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Abstract: Recently, Flat Hybrid Automata (FHA) were introduced as a new model class of
hybrid systems. In order to answer the evident question of an optimal operation of the new
class of FHA, a well-posed optimization problem definition for FHA is presented. This problem
formulation also includes costs on discrete–state transitions and switching actions. We present
a solution for a reduced problem: FHA with autonomous switching. For these, a new algorithm
is introduced which solves the optimal control problem. The application of this optimization
algorithm is shown with an electrical network example.
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1. INTRODUCTION

Recently, Flat Hybrid Automata (FHA) were introduced
as a new model class in Kleinert and Hagenmeyer (2019).
This new subclass of hybrid systems offers controllability
and explicit calculation of inputs. Further defining proper-
ties are determinism and strong connectedness (cf. Berman
and Plemmons (1979)) of the discrete subsystem and dif-
ferential flatness (cf. Fliess et al. (1995)) of the continuous
subsystems. These properties enable straightforward tra-
jectory planning (cf. Kleinert and Hagenmeyer (2019)) for
the transition from an initial state to a final state and
yield controllability and reachability. In this context, it
is evident to ask the question of an optimal operation of
the new class of FHA, hence a well-posed optimization
problem definition for FHA and its solution are both open
scientific questions.
Optimization problems have been studied for many
subclasses of hybrid systems (Lunze and Lamnabhi-
Lagarrigue (2009); Barton et al. (2006); Witsenhausen
(1966)). In the present work we examine how an opti-
mization problem for the FHA with its aforementioned
properties can be formulated. Due to the dimorphic nature
of hybrid systems such a problem consists of finding an
optimal path through a graph (eg. Delling et al. (2009);
Wagner and Willhalm (2003)) while simultaneously deter-
mining optimal inputs for the discrete system and the con-
tinuous subsystems. Optimization of the continuous flat
subsystems involve trajectory planning (Hagenmeyer and
Delaleau (2003b, 2008) and optimization of these (Sira-
Ramirez and Agrawal (2004); Oldenburg and Marquardt
(2002); Guay and Peters (2006)). The main contribution of
the present paper is the formulation of an optimal control
problem for FHA in general. This problem formulation also
includes costs on discrete–state transitions and switching
actions. Since this optimization problem is complex, a

reduced class of FHA is considered: FHA with autonomous
switching. For these, a new algorithm is introduced which
yields a solution to the optimal control problem.
The present paper is organized as follows: We first present
a compact definition of FHA in Section 2. For a complete
introduction the reader is referred to Kleinert and Hagen-
meyer (2019). In Section 3 we formulate the dynamic op-
timization problem for the FHA. In Section 4 autonomous
switching is introduced for the FHA and an algorithm to
solve the simplified optimization problem is presented. In
Section 5 we apply the algorithm to an electrical network
example.

2. FLAT HYBRID AUTOMATA

Representing a hybrid system by an automaton and
continuous-time state-space models yields a hybrid au-
tomaton as described in (Goebel et al. (2009); Lunze and
Lamnabhi-Lagarrigue (2009)). In the present work we con-
sider hybrid automata with discrete and continuous sub-
systems with input and output. They show deterministic
dynamical behavior in the sense that given the initial state
and an input trajectory, the state and output trajectories
exist and are unique.

2.1 Differential flatness

The key property of FHA is that the continuous dynamics
are differentially flat. The definitions in this section apply
to linear and nonlinear SISO and MIMO systems.

Definition 1. (Differential flatness). A system ẋ = f(x, u)
is differentially flat if there exists a bijective function

z = F (x, u, u̇, ü, . . . , u(a)) (1)

x ∈ Rnx , u ∈ Rnu , z ∈ Rnu
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which defines the so-called flat output (Fliess et al. (1995)).
The superscript (a) denotes the a-th time derivatives.
Additionally, the functions

x = Φ(z, ż, z̈, . . . , z(b)), (2a)

u = Ψ(z, ż, z̈, . . . , z(c)) (2b)

exist and can be explicitly derived. The maps z,Φ,Ψ
should be of class C∞ or at least of class Cr with r
sufficiently large.

For any flat system ẋ = f(x, u), a given (a + 1)-time
differentiable trajectory z∗(t), t ∈ [t0, t1] with consistent
initial condition

x(t0) = Φ(z∗(t0), ż∗(t0), z̈∗(t0), . . . , z∗(a)(t0)), (3)

the inputs u∗(t) and the states x∗(t) can be explicitly cal-
culated from Equations (2a) and (2b) without integrating
differential equations (Fliess et al. (1995); Hagenmeyer
and Delaleau (2003a,b)). The flat output of a system is
generally not unique and therefore has to be specified
explicitly for a given system. Flat systems are controllable
as described in Fliess et al. (1995).

2.2 Mathematical Model

The discrete structure of the automaton is described as a
directed graph with vertices d and edges e = (di, dj). The
vertex di is called tail, the vertex dj head of the edge. To
each discrete state we assign continuous dynamics with
different domains and possibly different inputs. A Flat
Hybrid Automaton consists of the following parts:

• Vertices D = {d1, d2, . . . , dnd
} defining nd ∈ N

discrete states.
• Edges E : D×D defining discrete state transitions as
ek = (di, dj). The number of edges is ne ∈ N.

• Continuous state spaces X =
{
Xd1 ,Xd2 , . . . ,Xdnd

}
with Xdi ⊆ Rnxdi .
• Continuous state transition functions
L =

{
Le1 , Le2 , . . . , Lene

}
, Lek : Xdi 7→ Xdj which

define the change of the continuous state for each
transition ek = (di, dj).
• Discrete input space V . The discrete inputs are binary

variables, i.e. V = {0, 1}nv .

• Vector fields F =
{
fd1 , fd2 , . . . , fdnd

}
that define

differential equations ẋdi = fdi(xdi , udi) on Xdi × Udi
describing the continuous dynamics in every discrete
state. All f have do be well posed such that a unique
solution exists for some t ∈ [t0, t1] and that all f are
Lipschitz given x(t0) and u(t).

• Continuous input spaces U =
{
Ud1 ,Ud2 , . . . ,Udnd

}
with Udi ⊆ Rnudi .

• Flat output maps F =
{
Fd1 , Fd2 , . . . , Fdnd

}
and corre-

sponding flat output spaces: Z =
{
Zd1 ,Zd2 , . . . ,Zdnd

}
.

The dimension of the flat output space matches the
dimension of the continuous input space, i.e. Zdi ∈
Rnudi . The maps Φd and Ψd are defined for every Fd.

Ge1

Ge2

d1 d2

e1, Le1

e2, Le2

xd1 , fd1 ,
zd1 , Fd1

xd2 , fd2 ,
zd2 , Fd2

ud1 vd1 ud2vd2

Fig. 1. Elements of the FHA

• Switching sets G =
{
Ge1 ,Ge2 , . . . ,Gene

}
. These sets

are uniquely defined for each edge ek ∈ E as a set
Gek ⊆ Z × V on which state switching occurs.

• Initial condition (d0, x0d) such that x0d is consistent
according to Equation (3).

For the remainder of this work d, or d(t) without subscript
denotes any di ∈ D, also when d is a subscript itself, the
same applies to e. At each discrete state d the continuous
subsystem is described by the sets Xd,Ud,Zd and the
maps fd, Fd. Note that the dimensions of the spaces in the
different discrete states can be different for each discrete
state, e.g. nxdi

6= nxdj
.

In Figure 1 all the parts of a FHA are depicted in a
simple automaton with two discrete states. The variables
xd, ud, zd, v are vectors from the corresponding spaces and
the evolution of xd, zd is defined through fd, Fd. When
the FHA reaches a state where (v, zd) belong to a set Ge,
state switching takes place immediately. State switching is
defined by e = (di, dj) and the change in the continuous
state xd is described by Le. We denote the states before
and after state switching d−, x−d and d+, x+d . In order to
establish deterministic behavior of the FHA, all switching
sets have to be disjoint, such that all possible pairs (v, zd)
either belong to no set from G or to exactly one, i.e.
Gei ∩ Gej = ∅ for i 6= j. The aggregation of the sets and
maps that form the structure of the FHA is the data of
the automaton.

2.3 Trajectories and solutions

The trajectory of a FHA is described on a hybrid time
domain. This time domain consists of an ordered set of
intervals in which the evolution of the FHA is defined by
continuous motion. The boundaries of the intervals are
time instants at which state switching occurs. A hybrid
time domain is defined as a set T ⊆ R≥0 × N. The pairs
(tj , j) ∈ T define the union of time intervals of the form
[tj , tj+1] × {j} such that 0 = t0 ≤ t1 ≤ · · · ≤ tm. At
each time instant t1, t2, . . . state switching occurs except
for initial time t0 and final time tm. The variable τ denotes
any time instant on the hybrid time domain T . The hybrid
state of a FHA is a pair (d, xd) where d ∈ D,xd ∈ Xd.
A solution of a FHA consists of a hybrid time domain T ,
an initial state (d0, x0d) at t0 and a pair (d(τ), xd(τ)) that
is generated by admissible inputs ud(τ), v(τ) and satisfies
the data of the FHA (Goebel et al. (2009)). On each time
interval [tj , tj+1]×{j} the discrete state d is constant and
the continuous state xd is a continuous function of τ . The
flat output to the solution is z∗(τ).
For the definition of a hybrid trajectory we need a repre-
sentation of the discrete state transition and the time at
which they take place. These can be written as an ordered
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set P = {ei, ej , . . . } that is called the path. Combining a
path and a hybrid time domain T we define a path function
Pe(τ) : T 7→ {E, (0, 0)} where (0, 0) denotes the case that
no transition takes place. This function uniquely defines
the discrete state transitions on a hybrid time domain and
trivially includes the path. Remark that we only consider
single transitions at a time instant (Multiple transitions at
one time instant tn and Zeno behavior can be integrated
but are beyond the scope of this work). The flat output
z∗(τ) of a solution of a FHA with corresponding hybrid
time domain T , initial state (d0, x0d) and path function Pe

is called flat hybrid output trajectory. Flat hybrid output
trajectories define all states, state transitions and inputs
of a FHA on the given hybrid time domain.

2.4 Controllability

FHA are controllable in the sense that from any initial
state (d0i , x

0
d) every (di, zd) can be reached through admis-

sible inputs u and v.
For the discrete part of the system, which is represented
by the automaton graph (D,E), reachability is given if
the graph is strongly connected (Berman and Plemmons
(1979)). That means that every discrete state of the graph
can be reached from any other discrete state through a
sequence of discrete state transitions e.
The continuous dynamics of a FHA can be controlled
to all flat outputs zd ∈ Zd, i.e. in all subsystems di for
any xdi(τ1), there exist inputs udi(τ), τ ∈ [τ1, τ2] that
bring the system to any zdi(τ2) with τ2 < ∞ (Sontag
(2013); Faulwasser et al. (2014)). This is guaranteed by
differential flatness and the proper definition of Z and U
(Fliess et al. (1995); Hagenmeyer and Delaleau (2003a,b)).
For controllability of the complete FHA we further need
all switching sets G in di for discrete state transitions with
tail di to be reachable independently, i.e. without passing
through any other switching set. Since these defined on
V × Zdi , controllability to the flat outputs is a sufficient
condition as long as no constraints are imposed on the
discrete inputs.

2.5 The Flat Hybrid Automaton

The previous definitions define the FHA: It is a deter-
ministic hybrid system with differentially flat continuous
dynamics, a strongly connected automaton graph and it
is controllable to every zd. The FHA can be partitioned
into two interconnected subsystems A and C. This yields
a collection {A,C} where A = {D,E,G, L, V } describes
the automaton structure and C = {X ,Z,F ,F,U} contains
the continuous dynamics.

3. DEFINITION OF THE OPTIMAL CONTROL
PROBLEM OF FHA

FHA are controllable as shown in Section 2. Hence for
two arbitrary hybrid states (d0, z0) and (dtf , ztf ) with end
time tf , it is always possible to construct input functions
u∗(τ), v∗(τ) that bring a FHA from the initial state to the
final state. These inputs together with the consistent initial
condition (3) uniquely define all states and transitions
of a FHA. For control systems a natural question is
how to find input functions u?(τ), v?(τ) that achieve

the state transition and that simultaneously minimize a
cost functional J(·). In control theory this problem is
called optimal control problem (Luenberger (1997)). In
the following we define a problem statement for optimal
control problems for the novel class of FHA. Note that
thanks to the flatness of the continuous subsystems, we can
directly construct output functions z∗(τ) instead of u∗(τ),
cf. (2a), and use these for the optimization, cf. Oldenburg
and Marquardt (2002); Sira-Ramirez and Agrawal (2004);
Guay and Peters (2006).

Problem 1. Given a FHA = {A,C} and two hybrid states
(d0, z0), (dtf , ztf ), find the path P = {eς1, eς2, ..., eςn}
defined through the sequence of flat outputs{
z?dξ0 , z

?
dξ1
, . . . , z?dξn

}
∈ Zdξi and the discrete inputs v?

that yields

min
{zdξi (τ)},v(τ)

J(·) =

n∑
i=0

α(zdξi(τ)) +

n∑
i=1

β(eςi) + γ(v(τ))

(4)
over all possible n. The minimization problem is subject
to

α(zdξi(τ)) =∫ ti+1

ti

Li(Φdξi(zdξi(ζ)),Ψdξi(zdξi(ζ)))dζ, (5a)

t0 ≤ ti ≤ ti+1, (5b)

(d(t0), z(t0)) = (d0, z0), (5c)

(d(tn+1), z(tn+1)) = (dtf , ztf ), (5d)

0 ≤ c(Φdξi(zdξi(τ)),Ψdξi(zdξi(τ))), i ∈ [0, . . . , n]. (5e)

The cost functional J consists of an integrable functional

Li : Rnzdξi×bdξi×Rnzdξi×cdξi×R→ R, a function β : E → R
and a function γ : {0, 1}nv → R. The constraints (5e) are

vector valued functionals c : Rnzdξi×bdξi × Rnzdξi×cdξi ×
R→ Rnc.

At every switching time ti, the decision variables zdξi(ti),
v(ti) have to fulfill the switching rule Geςi(·). Furthermore

the outputs z−dξi(ti) and z+dξi+1
(ti) are constrained by L.

For the sake of simplicity no explicit constraint on the
derivatives of zdξi is included in the problem although this
would be possible.
Note that a cost on each switching action is included in
this framework: The discrete input of FHA v(τ) is included
in the cost through the term γ(v(τ)). The term β(eςi) can
be used to put a cost on state transitions.
Note that the final time tn+1 = tf is not fixed in the
problem definition and depends on the inputs. Fixed
final times and fixed transition times can be implemented
via additional constraints. Remark that the constraints
(5e) have to be designed such that the controllability of
the FHA is not lost, which implies that all switching
sets remain reachable. In the next section we present a
simplified version of the above problem.

4. OPTIMIZATION PROBLEM OF A REDUCED FHA
AND A NEW ALGORITHM FOR ITS SOLUTION

Problem 1 consists of a path search and coupled optimal
control problems with integer decision variables v. We
present an approach to solve the problem for a simplified
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class of FHA with discrete inputs v that depend on the
flat outputs:

v(zd(τ)). (6)

Thus the discrete inputs v do not appear in the optimal
control problem anymore which eliminates one source of
complexity. This is called autonomous switching because
the switching sets only depend on z. Hence in the simpli-
fied version only the function of the flat output zd(τ) is a
decision variable. It is still possible, however, to put a cost
on the discrete inputs v. These can be considered as binary
state variables rather than exogenous system inputs in this
setting. In a technical system this corresponds to auto-
mated switches that can not be operated independently.
The solution of the simplified problem consists of two ele-
ments: The optimal path P ? and the optimal flat outputs
z∗ that yield the trajectories for every continuous subsys-
tem that is traversed by P ?. For any given path connecting
d0 and dtf we can calculate optimal flat outputs z∗P that
minimize J(·) for this particular path. In the following, we
only consider non-negative cost J(·) with L(·), β(·), γ(·)
all being non-negative.

Proposition 1. To find the optimal path P ? and the opti-
mal flat output z∗ for a FHA with autonomous switching
we propose Algorithm 1:

Algorithm 1 OptPathAutoSwitchFHA

(1) Compute all possible paths Pj through the FHA
connecting d0 and dtf without visiting any node twice

(2) For every path Pj construct the optimization problem
according to Eq. (4) and (5)

(3) Solve all optimization problems to compute
min{zdξi (τ)} J(·)

(4) Compare results and find path P ? with minimal J?(·)

Remark 2. We exclude cycles in the optimal path, i.e.
every node can be visited only once in a path, because
otherwise step 1 in Algorithm 1 becomes infeasible.

Remark 3. We do not provide a proof that excluding
cycles actually yields the global optimal solution. This
proof remains an open problem and is beyond the scope of
this work. However, for sufficiently high costs β(·), γ(·) on
switching actions and positive cost J(·) the algorithm leads
to the optimal solution, because if the cost on switching is
higher than the cost of the continuous dynamics between
switching instants, it can not be optimal to visit nodes
multiple times.

The number of paths can become very large for graphs
with many states and edges. In that case the algorithm
may become numerically intractable and existing heuristic
algorithms to exclude paths may be needed (Delling et al.
(2009)).

5. DC NETWORK EXAMPLE

In the following, the algorithm presented in the last section
is applied to an example inspired by Gensior et al. (2006)
and discussed in Kleinert and Hagenmeyer (2019). The
electrical DC network in Figure 2 with two variable power
sources Vin1 and Vin2 and two fluctuating loads RL1 and
RL2 is considered. Two switches – described by the discrete
inputs v1 ∈ 0, 1 and v2 ∈ 0, 1 – allow to configure the

network with increased or decreased damping and coupling
properties. The continuous inputs Vin1 and Vin2 control
the voltage of load 1 (vL1) and the current of load 2 (iL2).
The switch positions of v1 and v2 yield four discrete states
of a continuous system. It is assumed that for low load the
switches are set to zero, i.e.

if vL1 < v0 then v1 = 0, else v1 = 1
if iL2 < i0 then v2 = 0, else v2 = 1 .

Thereby, the capacitor is available to dampen step fluc-

Fig. 2. Electrical DC network example

tuations of, e.g., RL1 and RL2, in case of higher network
load. Thus the discrete inputs depend on the continuous
states which yields autonomous switching (c.f Eq. (6)).
For the four discrete states, the continuous flat outputs
are z1 = vL1 and z2 = iL2 and the continuous inputs
are u1 = Vin1 and u2 = Vin2. Equation (7) describes the
dynamics of the system:

L
diL2
dt

= Vin2 − (RL2 iL2 + v2 vL1)

C
dvC
dt

= v1 (i1 − (
1

RL1
vL1 − v2 iL2))

v1C
dvC
dt

= i1 − (
1

RL1
vL1 − v2 iL2)

Vin1 = Ri1 + v1vC + (1− v1)vL1
v1vC = v1vL1

(7)

The initial condition for system (7) is vC(t0) = vC,0,
iL2(t0) = iL2,0. Permuting the discrete inputs v1 and v2
in system (7) by their values 0, 1 yields the continuous
system equations for the respective discrete states. The
continuous subsystems are flat with respective Ψdi:
d1: v1 = 0, v2 = 0

u1 =
(

R
RL1

+ 1
)
z1

u2 = L ż2 +RL2 z2

d2: v1 = 0, v2 = 1

u1 =
(

R
RL1

+ 1
)
z1 −Rz2

u2 = L ż2 +RL2 z2 + z1

d3: v1 = 1, v2 = 0

u1 = RC ż1 +
(

R
RL1

+ 1
)
z1

u2 = L ż2 +RL2 z2

d4: v1 = 1, v2 = 1

u1 = RC ż1 +
(

R
RL1

+ 1
)
z1 −Rz2

u2 = L ż2 +RL2 z2 + z1
In Figure 3 the automaton graph of the network is depicted
with all possible transitions. All calculations use the fol-
lowing parameters 1 :
R = 5, C = 0.8, L = 7, RL1 = 2, RL2 = 3,
v0 = 6, i0 = 2.5 .

According to Problem 1 we have to define a cost functional

1 [V ]=[v]=V, [i]=mA, [R]=kΩ, [C]=F, [L]=kH.
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Fig. 3. Automaton graph of the DC network example

like (5a) for the optimization problem. We choose to put
a cost on the continuous input u with Lagrange term

L(·) = u21(τ) + u22(τ) (8)

and costs on the switching actions with β(ei). Thanks to
autonomous switching, in this example costs to opening
and closing of the switches v1 and v2 are equivalent to
costs on the transitions ei. We define

Input Switching Cost Input Switching Cost

v1 : 0→ 1 10 v2 : 0→ 1 20
1→ 0 100 1→ 0 200

such that for example transition cost β(e5) = 210. In
this case we put a much higher cost on opening switches
than on closing switches. Note that the transition cost
β(ei) is purely additive. Therefore it has no effect on the
continuous trajectories u?. We choose to impose a further
constraint on the flat outputs at the switching times

z−dξi−1
(ti) = z+dξi(ti), i ∈ [1, n] (9)

such that no jumps in z can occur. This also represents the
continuous-state transition function L. From the dynamics
of the system we deduce that this constraint can lead
to jumps in the optimal input u∗ at switching times. If
one wants to achieve continuity of the optimal input u∗

instead, Equation (9) can be rewritten accordingly. It is,
in general, not possible to have continuity in both z∗ and
u∗. We further choose

ti+1 − ti ≥ 0.5 (10)

to avoid very fast transitions mainly in order to obtain
comprehensible plots. Thus the minimum time between
discrete state switching is constrained.
For the numerical solutions we choose to approximate the
flat outputs z as polynomial expansions like proposed by
Sira-Ramirez and Agrawal (2004); Oldenburg and Mar-
quardt (2002) such that

z̃dξi(τ) =

K∑
k=0

θdξi,kφk(τ). (11)

In this representation the flat outputs in every continu-
ous subsystem are characterized by a set of polynomials
{φk}k=0,...,K and the coefficients θdξi,k. The polynomials
are chosen to be fixed, hence the remaining decision vari-
ables are only the coefficients θdξi,k. This transforms the
infinite dimensional function space of possible solutions to
a fixed finite set of real numbers. Thus the shape of the
flat output trajectory depends on the polynomials. These
can be arbitrarily complicated, e.g. splines or higher order
expansions. According to Problem 1 we are looking for
a sequence of flat outputs. The number of coefficients of
the whole problem therefore depends on the number of

polynomials K and the length of the path n.
We choose the most simple set of polynomials

φ0(τ) = 1, φ1(τ) = τ (12)

that yields affine functions for the flat output and

z̃d(τ) = θd,1 + θd,2τ

˙̃zd(τ) = θd,2.

These polynomials are chosen for the sake of simplicity.
Remark, however, that it is not possible to steer the system
into a steady state or to achieve higher order continuity for
the optimal solutions with this approach. We first examine
a simplified example before we demonstrate how to solve
the complete problem.

Example 1 In a first example we consider the case in
which v2 ≡ 0 such that we only have the discrete states
d1, d3 and u2 = z2 ≡ 0. Hence the right part of the network
in Figure 2 is effectively deactivated. This is a simplified
example to illustrate the application of Algorithm 1 of
Section 4. The dynamics of the model are thereby reduced
to
d1: v1 = 0

u1 =
(

R
RL1

+ 1
)
z1

d3: v1 = 1

u1 = RC ż1 +
(

R
RL1

+ 1
)
z1

We set vL1(t0) = 0.5, d0 = d1 and vL1(tf ) = 18, dtf = d3.

Fig. 4. Optimal flat outputs and inputs for Example 1

Applying the first step of Algorithm 1 we obtain the only
possible path P = {e2} which trivially is P ?. The result of
the optimization in Figure 4 shows z∗ and u∗S with a jump
in the input. In the first part in state d1 the trajectory is
steeper than in the second part which is not surprising as
u1,d1 does not include the derivative of z.

Example 2 Considering the whole network with the dy-
namics described in (7) we apply Algorithm 1. We choose
the initial and the final states

vL1(t0) = 0.5 iL2(t0) = 0.1 d0 = d1
vL1(tf ) = 12 iL2(tf ) = 4 dtf = d4.

The possible paths and corresponding sequences without
visiting any discrete state twice are

P1 = {e3} S1 = {d1, d4}
P2 = {e1, e6} S2 = {d1, d2, d4}
P3 = {e2, e9} S3 = {d1, d3, d4}
P4 = {e1, e5, e9} S4 = {d1, d2, d3, d4}
P5 = {e2, e8, e6} S5 = {d1, d3, d2, d4}.

Applying steps 2 and 3 of Algorithm 1 we construct and
solve an optimization problem for every path. The result-
ing trajectories are depicted in Figure 5. The evaluation
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Fig. 5. Trajectories for all paths for Example 2. Blue lines z1, u1; red lines z2, u2. The vertical black lines show switching
times t?, the horizontal dashed lines show v0 and i0.

of the value function in Table 1 shows that path P2 yields
the lowest cost and therefore is the optimal path P ?.
Consequently the corresponding trajectories in Figure 5
for path P2 are z∗ and u∗. Interestingly, we see that the
”shortest” path P1 with only one transition yields higher
cost than P2. If high costs on e1 or e6 were included in the
problem in order to avoid the ”longer” path, path P1 would
become the optimal path, since for time invariant costs γ
and β the trajectories in Figure 5 would not change.

Table 1. Value of J?Pj (·) for all paths

P1 = {e3} 3060
P2 = {e1, e6} 2633
P3 = {e2, e9} 3187
P4 = {e1, e5, e9} 3476
P5 = {e2, e8, e6} 3409

6. SUMMARY AND OUTLOOK

The present work defines an optimal control problem for
the new system class of Flat Hybrid Automata (FHA) with
possible costs on discrete–state transitions and switching
actions. In a second step, a reduced class of FHA is
considered: FHA with autonomous switching. For these,
a new algorithm is introduced solving the optimization
problem. It is applied to an electrical network example.
For future work, it remains an open question under which
conditions —on the switching costs and in general— the
algorithm is able to find the solution to the problem. In
the example the flat outputs are restricted to polynomials.
More sophisticated base functions, e.g. splines, can be
considered. Moreover, for future research it is of interest to
further investigate optimization for the FHA in general –
and to use the respective solution for flatness-based MPC
schemes (cf. Hagenmeyer and Delaleau (2008)).
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On Differential Flatness, Trajectory Planning, Observers, and
Stabilization for DC-DC Converters. IEEE Transactions On
Circuits And Systems–I, 53(9), 2000–2010.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Hybrid dynamical
systems. IEEE Control Systems Magazine, 29(2), 28–93.

Guay, M. and Peters, N. (2006). Real-time dynamic optimization
of nonlinear systems: A flatness-based approach. Computers &
chemical engineering, 30(4), 709–721.

Hagenmeyer, V. and Delaleau, E. (2003a). Exact feedforward lin-
earisation based on differential flatness: The SISO case, 161–170.
In Nonlinear and Adaptive Control, Springer, Berlin, Heidelberg.

Hagenmeyer, V. and Delaleau, E. (2003b). Exact feedforward
linearization based on differential flatness. International Journal
of Control, 76(6), 537–556.

Hagenmeyer, V. and Delaleau, E. (2008). Continuous-time non-
linear flatness-based predictive control: an exact feedforward lin-
earisation setting with an induction drive example. International
Journal of Control, 81(10), 1645–1663.

Kleinert, T. and Hagenmeyer, V. (2019). Flat hybrid
automata as a class of reachable systems: Introductory
theory and examples. CoRR, abs/1906.02790. URL
http://arxiv.org/abs/1906.02790.

Luenberger, D.G. (1997). Optimization by vector space methods.
John Wiley & Sons.

Lunze, J. and Lamnabhi-Lagarrigue, F. (2009). Handbook of hybrid
systems control: theory, tools, applications. Cambridge University
Press.

Oldenburg, J. and Marquardt, W. (2002). Flatness and higher
order differential model representations in dynamic optimization.
Computers & chemical engineering, 26(3), 385–400.

Sira-Ramirez, H. and Agrawal, S.K. (2004). Differentially flat
systems. Marcel Decker Inc., New York - Basel.

Sontag, E.D. (2013). Mathematical control theory: deterministic
finite dimensional systems, volume 6. Springer Science & Business
Media.

Wagner, D. and Willhalm, T. (2003). Geometric speed-up techniques
for finding shortest paths in large sparse graphs. In European
Symposium on Algorithms Proceedings, 776–787. LNCS 2832,
Springer.

Witsenhausen, H. (1966). A class of hybrid-state continuous-time
dynamic systems. IEEE Transactions on Automatic Control,
11(2), 161–167.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6887


