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Abstract: The increased vehicle usage significantly aggravate the urban air pollution, which
have great impact on the public health. Therefore, it is necessary to make proper traffic control
policies and reduce traffic emissions. However, it is difficult to establish control strategies based
on modeling methods, and carry out online control based on historical traffic information
for the complex time-varying characteristics of emissions. In this paper, we present a deep
reinforcement learning emission control strategy, which automatically learns the optimal traffic
flow and speed limits to reduce traffic emission on the target road segment based on the temporal
traffic information. The proposed approach is evaluated on real world vehicle emission data in
Hefei. And the results demonstrate the effectiveness of the proposed approach against baseline
methods.
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1. INTRODUCTION

Traffic emissions released by vehicles contain harmful sub-
stances, such as carbon monoxide (CO), carbon dioxide
(CO2), nitrogen oxides (NOx), hydrocarbons (HC) and
particulate matters (PM2.5), which have great impact on
the public health. The increased vehicle usage significantly
aggravate the urban air pollution. According to ’China Ve-
hicle Environmental Management Annual Report (2018)’,
total CO emission is up to 33.273 million tons, HC is 4.071
million tons, NOx is 5.743 million tons in 2017. In some
megalopolis of China, such as Beijing, Shanghai, Shenzhen,
the vehicle emission share rate of PM2.5 is approximately
13.5%-41%. Therefore, it is necessary to study traffic
emission control to help relevant government departments
make proper traffic control policies Pérez et al. (2000) and
reasonable traffic planning Xu et al. (2020).

In recent years, there has been a lot of researches focusing
on the issue of vehicle emission management. Most of the
existing traffic emission control works can be classified into
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feedback control based approach and traffic management
based approach.

The feedback control based method needs to establish
macroscopic traffic flow model and microscopic traffic
emission model for the controller to predict traffic emis-
sions of traffic networks. Zhang and Zhu (2015) presented
a discrete traffic flow model and designed a delay-feedback
controller to suppress traffic jam and decrease traffic emis-
sion. Shu et al. (2013) proposed an integrated macroscopic
traffic model to predict the traffic flow states and the
emissions released by every vehicle at different operational
conditions and designed the model predictive controller
to reduce both travel delays and traffic emissions. Shuai
et al. (2017) used multi-class macroscopic traffic flow and
emission models for MPC for traffic networks to achieve
a balanced trade-off between total time spent and total
emissions. Uzunova et al. (2012) proposed non-integer ro-
bust control approach to analyse the speed and density
variations due to perturbations on the road and to assure
robust performances for the traffic velocity and evalu-
ated pollution factor of CO2 emissions of the controlled
and uncontrolled model. However, the macroscopic traffic
flow model and microscopic traffic emission model are the
simplification of the real world traffic condition, and the
induced control strategy is definitely inaccurate.
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The traffic management based approach mainly focus on
the traffic speed and flow regulation to reduce the traf-
fic emissions of the entire traffic networks. Panis et al.
(2006) considers the effect of active speed management on
traffic-induced emissions, suggesting vehicle acceleration
and deceleration are important factors in determining traf-
fic induced emission. Li et al. (2018) proposed an optimal
dynamic credit charge scheme to redistribute the traffic
flows to attain mobility and emission goals. Duell et al.
(2014) presented a novel framework to estimate city-wide
vehicle environmental effects that integrates a dynamic
traffic assignment model with a novel application of a
vehicle energy consumption model. Miles et al. (2018)
proposed a decision support system (DSS) that uses an
underlying traffic model to inform an atmospheric disper-
sion model. Bel et al. (2015) used quantile regression to
evaluate whether speed management policies have been
successful in promoting cleaner air, not only in terms
of average pollutant levels but also during high and low
pollution episodes. De Blasiis et al. (2014) presented an
integrated simulation tool to analyse the effects of traffic
flow conditions on the pollutants emissions. Panis et al.
(2011) analysed different traffic types (urban versus high-
way traffic) with different modelling approaches (micro-
scopic versus macroscopic) to examines the impact of
speed management policies on emissions. Carslaw et al.
(2010) used Generalized Additive Models to describe how
emissions from individual vehicles vary depending on their
driving conditions, taking account of variable interactions
and time-lag effects, and quantified the impact that ve-
hicle speed control has on-vehicle emissions of CO2 by
road type, fuel type and driver behaviour. Dijkema et al.
(2008) studied the lowering of the maximum speed limit
effects on reducing traffic related air pollution. The traffic
management based approach designed the traffic control
strategies based on the history traffic flow information,
which is an offline strategy with time-lag infects.

And with the rapid development of traffic data collec-
tion and artificial intelligence techniques, some researches
are shifting to use deep reinforcement learning (RL) ap-
proaches on traffic management. The RL learns directly
from the interactions between states and actions through
episodes, the agents take optimal actions according to
the long-term accumulation of rewards. In this paper, we
present a deep reinforcement learning emission control
strategy, which automatically learns the optimal traffic
flow and speed limits to reduce traffic emission on the
target road segment based on the temporal traffic in-
formation. The main contributions of this study are as
followings:

1) We proposed a road vehicle emission control rein-
forcement learning model to establish the relationship of
emissions and traffic information. And a compound emis-
sion environment state space is designed to leverage the
emission temporal dependencies. Moreover, to deal with
the large state and action space, a deep return valuation
network (DQN) is applied to estimate the optimal long-
term value function.

2) The proposed approach is evaluated on real world
vehicle emission data in Hefei. The results demonstrate
the effectiveness of the proposed approach against baseline
methods.

2. RELATED WORK

There are some published work on traffic control in trans-
portation field, i.e. traffic lights control, traffic flow op-
timization, and vehicle speed regulation. Li et al. (2016)
applied the deep reinforcement learning method to design
signal timing plan by implicitly modeling the control ac-
tions and the change of system states. Nishi et al. (2018)
developed a RL-based traffic signal control method that
employs a graph convolutional neural network to cope with
broader traffic demand. Walraven et al. (2016) solved the
traffic optimization problem with reinforcement learning,
where the traffic congestion on the highway is reduced.
Li et al. (2017) incorporated the reinforcement learning
technique in variable speed limit control strategies to re-
duce system travel time at freeway bottlenecks. Chao et al.
(2013) proposed an indirect reinforcement learning model
based on Dyna-Q architecture to manage incident-induced
congestion for ramp control. A more general application
of reinforcement learning in this domain can be found in
work Cruciol et al. (2013), where different reward functions
are investigated for decision-making in air traffic flow
management with several stakeholders. Xu et al. (2019)
proposed a deep spatiotemporal framework with multi-
source urban data to predict the vehicle emissions in region
scale. Yau et al. (2017) reviews various RL models and
algorithms applied to traffic signal control in the aspects
of the representations of the RL model (i.e., state, action,
and reward), performance measures, and complexity to
establish a foundation for further investigation in this
research field.

3. OVERVIEW

3.1 Preliminary

The main notations used in this paper are shown in Table
1.

Table 1. Notations

Notation Description

EF An emission episode

TA Traffic agent to conduction emission

tvt Traffic volume at time t (V/h)

tst Traffic average speed at time t (km/h)

π Traffic agent control policy

Traffic Agent:Traffic Agent:Traffic Agent: The traffic agent TA has the factors of
traffic volume tv, and traffic average speed ts, which is
the main body to interact with the emission environment.

Emission Episode:Emission Episode:Emission Episode: An emission episode EF is a period
emission sequence in a day, in which the total vehicle
emission we want to minimize. The emission consists of
Fuel, CO, HC, and NO at each time interval, which
can be defined as EFt={Fuelt,COt,HCt,NOt}. And the
sequences of emissions are all normalized respectively. In
our problem, the length of emission episode is 24 hours,
and the time interval is 1 hour.
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3.2 Traffic data insight

Fig.1(a) and (b) show the daily speed and traffic volume
distribution heatmap of the history traffic data. We find
that in the morning rush hours, e.g. 10 a.m., the traffic
pattern is with low speed and high traffic volume which
easily contributes to high vehicle emissions, as can be seen
in Fig.1(c).

3.3 Problem formulation

Problem:Problem:Problem: Given the history emission episodes EF , and
traffic agent factors TA, design a control policy π to
minimize the total emission amount in an episode while
ensuring a normal traffic volume, as shown in Fig.2.

4. METHODOLOGY

Obtaining the history emission episodes, a reinforcement
learning based model (EFRL) is proposed to minimize
the total emission in the episode by learning traffic agent
control policy.

4.1 Framework

As shown in Fig.3, our model consists of two phases, offline
learning and online controlling.

Data ProcessingData ProcessingData Processing Given the original vehicle emission mea-
surements and traffic related information from the emis-
sion remote sensing systems (emission environment), the
EFRL structures the batched data into states st for gen-
erating the emission episodes.

SimulationSimulationSimulation In traffic emission variation process, there are
interactions between vehicle emission and traffic informa-
tion. Therefore, to train and evaluate a dynamic traffic
emission model, a system simulator is required to simulate
the system dynamics under repositions. During the simu-
lation phase, the samples pool derived from real emission
dataset to train our EFRL model. Specifically, the emis-
sion environment states, the traffic agent’s coordination
actions and immediate reward at each time step are used
to train our EFRL DQN model for estimating the long-
term value function, from which the coordination optimal
traffic controlling policy can be inferred.

Online ControllingOnline ControllingOnline Controlling After offline learning phase, we obtain
the trained EFRL DQN model, which returns optimal
traffic control policy with traffic flow limits and vehicle
speed limits suggestions to reduce vehicle emissions.

4.2 EFRL Model

A reinforcement learning model Sutton et al. (1998) is
usually defined as a six tuples, i.e. (S,A,T,R,π,γ), where S
is the state space of environment, A is the action space of
agents, T is the transition probability which an agent took
action at given state st will transit to the next state st+1, R
represents the immediate reward after taking action under
specific state, i.e. rt(st, at), π is a policy S × A → π,
describing the probability to take an action given specific
state, γ is a time discount parameter. The agent tries to
select actions so that the sum of the discounted rewards

it receives in the future is maximized, an action at has a
long-term rewards Gt defined as Eq. 1

Gt = rt + γ·rt+1 + γ2 · rt+2 + · · ·+ γk · rt+k (1)

where t+ k is the final time step.

The objective of reinforcement learning is to learn an
optimal policy π such that given state st , and taken action
at, the agent is able to receive the maximum expected
long-term discounted reward. The optimal long-term value
function is defined as Eq. 2

Q∗(st, at) = max
π

Eπ(Gt|st, at, π) (2)

Bellman equation is usually adopted to calculate Eq. 2,
which is defined as

Q∗(st, at) = Est+1
(rt + γ ·max

at+1

Q∗(st+1, at+1)|st, at) (3)

Given the optimal long-term value of each action by each
state, we can get the optimal policy with Eq. 4

a∗t = argmax
at

Q∗(st, at) (4)

Based on the traditional reinforcement learning theory,
we can formulate the emission control model as following
concepts.

ObservationObservationObservation Each time the traffic agent requires new con-
trol, it has a real-time observation of the current emission
environment. The observation is defined to include the
emission environment states, and the traffic agent states.
For the emission environment states, which includes cur-

rent emission states EFt, and the observed emission ÊF t
in the last period. For the traffic agent states, which in-
cludes the current observations of traffic volume tvo,t, and
traffic average speed tso,t. An observation can be denoted

as Ot = (EFt, ÊF t, tvo,t, tso,t).

ActionActionAction The action of traffic agent is denoted as a vector
describing the traffic volume limits and the traffic average
speed limits, which is can be represented as at = (tvt, tst).
For example, action a1 = (120, 40) denotes that the
current traffic volume is limited to 120 V/h and the vehicle
speed is limited to 40 km/h on the target road segment in
the next hour.

StateStateState The state of the emission environment is defined
as interleaved sequences of observations and actions com-
bined with current time, which can be denoted as st =
(Ot−k, at−k, · · · , Ot−1, at−1, Ot, t), k is the observation
time lag. And k is set to 1 in this work.

Immediate rewardImmediate rewardImmediate reward To control the emission of an episode at
low level while ensuring a quite traffic volume. The imme-
diate reward is defined as a combination gain of emission
and traffic volume rt=GI(EFt − EFt+1)+GI(tvt+1 − tvt)
after taking action at under st and transiting to st+1 in
period (t,t+1]. And the definition of GI is as

GI(x) =

{
1 x > 0

−1 otherwise
(5)

Optimal value networkOptimal value networkOptimal value network Defining the EFRL model, we can
design DQN to estimate the optimal long-term value
function (Eq. 3), i.e. Q∗(S,A, θ) : S×A→ Q∗, where θ are
the learning parameters. Our EFRL model is optimized
by minimizing the Bellman equation square error, the
objective function is formulated as
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Fig. 1. Daily traffic and emission distribution: (a) low speed in the morning rush hours; (b) high traffic in the morning
rush hours; (c) high emissions in the morning rush hours.

Fig. 2. Emission control policy problem definition

Fig. 3. The system framework of EFRL

min
θ
L = E[(Q∗(st, at, θ)−Q∗target(st, at, θ−))2]

= E[(Q∗(st, at, θ)− (rt + γ ·max
at+1

Q∗(st+1, at+1, θ
−)))2]

(6)

And the pseudo algorithm for training the optimal long-
term value network is detailed in Algorithm 1.

5. EXPERIMENTS

5.1 Data and setup

The proposed method is implemented in a high perfor-
mance server with GeForce GTX 1080Ti GPU.

And we use real-world road segment to evaluate the emis-
sion control reinforcement learning model. Specifically, we
collect emission data from vehicle remote sensing systems
deployed on a main road in Hefei, which is authorised
by Hefei Environmental Protection Bureau. As a sensor

Algorithm 1 EFRL DQN training algorithm

Require:
1: Sample replay buffer D; emission episodes EF =
{EF 1, EF 2, · · · , EFN} ; episode length T ; behavior
network parameter θ; target network parameter θ−.

Return: Learned EFRL DQN model Q∗(θ)
2: D ← ∅//Initialize the replay buffer D
3: Random initialize Q∗(S,A, θ), θ− ← θ
4: for each episode EF i(1 6 i 6 N) do
5: for each time step t(1 6 t 6 T ) do
6: random select an action at with probability
ε ∈ [0, 1]// ε is a parameter for exploration

7: otherwise select at = argmaxa∈AQ
∗(st, a, θ)

8: the traffic agent executes action at and transits
to next state st+1, receiving reward rt.

9: storing new sample (st, at, st+1, rt) to D
10: sample random minibatch (st, at, st+1, rt) from

D
11: Q∗(st, at, θ) = Q∗target(st, at, θ

−)
12: minimize L (Eq. 6)
13: θ− ← θ
14: end for
15: end for

station may not have records sometimes, the missing en-
tries are filled by average value. And the data details are
summarized in Table 2.

5.2 Baselines and Metric

To evaluate the performance of the proposed EFRL model,
we compare it with the following baselines.
Random policy (RP)Random policy (RP)Random policy (RP) This emission control policy means
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Table 2. Experimental Emission Datasets

Dataset Measurement

Location Hefei

Time Span 2017/5/1-2017/7/31

Time interval 1 hour

Evaluation stations 4

Pollutants measurements Fuel, CO, HC, NO

Traffic volume [0,3512](V · h−1)

Vehicle speed [0,77.9](km · h−1)

Available time interval 2091 (117 missing)

that the traffic agent selects a random action for traffic
volume and traffic average speed limits policy each time.
Monte Carlo (MC)Monte Carlo (MC)Monte Carlo (MC) MC estimates optimal actions based
on experience episodes without complete knowledge of the
environment Sutton and Barto (2018). With this strategy,
the traffic agent revises its policy and value estimates
based on emission episodes experience.
Q-learning (QL)Q-learning (QL)Q-learning (QL) The QL is the most commonly used
reinforcement learning algorithms Dayan and Watkins
(1992)Mahadevan (1996). The QL agent chooses the opti-
mal action based on the largest Q-value.

Metric evaluationMetric evaluationMetric evaluation To evaluate the EFRL control policy,
we compare the total emission in average episode with the
baseline policies. The average episode emission is defined
as follows.

EFk,average =

N∑
i=1

T∑
t=1

1

N
EFk(i, t) (7)

where k∈ {Fuel, CO,HC,NO}, N is the total emission
episodes, T is the episode length.

5.3 Results

In the emission policy evaluation experiment, we used
the policy algorithms as described in previous section to
run different traffic emission simulations with traffic and
speed control. Fig.4 show the total emission of different
emission controlling policies. And the emission reduction
ratio respect to the total emission without controlling
policy is shown in Table3, the emission reduction is little
while taking the random policy. Moreover, the policies
perform unstably on different pollution, i.e. MC and QL
performs well on CO, HC reduction, MC and QL achieve
similar results on NO reduction. And our EFRL achieves
the best results on all pollution reduction.

Table 3. Emission reduction comparison on
average episode

Control Policy Fuel CO HC NO

RP ↑ 1.28% ↑ 0.11% ↓ 5.54% ↓ 6.01%

MC ↓ 56.42% ↓ 76.86% ↓ 86.95% ↓ 61.93%

QL ↓ 59.34% ↓ 78.08% ↓ 96.38% ↓ 62.37%

EFRL ↓ 62.39% ↓ 89.54% ↓ 97.72% ↓ 65.56%

The traffic statistics of different policies are shown in
Table 4 and Fig.5, comparing with the none control pol-
icy and random policy, the reinforcement learning based
approaches are more stable on the traffic volume and

Fig. 4. Emission controlling comparison

Table 4. Traffic statistics of policies on Fuel

Models
Traffic volume Speed

Mean Std Mean Std

None control 569.02 278.29 11.55 1.87

RP 576.33 276.50 11.53 1.85

MC 316.89 122.39 11.58 0.53

QL 303.40 89.09 11.57 0.46

EFRL 266.85 81.99 11.15 1.46

Fig. 5. Policy quality comparison on Fuel:(a) traffic volume
distribution;(b) traffic speed distribution.

speed control. We can find that the EFRL policy can
significantly reduce the traffic emission in average episode
while ensuring a quite normal traffic volume and speed.

And to evaluate the training performance of EFRL, Fig.6
shows the total reward of training iterations. We can find
that as the training process, there is a increasing trend of
total reward.

Fig. 6. Total reward of training iterations
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6. CONCLUSION

In this paper, we solved the traffic emission manage-
ment based on deep reinforcement learning model, namely
EFRL. Different from the existing works which leverage
the macroscopic traffic flow model and microscopic traffic
emission model to simulate the emission environment, the
EFRL directly learned from the history emission sequence,
and used a compound emission state to capture the system
temporal dependencies. To deal with the large state and
action space, a DQN is applied to estimate the optimal
long-term value function. The proposed policy is evaluated
on real world vehicle emission data in Hefei. And the
comparing result demonstrated the effectiveness of the
proposed method.

In the future, we will extend the single road segment
control policy to other spatiotemporal emission controlling
on a regional scale.
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