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Abstract: Electric race cars are a challenging application for battery management. The main
issue is that the use of extremely high currents leads to additional nonlinear behaviour in the
battery. The source of this nonlinear behaviour can be found in the nonlinear Butler-Volmer
relation between currents and overpotentials, as well as self-heating that occurs when large
currents are drawn due to the electrical resistance of the battery. As a result, nonlinearities
in the input-output behaviour are caused by both factors. To accurately model the nonlinear
overpotential behaviour using empirical battery models, it is necessary to be able to distinguish
between the contribution of both sources of nonlinearities. In this paper, this problem is tackled
by identifying a temperature- and current-dependent electrical model on lap data of an electric
race car using a global approach to estimating state-space linear parameter-varying models. To
aid the distinction between both effects, the influence of the temperature on the behaviour is
distilled from local data, i.e., at constant temperatures. This is used as initialisation for the
global optimisation problem, which identifies the effect of both phenomena from a single data
set. Lap data of four race cycles is available. One cycle is used for parameter estimation of the
battery model and the other three are used to validate the model. The results show that this
approach brings a significant improvement to the modelling accuracy and presents opportunities
to develop BMS applications, such as state estimators or even online power limiters for extreme
battery-electric-vehicle applications.

Keywords: Battery management, Linear parameter-varying, Nonlinear systems, Electric and
solar vehicles, Battery modelling.

1. INTRODUCTION

Electrification of vehicles is becoming increasingly more
common. This practice is motivated by the need for energy
independence and reduction of local and global pollution
(Zhou et al., 2015). Initially, the electrification mainly fo-
cused on consumer-directed automotive applications, i.e.,
passenger cars, but it is now also expanding to maritime
and aviation applications. As electric passenger cars are
slowly becoming mainstream, electrification of cars also
expands to racing applications, such as Formula E.

For an electric race car, it is important to be able to predict
how many laps can be completed before a pit-stop for
charging is required. Whether or not the car is able to
complete a lap, is mainly determined by the electrical be-
haviour of the battery. This means that none of the cells in
the pack should violate the lower voltage limit, otherwise
the cells are exposed to dangerous operating conditions. If
this happens, the battery management system will shut
down the power flow of the battery pack and the car
will come to a standstill. To prevent this scenario, it is
vital that the electrical behaviour of the battery pack can

be predicted in an accurate and computationally efficient
manner.

Modelling the electrical behaviour of batteries is exten-
sively covered in the literature. Roughly speaking, all
models can be divided into two categories, namely physics-
based models and data-driven models, see (Zhang et al.,
2014). While the former are interesting for understanding
the internal workings of a battery on a physical level,
they are computationally expensive and do not necessarily
produce the best Input-Output (IO) predictions, as shown
in (Beelen, 2019). Alternatively, data-driven models such
as Equivalent-Circuit Models (ECMs) or empirical models
can be used, see (Fotouhi et al., 2016). These models
require limited computational power and can accurately
predict the IO behaviour of a battery, as shown in (Hu
et al., 2012). At constant operating conditions, i.e., con-
stant State-of-Charge (SoC) or temperature, the battery
behaviour is locally linear and can thus be well-described
by a linear ECM (with the exception of low SoC at
which minor local nonlinearities are found as described
in (Relan et al., 2017)). However, globally the behaviour
is nonlinear and this can be captured accurately using
Linear Parameter-Varying (LPV) models, see, e.g., (Hu
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and Yurkovich, 2010), in which the parameters depend on
the operating conditions.

In electric race cars, a particular challenge is to accurately
model the effect of high currents, i.e., peak currents of up
to 20C. In (Liu et al., 2015) and (Juang et al., 2013), it
is found that such high currents can induce a nonlinear
overpotential. The reason for this is argued to be the
Butler-Volmer equation, which describes how the reaction
current depends on the overpotential at the surface of the
electrode, and is given by

i = i0(e
α1F
RT η − e

α2F
RT η) (1)

where i is the current density, i0 the exchange current
density, R is the universal gas constant, F is Faraday’s
constant, T is the absolute temperature, η is the overpo-
tential and α1 and α2 are the electrode transfer coefficients
for reduction and oxidation, respectively, as described in
(Di Domenico et al., 2010). A common approximation is
α1 = α2 = 0.5, which simplifies (1) and allows it to be
rewritten as

η = RT
F sinh−1( i

2i0
) (2)

where the inverse hyperbolic sine represents the nonlin-
earity in the overpotential. Although this phenomenon is
captured in (Liu et al., 2015) and (Juang et al., 2013), the
presence of significant self-heating, which occurs as a result
of high current discharge, is not addressed. The influence of
temperature on the cell behaviour is significant, see, e.g.,
(Ye et al., 2012). Therefore, it is difficult to sufficiently
excite the cell’s dynamics, such that a model can be iden-
tified, without altering its temperature. This requires an
estimation approach that can deal with both the presence
of varying temperature and nonlinearity induced by high
currents.

In this paper, a temperature- and current-dependent elec-
trical model is identified on lap data of an electric race
car using a global State-Space (SS)-LPV approach, see
(Cox, 2018). In order to distinguish between the effects of
temperature and current, first an LPV model is identified
which only depends on the temperature. This is done by
exciting the cell using scaled-down race profiles at constant
temperatures. The temperature dependency is captured
in basis functions and these are supplied as initialisation
for the global approach, which identifies both the effect
of the current, by choosing between multiple nonlinear in-
puts, and the temperature. The global approach minimises
the prediction error using a gradient-based Gauss-Newton
algorithm of (Cox, 2018), which is based on (Wills and
Ninness, 2008). The methods and obtained accuracies will
be validated on different race data than the one that is
used to identify the models. The proposed approach allows
the simultaneous identification of a model that captures
the nonlinear contribution of both the temperature and
high currents to the overpotential. To the authors’ knowl-
edge, no such approach exists in the literature. A model
that accurately describes the voltage during such dynamic
scenarios can be used for applications as for instance SoC
estimation or to predict power limits.

The remainder of this paper is structured as follows:
Section 2 presents the available data of an electric race
car and illustrates that a Linear Time-Invariant (LTI)
model does not provide satisfactory predictions in this
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Fig. 1. Four race cycles (1, 2, 3, 4) repeated on test setup.

situation. A modelling approach that can identify and
distinguish between the nonlinearities associated with the
temperature and current is presented in Section 3. The
modelling and validation results are presented in Section 4
and, finally, conclusions are drawn in Section 5.

2. AVAILABLE DATA AND MOTIVATING EXAMPLE

Available to us is a data set of an electric race car,
containing the pack current, pack voltage and cooling
fluid temperature measured during 4 different races. The
experiments are reproduced on a single cell in a dedicated
battery test setup, consisting of a computer controlled
thermal chamber, and electrical load and supply, to obtain
reliable measurements and to be able to measure the sur-
face temperature of the cell. The cell under consideration
is a Kokam SLPB11543140H5 high-power lithium-nickel-
manganese-cobalt-oxide cell, with a nominal capacity of 5
Ah. This cell can sustain continuous discharge currents of
up to 30C and peak currents of 50C. Profile 1 and 2 are
prepended with a scaled-down version of their profiles, to
also capture the dynamics at low currents. The current
profiles, resulting terminal voltages, surface temperatures
and ambient chamber temperatures (set to be the temper-
ature of the cooling fluid) are shown in Fig. 1.

In order to demonstrate the significant nonlinearity that is
present in the overpotential, an LTI overpotential model
has been fitted in a Least-Squares (LS) fashion on the
scaled-down part of Profile 1. This allows the model to
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Fig. 2. Comparison of simulated (ylti) and measured volt-
age using Profile 2.

capture the same dynamics that are present in the race
cycles, the importance of which is explained in (Beelen
et al., 2018). However, by only considering low currents,
the effect of self-heating is avoided. The model has then
been used to simulate Profile 2 and this has been compared
to the measured voltage, as shown in Fig. 2. As the cycle
progresses, and the current and thus the temperature in-
creases, the simulated voltage strays far from the measured
voltage. This discrepancy motivates the need for a model
that can capture these nonlinearities.

3. BATTERY MODELLING

The behaviour of the battery can be modelled using a
discrete-time nonlinear model. The state evolution and
output of the model are given by

[
sk+1

ok+1

]
=

[
1 0

0 A(Tk)

][
sk
ok

]
+

[
δ
C0

B(Tk)

]
wk,

yk =V emf(sk, Tk) + Cok +D(Tk)wk,

(3)

where ok ∈ Rm0 is the dynamic part of the overpotential,
with m0 the number of overpotential states (mo = 1 in this
paper), sk is the SoC, which satisfies 0≤sk≤1 for all time
k ∈ K = {0, . . . , K}, with K the maximum time instant.
Furthermore, yk is the terminal voltage, wk is the input
current, δ = 0.01s is the sampling time, Tk is the (surface)
temperature of the cell and V emf is a nonlinear function of
s and T describing the Electromotive-Force (EMF) of the
cell, which is often referred to as the open-circuit voltage.
The matrices A(T ) ∈ Rm0×m0 , B(T ) ∈ Rm0×1 and
D(T ) ∈ R1×1 are temperature dependent. The SS model is
written in observable canonical form, i.e., C = 1 ∈ R1×mo ,
such that captured dynamics are consistently attributed to
the same parameters.

Parameterising (3) is commonly done by separating the
problem into two parts, namely determining the underly-
ing nonlinear EMF V emf and capacity C0, and secondly
identifying the locally linear overpotential model, i.e., the
dynamic part of the terminal voltage as a result of exci-
tation, captured by A, B and D. Both V emf and the SS
matrices can be modelled as a function of SoC, tempera-
ture and current. However, in this paper only discharging
is considered, which allows us to discard the dependence
on the current direction in the form of hysteresis in the
EMF and asymmetric overpotential. Moreover, the de-
pendency of the overpotential model on the SoC is also
neglected since this dependency is not significant in the
SoC range 1 to 0.2, see (Jiani et al., 2014). Below that
SoC, it is not possible to draw currents of the magnitude

50◦C20◦C

[-]sSoC

Fig. 3. Temperature-dependent EMF.

presented in Fig. 1a, without violating the lower voltage
limit. Therefore, these dynamics are also not represented in
the data sets and the dynamics are only dependent on the
temperature. In this section, the procedure for mapping
the EMF is discussed first, followed by a description of the
approach for modelling the overpotential.

3.1 Electromotive-Force Modelling

There are multiple approaches to mapping the EMF as
a function of SoC and temperature. A popular approach
is to do a slow charge and discharge, i.e., using small
current rates of C/30 or C/40, as described in (Pattipati
et al., 2014). The EMF lies in-between the curves, but
where exactly is uncertain, due to the asymmetric nature
of the overpotential and the possible presence of hysteresis.
Moreover, these long experiments are prone to current sen-
sor bias, resulting in an unreliable mapping with respect
to the SoC. Alternatively, one can use extrapolation to
zero current, as proposed in (Shadman Rad et al., 2013).
Although this method tackles the problem of asymmetry,
it still copes with the problem of sensor bias. Therefore,
the third option is the approach of pulsed current exper-
iments in which the cell is discharged with pulses and
subsequently rested such that the overpotential relaxes to
zero and the terminal voltage equals the EMF, see, e.g.,
(Pop et al., 2006). The use of pulses allows the use of higher
currents, leading to a smaller signal-to-noise ratio for the
current measurement and it also enables the detection
and correction of sensor bias. The pulse-discharge method
is compared to the first method and is deemed to be
the most accurate in (Petzl and Danzer, 2013) and (Pop
et al., 2006). The only drawback of this method is the
significant experiment time, which comes with the risk of
self-discharge.

In this paper, only discharging is considered. Therefore,
the EMF is obtained using a pulse-discharge experiment.
Each pulse extracts approximately 7.5% SoC and the
EMF at in-between SoC values is determined using linear
interpolation. The experiment has been performed at 20
and 50◦C to model the temperature dependence. The
capacity C0 is defined as the discharged capacity at 20◦C.
By choosing a fixed capacity C0, instead of one that
depends on the temperature, the oddity of a temperature-
dependent SoC is avoided. The EMF curves for the two
temperatures are shown with respect to the SoC in Fig. 3.

3.2 Overpotential Modelling

When modelling the overpotential, it is important to
accurately capture the effect of both the temperature and
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the high current. Differentiating between the two can be
done by separating their effects. Since the problem of high
currents is that they induce self-heating, the only possible
separation is to first identify the temperature dependence
locally.

Temperature Dependence To identify the dependence of
the cell behaviour on temperature, the cell is excited at
T = {20, 27.5, 35, 42.5, 50}◦C using a scaled-down version
of Profile 1, with a maximum discharging current of 2C,
thus preventing self-heating. First, the overpotential is
determined by subtracting the EMF from the terminal
voltage

yo = y − V emf(s, T ) (4)

where yo is the overpotential. A first-order Auto-Regressive
model with eXogenous inputs (ARX) has been selected to
model the dynamics, since the behaviour is primarily of
first order, see (Hu and Yurkovich, 2011). Therefore, the
overpotential is given by the difference equation

ŷok = −a1yok−1 + b0wk + b1wk−1 (5)

where a1, b0 and b1 are the model parameters estimated
by solving the LS minimisation problem

min
a1,b0,b1

K∑
k=1

‖yok − ŷok‖22 for all k ∈ K. (6)

Subsequently, (5) can be written in SS format as

ok+1 = −a1ok + (b1 − a1b0)wk (7a)

ŷok = ok + b0wk. (7b)

By repeating this process for all T ∈ T , a temperature-
dependent LPV model has been constructed, where matri-
ces A(T ), B(T ) and D(T ) are spline-interpolated lookup
tables, the data points of which are represented by the
blue circles in Fig. 4. After adding V emf to its output, the
results of the model are referred to as yTlpv, which stands
for Temperature-dependent linear parameter-varying mod-
elled battery voltage.

High Current and Temperature Dependence Having es-
tablished the influence of the temperature on the model
parameters, we will proceed to identify the influence of the
current on the overpotential behaviour. In (Juang et al.,
2013), it is noted that the current rate only influences
the diffusion behaviour, i.e., the behaviour captured by
(9a). The nonlinear influence of the current is captured by
transforming the input of (9a) to sinh−1(αwk), derived
from (2), where α is a to-be-established scaling factor.
To capture the effect of the nonlinearity induced by the
current and to simultaneously deal with the dynamic

temperature encountered in racing profiles, a global LPV
SS identification procedure is applied. The term global
indicates that the scheduling variable, in this case tem-
perature, varies in the data. This opposed to the local
approach, used to obtain the temperature-dependent LPV
model, where multiple LTI models are fitted on data in
which the scheduling variable is fixed, i.e., the temperature
is constant. For a more detailed explanation, see (Tóth,
2010). The global procedure applied here minimises the
prediction error using a gradient-based algorithm, which
uses a Gauss-Newton scheme, as described in (Cox, 2018).

This approach requires the temperature dependence to
be described by a specific basis function. Fig. 4 shows
that the dependency of B and D can be captured well
using an exponential function. The dependency of A on
the temperature has a higher variance, but is nevertheless
best described using an affine basis function, which results
in

A(T )=ca+daT, B(T )=cb+dbe
βbT ,D(T )=cd+dde

βdT , (8)

where the calligraphic A, B and D are the functional
versions of the SS parameters A, B and D, and they are
parametrised through ca, da, cb, db, βb, cd, dd and βd
which are fitted in an LS fashion on the local estimates
(represented by the blue circles in Fig. 4), the result of
which is shown by red lines in Fig. 4.

The parameter α does not appear in (8), but can be
incorporated by formulating the model as follows

ok+1 = A(T )ok +



B0(T )
B1(T )

...
Bn(T )

...
BN (T )



> 

wk
sinh−1(α1wk)

...
sinh−1(αnwk)

...
sinh−1(αNwk)


(9a)

ŷok = ok +D(T )wk, (9b)

where α is now split into α1 to αN , with n ∈ N =
{1, . . . , N} and N the number of segmentations of α. The
nonlinear optimisation problem is now given by

min
A,B0,Bn,D

1

K

K∑
k=1

‖yok − ŷok‖22 for all k ∈ K, (10)

with n ∈ N and where the prediction-error minimisation
scheme only adapts the affine parameters, i.e., c and d in
(8). The correct amount of nonlinearity in the input is thus
determined by the algorithm by adjusting the parameters
in B0 and Bn. As a result, there is no need to exactly deter-
mine α. The model of this form is a temperature-dependent
nonlinear parameter-varying model and its results, added
to V emf , will be referred to as yTnlpv.

4. MODELLING RESULTS AND VALIDATION

In this section, the proposed model structure (Tnlpv) is
parameterised using the race data of Profile 1 and two
local temperature data sets. The model is validated on
the additional three race profiles and the performance
is compared to the LTI model and the temperature-
dependent model (T lpv).
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4.1 Model Parametrisation

Using the form of (9), we still need to establish what
value for N is appropriate, what values for αn should be
used, and how all the parameters should be initialised.
Regarding the value of N , it has been found that N = 2 is
the best choice. Any N > 2 results in numerical instability
of the optimisation problem. Selecting N = 1 results in
slightly worse to similar modelling precision, as will be
shown in the results. However, choosing N = 1 requires
an extensive search for the correct value of α. Instead, by
choosing N = 2 we can select α1 and α2 as boundaries
of our searching range and the algorithm will weigh their
individual contribution such that their addition, through
(9a), captures the complete nonlinearity. A rough grid
search has been applied to find two values in-between
which the true α most likely lies. This suggests that α
should lie in-between 0.15 and 0.2, thus α1 = 0.15 and
α2 = 0.2 have been used for the cell under consideration.
For correct initialisation, which is important because this
is a nonlinear optimisation problem, A and D are ini-
tialised as the values fitted on the local estimates, as shown
in Fig. 4. Since the behaviour of the overpotential state
should be mainly ruled by the augmented inputs, Bn have
also been initialised as the local models and the parameters
of B0 have been initialised as zero. A case for N = 1 is also
included for comparison, in this case α = 0.175.

Profile 1, combined with two local data sets at 27.5 and
35◦C, is used as yo in (10) to determine the parameters.
The inclusion of the two local data sets is necessary, as
otherwise not all behaviour is represented in the data set.
As a result, certain behaviour would then be attributed to
temperature, while in fact it is caused by high currents.
A comparison of the performance of the LTI model, the
temperature-dependent LPV model and the temperature-
dependent and current-influenced NLPV model is made
and results are shown in Fig. 5 and the Root-Mean-Square
(RMS) errors are reported in Table 1. The results clearly
show the improvement of considering both temperature
and the nonlinear effect of large currents when modelling
the cell behaviour for racing conditions. Fig. 5b shows
that the nonlinearity of the current is indeed only asso-
ciated with the state behaviour, since only considering the
temperature already produces the correct instant voltage
drops, modelled by the direct-feedthrough term D.

Table 1. RMS errors Profile 1 in mV

Profile ylti yTlpv yTnlpv
N=1 yTnlpv

N=2

1 126 58.1 8.00 7.80

4.2 Model Validation

In order to validate the model performance, the three
models have been used once more to simulate the voltage
of Profiles 2 to 4. The results are presented in Fig. 6
and the RMS errors are listed in Table 2. These results
demonstrate the effectiveness and necessity for taking into
account the nonlinearity of the current and temperature.
Moreover, the importance of considering the correct tem-
perature measurement, i.e., on the surface instead of the
chamber temperature, is demonstrated in Fig. 7 and the
RMS errors are shown in Table 3. In this case, both models
show a distinct mismatch with the measurement. It should
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Fig. 5. Model performance on Profile 1.

be noted that although using the surface temperature does
provide more accurate predictions, the performance could
be even better if the internal temperature were to be
used. This is especially true in the case of self-heating,
where heat is generated from within. In this study, the cell
was relatively small, so the difference between the internal
and the surface temperature is also assumed to be small.
However, this should definitely be a point of concern for
larger cells.

Table 2. RMS errors Profile 2 to 4 in mV

Profile ylti yTlpv yTnlpv
N=1 yTnlpv

N=2

2 113 66.5 9.6 9.7

3 174 86.2 12.3 11.8

4 96.9 59.7 12.7 12.6

Table 3. RMS errors when considering T c instead of T ,
listed in mV.

Profile yTlpv yTnlpv
N=2

3 118 45.1

5. CONCLUSION

In this paper, the importance of considering the nonlin-
earities associated with both the temperature and current
in empirical battery modelling for high currents has been
demonstrated. Moreover, a tool has been provided for
modelling their combined effect on a dynamic data set, i.e.,
with varying temperature and current. The results show
the accuracy of the proposed model and this work can nat-
urally be extended to applications such as a power limiter.
In order to make predictions on the electrical behaviour
with this model, it is important to also have an accurate
thermal model, so it is known how the temperature of the
battery-cell or -pack will develop. This work can be further
improved by determining whether or not the nonlinear-
ity of the current is State-of-Charge- and temperature-
dependent, as suggested in (Juang et al., 2013) and (Juang
et al., 2014), respectively. Finally, applying this approach
to large cells can lead to inaccuracy due to the difference
between the surface and internal temperature.
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Fig. 7. Voltage results when considering T c instead of T .
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