical integration methods, and the fact that the
algebraic equations (3) determining these reactions do not
explicitly depend on them makes the problem even more
complicated. Thus, there is a need in the development of
a method for numerical solving the DAE system (1)–(3).

The notation of the equations of motion in the state-
space form is convenient in that it makes clear that the
approach discussed is applicable to a number of control
(stabilization) problems. Indeed, system (1), (2) may be
viewed as an affine control system with the vector input N
and the left-hand sides of constraints (3), as the outputs
yi = fi(X) that are to be stabilized at zero. Hence, the
problem of finding controls N stabilizing outputs yi also
reduces to solving the DAE system (1)–(3).

Another reason to consider the state-space form of the gov-
erning equations rather than the second-order Newton’s
or Lagrange equations is that the original description of
the system under study can include auxiliary coordinates
whose dynamics are governed by first-order differential
equations (this point is illustrated in the example discussed

in Section 3), so that the use of the state-space form makes
it possible to consider such systems and those given by
second-order differential equations in a unique way.

2.2 Underlying Ideas

To determine unknown reaction forces, we apply a tech-
nique similar to that of feedback linearization (Isidori
(1995)). For each constraint equation fi(X) = 0, by ri,
we denote the order of the least time derivative by virtue
of system (1) that explicitly depends on at least one
component of N . Since the right-hand side of (1) linearly
depends on N , the ri-th time derivative of fi by virtue of
(1) also linearly depends on N ; i.e.,

drifi
d tri

= Ai(X)N + ϕi(X), i = 1, . . . ,m, (4)

where Ai(X) is a row vector of length m and ϕi(X) is
the sum of all terms in the ith equation not depending
on N , whereas, for all j < ri, d

jfi/d t
j does not explicitly

depend on N . For a mechanical system, in the majority of
cases, either ri = 1 (nonholonomic constraints) or ri = 2
(holonomic constraints). In the general case, however, the
algebraic equations (3) are not necessarily mechanical
constraints, so that the division of equations (3) into
holonomic or nonholonomic ones is not constructive (this
is clearly seen in the illustrative example below). For the
sake of generality, in the remainder of this section, ri is
considered to be an arbitrary positive integer. Let A(X)
denote the m×m matrix with rows Ai(X). Suppose that
A(X) is nonsingular at a point X = X∗. Then, by analogy
with the affine control systems (Isidori (1995)), we say
that the nonlinear system (1)–(3) has a (vector) relative
degree {r1, . . . , rm} at a pointX∗ . Note that, like in Isidori
(1995), the numbers ri in the vector relative degree can
also be defined in terms of the Lie derivatives, since both
definitions are clearly equivalent.

Since equations (3) hold identically on the desired trajec-
tories, the left-hand sides in formulas (4) also identically
equal to zero:

drifi
d tri

= 0, i = 1, ...,m, (5)

from which it follows that the desired vector N satisfies
the equation

A(X)N + ϕ(X) = 0, (6)

where X ∈M and ϕ(X) = [ϕ1, . . . , ϕm]T.

However, as noted in Baumgarte (1972) and Ascher et al.
(1995), one cannot use equations (5) for numerical finding
vector N because of uncontrolled growth of residuals of
the algebraic equations (3), which results from errors in
initial data or inaccuracies of the method for constructing
an approximate solution. This is clearly seen from the form
of the general solution of equations (5) given by

fi(t) = fi(0) +
dfi(0)

dt
t+ · · ·+ 1

(ri − 1)!

dri−1fi(0)

dtri−1
tri−1.

Following the approach suggested in Matrosov (2007), we
allow the constraint residuals to be nonzero and replace
equations (5) by new differential equations in fi that
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satisfy the following conditions:
1. The order of the ith differential equation of the new
system is equal to that of the ith equation in (5).
2. For zero initial conditions, solutions of the new system
and system (5) coincide.
3. Any solution of the new system corresponding to
nonzero initial conditions exponentially tends to zero.

These conditions are satisfied if we take the ith equation
of the new system in the form

drifi
dtri

+ ciri
dri−1fi
dtri−1

+ · · ·+ ci1fi = 0, cij > 0, (7)

where the coefficients cij are selected such that all roots
of the characteristic equation have negative real parts.
In what follows, for the convenience of the notation and
subsequent calculations, we select coefficients in (7) from

one-parameter families as cij(λi) = Cri+1−j
ri λri+1−j

i , j =
1, . . . , ri, λi > 0, which corresponds to the repeated real
negative roots −λi of the characteristic equations (see
Pesterev (2016) for detail).

Expressing the ri-th derivative from (7) and substituting
the expression obtained into equation (4), we get

Ai(X)N + ϕi(X) + ciri
dri−1fi
dtri−1

+ · · ·+ ci1fi = 0. (8)

Denoting the free term in (8) as ϕi(X,λi) and rewriting
equations (8) in the matrix form, we get the following
linear algebraic system in N :

A(X)N + ϕ(X,λ) = 0, (9)

where λ = [λ1, . . . , λm] and ϕ(X,λ) is the vector with the
entries ϕi(X,λi), i = 1, . . . ,m.

Let matrix A(X) be nonsingular for any X ∈ M. Then,
there is a neighborhood of the manifold where this matrix
is also nonsingular, and system (9) can be resolved in N :

N(X,λ) = −A−1(X)ϕ(X,λ). (10)

Substituting (10) into (1) and solving the resulting ODE
system by a standard numerical integration method, such
as the Runge–Kutta or Adams method, we get the desired
trajectory of system motion.

If the initial conditions in (1) satisfy equations (3), then

fi(0) = ḟi(0) = · · · = dri−1fi(0)/d t = 0 and solutions
to equations (8) are functions fi(t) ≡ 0; i.e., conditions
(3) are fulfilled. If the initial conditions do not satisfy
constraints (3), one obtains an approximate solution of the
problem, which exponentially converges to the exact one.
Taking sufficiently large coefficients λi (and, if necessary,
reducing the step of integration, see Ascher et al. (1995)
for detail), an arbitrarily high accuracy of the solution can
be achieved. The errors associated with inaccurate initial
values not only are not accumulated but also decrease
exponentially with the exponent −λi, which makes it pos-
sible to get high-accurate solutions in large time intervals.

For the most frequently met cases of ri = 1 and ri = 2,
equation (7) in residuals takes the form

ḟi + λifi = 0, λi > 0, (11)

and

f̈i + 2λiḟi + λ2i fi = 0, λi > 0, (12)

respectively. Here and in what follows, we use the dot
notation to denote the first and second time derivatives
by virtue of system (1).

3. ILLUSTRATIVE EXAMPLE

As an illustration, we apply the method described in the
previous section to solving the problem of a heavy wheel
of mass M and radius r with a pendulum (which may
be viewed as a prototype spherical robot) rolling along
a curvilinear gutter with the shape given by an implicit
equation h(x, z) = 0. We assume that the partial derivative
h′z of the function h(x, z) is not equal to zero (no vertical
segments) and that the profile of the gutter is admissible
for the given wheel, i.e., the curvature of the curve at any
point is less than 1/r. The pendulum is the point mass
m attached to the end of a massless rod of length l < r
suspended from the wheel axle (Fig. 1). For the generalized

Fig. 1. Kinematic and dynamic sketches of the wheel
rolling along a curvilinear gutter.

coordinates, we take coordinates of the wheel center along
the horizontal and vertical axes x and z of the inertial
frame, the angle θ of the wheel rotation around its axle,
and the angular deviation φ of the pendulum with respect
to the z axis, with φ = 0 corresponding to the lowest
position of the mass. Both angles are assumed positive
upon counterclockwise rotation.

3.1 Equations Governing Dynamics of the System

The motion of the system is governed by the Lagrange
equations

d

dt

∂T

∂ẋ
− ∂T

∂x
= Rx,

d

dt

∂T

∂ż
− ∂T

∂z
= Rz −

∂U

∂z
,

d

dt

∂T

∂θ̇
− ∂T

∂θ
= Q,

d

dt

∂T

∂φ̇
− ∂T

∂φ
= −∂U

∂φ
,

(13)

where T = T1 + T2 and U = U1 + U2 are kinetic and
potential energies of the system,

T1 =
1

2
M(ẋ2 + ż2 + r2θ̇2),

T2 =
1

2
m[(ẋ+ lφ̇ cosφ)2 + (ż + lφ̇ sinφ)2],

U1 = Mgz, U2 = mg(z − l cosφ),

(14)

g is the acceleration of gravity,R = (Rx, Rz) is the reaction
force, Q is the moment of the reaction force,

Q = −r sinαRx + r cosαRz, (15)

α is the angle between axis x and the vector directed from
the wheel center to the point where the wheel touches the
curve (Fig. 1), −π < α < 0.
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Performing differentiation in (13) and resolving the system
obtained with respect to the second derivatives, one gets

(M +m)ẍ = aRx + bRz +mlφ̇2 sinφ,

(M +m)z̈ = bRx + cRz −mlφ̇2 cosφ− (M +m)g,

Mr2θ̈ = −r sinαRx + r cosαRz,

Mlφ̈ = − cosφRx − sinφRz,

(16)

where

a = 1 + γ cos2 φ, b = γ sinφ cosφ, c = 1 + γ sin2 φ, (17)

and γ = m/M . Equations (16) cannot be integrated
directly, since the reaction force and angle α are not a
priori known. They are determined by constraints imposed
on the system. Given that the right-hand sides of (16)
depend on three unknown functions (Rx, Rz, α), we need
three constraint equations, which can be derived from
additional assumptions on the character of rolling.

3.2 Constraint Equations

We assume that the wheel does not lose contact with the
gutter, i.e.,

h(xa, za) = 0, (18)

where (xa, za) is the touching point, xa = x + r cosα,
za = z + r sinα, and that there is no slipping, which can
be written as

−ẋ sinα+ ż cosα+ rθ̇ = 0. (19)

Let us introduce the notation η = [h′x(xa, za), h′z(xa, za)]T

and τ = [−h′z(xa, za), h′x(xa, za)]T for the normal to the
curve and the tangent vector, respectively, at the point
where the curve touches the wheel (in what follows, for
brevity, we omit arguments of function h(xa, za) and its
derivatives); v = [ẋ, ż]T for the vector of velocity of the
wheel center; µ = [cosα, sinα]T for the unit vector lying
on the line connecting the wheel center and the touching
point; and χ = [− sinα, cosα]T for the vector orthogonal
to µ (Fig. 1). Clearly, when the wheel moves without losing
contact with the curve, vectors µ and τ are orthogonal,
(µ, τ) ≡ 0; i.e., α must satisfy the equation

h′x(xa, za) sinα− h′z(xa, za) cosα = 0, (20)

which will be taken to be the third constraint. Following
the approach discussed in Section 2, we denote the left-
hand sides of equations (18)–(20) as f1, f2, and f3,
respectively, and differentiate them until the constraint
reactions appear.

3.3 Expanding the System of Dynamics Equations

Since the right-hand sides of equations (16) are nonlinear
in α, we cannot consider α as a constraint reaction in
the framework of the approach discussed (recall that the
right-hand side of the dynamic equations should linearly
depend on unknown constraint reactions). Therefore, it
makes sense to consider α as a generalized coordinate and
to supplement system (16) with a differential equation
in α. The order of this equation is generally determined
by the algebraic equations. Taking into account that two
constraints (18) and (20) are holonomic ones and that they

explicitly depend on α, an obvious guess is to require α
to be a solution of a second-order differential equation.
However, as will be shown in the next subsection, by
confining our consideration to a neighborhood of the
manifold (and we can certainly do this in the given
problem), we can also employ the first-order equation

α̇ = U. (21)

The right-hand side of (21) depends linearly on the new
unknown U , which, thus, can be included in the set of the
reaction forces.

3.4 Algebraic Equations in Constraint Reactions

Differentiating the algebraic equations with respect to time
and omitting routine intermediate calculations to save
room, we get

ḟ1 = h′xẋ+ h′z ż − rα̇(h′x sinα− h′z cosα)

≡ (v, η)− (µ, τ)rα̇; (22)

ḟ2 = −ẍ sinα+ z̈ cosα− α̇(ẋ cosα+ ż sinα) + rθ̈; (23)

ḟ3 = (µ̇, τ) + (µ, τ̇) ≡ [(µ, η)− (χ,H2χ)r]α̇− (v,H2χ),(24)

where

H2 =

(
h′′xx h′′xz
h′′xz h′′zz

)
.

As can be seen, by virtue of equation (20), the coefficient
of α̇ in (22) is zero on the manifold, and no constraint

reactions appeared in ḟ1. Taking the second derivative of
f1 by virtue of system (16), (21) and bearing in mind
that the coefficient −(µ, τ)r of α̈ is equal to zero on the
manifold, we get

f̈1 =
1

M +m
[(ah′x + bh′z)Rx + (bh′x + ch′z)Rz)]

+r(v,H2χ)U − gh′z + (v,H2v). (25)

Substituting formulas for the second derivatives of the
generalized coordinates from (16) into (23), (24), we find
the other two derivatives by virtue of system (16), (21) on
the manifold:

ḟ2 =
1

M +m
[(b cosα− a sinα)Rx + (c cosα− b sinα)Rz)]

− sinαRx

M
+

cosαRz

M
− mlφ̇2 cos(φ+ α)

M +m
− g cosα, (26)

ḟ3 = (||η|| − (χ,H2χ)r)U − (v,H2χ). (27)

As can be seen, the third (holonomic) constraint does not
need second differentiation, since the “constraint reaction”
U appeared in the first derivative ḟ3.

Introducing state variables X = [x, ẋ, z, ż, θ, θ̇, φ, φ̇, α]T

and rewriting system (16), (21) in the state-space form
(1), we obtain an affine system of nine equations with
the vector input N = [Rx, Rz, U ]T and outputs (18)–(20).
The vector of the constraint reactions N , as a function of
state variables, is found by solving the algebraic system
(9), where the rows Ai(X) of matrix A(X) and free terms
ϕi(X,λ) are easily determined from equations (25)–(27).
The invertibility of matrix A(X) on the manifold M is
proven in the Appendix. Then, it follows that system
(16), (21) with outputs (18)–(20) has vector relative degree
{2, 1, 1} at any point X ∈M and, hence, the DAE system
(16)–(21) can be solved by the proposed method.
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4. NUMERICAL EXAMPLE

Fig. 2. Plots of x(t) (upper curve) and and z(t) (lower
curve).

Fig. 3. Trajectory described by the pendulum mass.

Numerical modeling was carried out by means of the com-
puter algebra system DExpert developed by I. Matrosov.
This system allows one to automatically derive analytical
expressions for unknown constraint reactions, substitute
them into the right sides of the equations of system motion,
and integrate the equations obtained numerically.

In numerical experiments, we considered the system with
the following (dimensionless) parameters: M = 1, r =
7/40, m = 0.5, l = 0.8r. The shape of the curve shown in
Fig. 1 is given by the equation h(x, z) = 0, where h(x, z) =
z−x4+0.13x3−0.5x2−0.13x−0.5,−1 ≤ x ≤ 1. The system
of differential equations was integrated numerically by the
Adams’ method with the step h = 10−5. Our numerical
experiments showed that, for the given step, exponents
λi should be selected from the range [1, 105]. The results
below were obtained for λi = 1.5 · 103, i = 1, 2, 3. For the
given parameters, the maximum residual of the constraints
maxi maxt |fi(t)| did not exceed 5 · 10−10.

The results presented in Figs. 2–5 correspond to the fol-
lowing initial data: xa(0) = 0.5, ẋ(0) = 1.05, φ = 3.4, and

φ̇ = −11.5. The other initial data were selected such that
constraints (18)–(20) are satisfied. The total energy of the
system corresponding to these initial values only slightly
exceeds the minimal energy needed to overcome the local
maximum of the curve at x ≈ −0.132. This results in a
quite nontrivial picture of system behavior shown in Figs.
2–4, which depict results of solving the DAE system (16)–
(21) in the time interval [0, 200]. The wheel alternately

Fig. 4. Plot of the angle φ(t).

Fig. 5. Deviation of the total energy δE(t) on the solution
obtained (curve 3) and residuals f1(t) (curve 1) and
f2(t) (curve 2).

oscillates on the two different segments of the gutter with
x varying in the intervals [-0.67, 0.75] and [-0.13, 0.75],
respectively, depending on whether the wheel energy when
approaching the local maximum from the right is sufficient
to overcome it or not, which, in turn, depends on the
current distribution of the total energy between the wheel
and pendulum. As a result, we observe a quite chaotic
behavior of the system, especially in what concerns the
trajectory of the pendulum mass depicted in Fig. 3. Figure
4 presents the dependence of the angle φ(t) on time. As can
be seen, the time intervals when the pendulum performs
complete turns around the wheel axis (rising or falling
segments of the curve) alternate with the periods when the
pendulum oscillates about the equilibrium state without
making complete turns (horizontal segments). The process
of switching from one mode to another also seems chaotic.

The correctness and high accuracy of the solution obtained
are substantiated by the plot of the total energy deviation
in the course of integration. Figure 5 demonstrates that the
total energy error δE(t) = E(t) − E(0) (curve 3) for the
solution obtained does not exceed 2 · 10−8. Curves 1 and
2 in the figure depict residuals of the first two constraints,
f1(t) and f2(t), which are less than 5 · 10−10 (the residual
f3(t) is much smaller and not shown). The difference in
the behavior of δE(t) and that of f1(t) and f2(t) is easily
understood. The residuals f1(t) and f2(t) satisfy equations
(12) and (11), respectively, and, once appeared, decrease
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Fig. 6. Prototype ball-shaped robot.

exponentially with the rate 1500, unlike δE(t), the law of
variation of which is not a priori specified.

5. CONCLUSIONS

In the paper, we presented a technique for numerical
integration of equations governing motion of constrained
mechanical systems, which is based on the constraint
stabilization technique. The application of the proposed
method to solving the problem of a heavy wheel rolling
along a curvilinear profile is discussed in detail. As noted
in Section 1, the application of the method to solving
a number of stabilization problems is straightforward.
Moreover, numerical integration of equations governing
motion of controlled rolling systems (robots) encounters
all difficulties inherent upon integrating passive rolling
structures, so that the technique discussed can be very
helpful in modeling such systems.

The development of control-oriented versions of the tech-
nique discussed is underway. In particular, we plan to ap-
ply it to controlling a pendulum driven ball-shaped robot
shown in Fig. 6, which is currently under construction. The
robot design is based on three brushless (BLDC) motors.
Electronic components produced by Javad GNSS include a
9D precision IMU, a GNSS receiver, and motor controllers
implemented on the base of three STM32 ARM micropro-
cessors. Structural elements, such as the shell and internal
frames (one half of the shell and the internal frames are
shown in Fig. 6), were made with the help of an FDN 3D
printer. Preliminary simulations with a computer model
of the robot showed good promise of using the technique
discussed for the analysis of complex dynamics of the robot
and synthesis of the control law.
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Appendix A. PROOF OF INVERTIBILITY OF
MATRIX A(X)

Matrix A(X) is easily derived from equations (25)–(27).
Multiplying its first and second rows by M + m (which
clearly does not affect its invertibility) and leaving the
same notation for the matrix obtained, we can write it as

A(X)=

 ah′x + bh′z bh′x + ch′z e
bCα− (a+ 1 + γ)Sα (c+ 1 + γ)Cα− bSα 0
0 0 d

 ,
where d = ||η||−r(χ,H2χ), e = (M+m)(v,H2χ), and, for
brevity, Sα and Cα denote sinα and cosα, respectively.

From (20), it follows that, ∀X ∈M, h′x/h
′
z = cosα/ sinα.

Denoting this ratio as β, we obtain

detA(X) = d

∣∣∣∣ ah′x + bh′z bh′x + ch′z
bCα− (a+ 1 + γ)Sα (c+ 1 + γ)Cα− bSα

∣∣∣∣
= dh′z sinα

∣∣∣∣ aβ + b bβ + c
bβ − (a+ 1 + γ) (c+ 1 + γ)β − b

∣∣∣∣
= dh′z sinα[(ac− b2)(1 + β2) + (1 + γ)(aβ2 + 2bβ + c)].

By virtue of (17), we have ac− b2 = 1−γ and aβ2 +2bβ+
c = β2 +1+γ(β cosφ+sinφ)2. Substituting these into the
formula for the determinant, we finally get

detA(X) = dh′z sinα(1 + γ)[2 + 2β2 + γ(β cosα+ sinα)2].

The expression in the square brackets, being the sum
of positive numbers, is clearly positive; h′z 6= 0 by the
definition of the admissible curve; and sinα < 0 by the
definition of the angle α. Let us show that d cannot be
equal to zero. With regard to the formula

ρ =
((h′x)2 + (h′z)2)3/2

(h′z)2h′′xx − 2h′xh
′
zh
′′
xz + (h′x)2h′′zz

≡ ||η||3

(τ,H2τ)

for the curvature radius of a curve given by an implicit
equation h(x, z) = 0, we have

d = ||η|| − r(χ,H2χ) = ||η|| − r(τ,H2τ)

||η||2
= ||η||

(
1− r

ρ

)
.

By virtue of the assumption on the admissibility of the
curve, r < ρ and, hence, d > 0. Thus, we proved that
detA(X) 6= 0, and matrix A(X) is invertible ∀X ∈M.
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