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Abstract: This paper addresses the problem of decentralized PI-based voltage stabilization in islanded
DC microgrids with DC-DC buck converters. We propose a voltage control approach with a decentral-
ized PI control structure. The proposed voltage control design is scalable and does not rely on the global
model of the microgrids and parameters of the distribution lines. Moreover, it guarantees the asymptotic
stability of the DC microgrid systems. The scalability of the design and asymptotic stability are ensured
by the use of a separable quadratic-type Lyapunov function, with a fixed-structure Lyapunov matrix, as
well as the LaSalle’s invariance principle. The effectiveness of the proposed voltage control strategy is
evaluated through simulation case studies.
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1. INTRODUCTION

Nowadays DC microgrids have drawn continually increasing
attention due to their main advantages including higher effi-
ciency, reduced losses, and easy and natural integration with
renewable energy sources and energy storage resources (Drag-
icevic et al. (May 2016)). In the DC microgrid systems, the
renewable energy sources with a DC-type output are normally
interfaced to the microgrid through DC-DC power-electronic
converters.

As the applicability of the DC microgrid systems is widely in-
creasing, the design of appropriate control strategies which en-
sure microgrid’s stability and efficiency plays an important role.
One of the main challenges in DC microgrids with multiple dis-
tribution generation (DG) units is about the design of scalable
voltage stabilization of DG units. In the scalable design, the
main objective is that the stable operation of microgrids and the
voltage control design are not influenced by uncertainty sources
affected the architecture of the microgrid systems (Nasirian
et al. (Dec. 2014)). The examples of the uncertainty sources
are plug-and-play operation of DG units, structural/electrical
upgrades, and faults/failure in the distribution lines connecting
different DG units.

The most common control approaches for the DC microgrids
are based on droop control (e.g. J. M. Guerrero et al. (Jan.
2011); Guerrero et al. (Apr. 2013); Meng et al. (Sept. 2017))
consisting of three control levels named as primary, secondary,
and tertiary control. The primary control level aims to sta-
bilize the voltage of DC microgrids and facilitate an accu-
rate power sharing. The second level with slower time scale
compensates for the deviations in the voltage in the steady
state (Guerrero et al. (Apr. 2013)). The tertiary level assigns
the microgrid voltage and is responsible for an optimal op-
eration and power management in DC microgrids (Guerrero
et al. (Apr. 2013); Nasirian et al. (Dec. 2014)). From a control
point of view, the primary level has a decentralized propor-
tional (P) control framework whereas the secondary level has
centralized/distributed integral (I) control structure which relies

on communication networks and information exchange among
DG units’ neighbors (Guerrero et al. (Apr. 2013)). In spite of
the potential advantages of the droop-based control strategy,
it comes at the expense of instability issues, slow dynamic
responses, and dependency on the line impedance (Yazdanian
and Mehrizi-Sani (Nov. 2014)).

Another category of voltage control strategies for DC micro-
grids is the so-called non-droop-based methods which com-
bine primary and secondary control levels. Non-droop-based
approaches are mainly based on decentralized advanced model-
based control techniques (Sadabadi et al. (Nov. 2018)). Re-
cently, several scalable voltage control approaches of DC mi-
crogrids have been proposed, e.g. Sadabadi et al. (Nov. 2018);
Tucci et al. (Nov. 2016); M. Tucci et al. (May 2018); Sadabadi
and Shafiee (Jan. 2020); Cucuzzella et al. (Jul. 2019); M. Cu-
cuzzella et al. (Jul. 2019); Cucuzzella et al. (Mar. 2019). The
proposed techniques which are mainly based on the Lyapunov
theorem (e.g. Sadabadi et al. (Nov. 2018); Tucci et al. (Nov.
2016); M. Tucci et al. (May 2018)) and/or passivity theorem
(e.g. Cucuzzella et al. (Jul. 2019); M. Cucuzzella et al. (Jul.
2019); Cucuzzella et al. (Mar. 2019)) provide a guarantee of
voltage stability in the DC microgrids. However, they require
information about the power lines connected to each distributed
generation unit (Sadabadi et al. (Nov. 2018); Tucci et al. (Nov.
2016); Sadabadi and Shafiee (Jan. 2020); Cucuzzella et al. (Jul.
2019); M. Cucuzzella et al. (Jul. 2019); Cucuzzella et al. (Mar.
2019)). Furthermore, in these approaches, the proposed volt-
age control law, expressed in terms of a state-feedback control
and/or some nonlinear control, requires solving optimization
problems.

Considering the advantages and drawbacks of both droop-based
and non-droop-based control strategies, we propose a voltage
control framework which replaces the droop mechanism with
a decentralized PI controller. The proposed control strategy en-
ables us to take advantages of both droop-based and non-droop-
based approaches. Similar to the droop control, the proposed
approach is based on a PI control; however, it does not depend
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on line parameters. Moreover, similar to the non-droop-base
mechanism, the proposed method ensures the robust stability
and reliable operation of DC microgrids. Explicit equalities on
the proportional and integral terms of the stabilizing voltage
controllers are provided. Therefore, the design procedure does
not rely on a solution of optimization problems. Moreover, the
local voltage control design is independent of the parameters of
distribution lines. The proposed control stagey guarantees the
asymptotic stability of the DC microgrid system. The scalabil-
ity of the design and asymptotic stability are ensured by utiliz-
ing a Lyapunov-based framework with a separable quadratic-
type structured Lyapunov function as well as LaSalle’s invari-
ance principle. The efficiency of the proposed voltage control
strategy is evaluated via simulation case studies carried out in
MATLAB/Simscape Electrical.

The rest of the paper is organized as follows. Section 2 presents
a dynamical model of DC microgrids with DC-DC buck con-
verters. The stabilizing PI voltage control framework and the
proposed control design strategy are given in Section 3 and
Section 4, respectively. Section 5 is devoted to simulation case
studies. Section 6 concludes the paper.

The notation used in this paper is standard. In particular, matrix
0 is the zero matrix of appropriate dimensions. The symbols
AT and A[i, j] denote the transpose of matrix A and the i j
element of matrix A. For symmetric matrices, P > 0 (P < 0)
and P≥ 0 (P≤ 0) respectively indicate the positive-definiteness
(negative-definiteness) and the positive semi-definiteness (neg-
ative semi-definiteness).

2. DYNAMICAL MODEL OF DC MICROGRIDS

We consider an islanded DC microgrid with N DG units. The
energy source of each DG is represented by a DC voltage source
that supplies a local load through a DC-DC buck converter at
the Point of Common Coupling (PCC). A schematic diagram
of a buck-based DG is shown in Fig. 1. Different DG units are
connected via distribution lines. DC microgrids are modeled
as interconnected systems, where each DG forms a subsystem
and the distribution lines represent the interactions among
the subsystems. The symbols used in Fig. 1 are described in
Table 1.

Graph Representation of DC Microgrids: The DC microgrid
forms a network represented by a directed graph G = (V ,E ),
where V and E are the sets of vertices and edges, respectively.
Each element in the vertex set V = {1, ..,N} represents a DG
and each element in the edge set E = {1, ..,m} represents
the distribution line between the corresponding DG units. The
microgrid topology is described by the incidence matrix D ∈
RN×m of the directed graph G . The incidence matrix D = [Dik]
defines the direction of the distribution line current. If the
current Ik leaves DG i and enters DG j, Dik = 1 and D jk =−1
and if it enters the node i and leaves DG j, Dik = −1 and
D jk = 1. If the line k does not connect DG i and DG j, then
Dik = 0 and D jk = 0. Therefore, Dik is formulated as follows:

Dik =


1 if line k leaves DG i,
−1 if line k enters DG i,

0 otherwise.
(1)

for i = 1, . . . ,N and k = 1, . . . ,m.

Model of a DG with a Buck Converter: Using Kirchhoff’s
current and voltage laws, each DG unit is mathematically
modeled as follows:

Buck converter Load Distribution line

Rti
Vdc,i

Si Lti

Cti

I ti

G i

I *Li

Rk Lk

PCC i PCC j
V i

Ik

ILi

Fig. 1. A schematic diagram of a buck-based DG unit.

Table 1. Parameters of the DG Unit in Fig. 1.

(Rti ,Lti ) Buck filter parameters
Iti Filter current
Cti Shunt capacitance
Vi Voltage at PCC i

Vdc,i Voltage of the input side of the DC-DC converter
Gi Load conductance
I∗Li

Load constant current
ILi Load current

(Rk,Lk) Distribution lines parameters
Ik Distribution lines current

ẋgi = Agixgi +Biui +BLi ILi +Bli ∑
k∈Ei

DikIk

yi =Cixgi

(2)

where xgi = [Vi Iti ]
T is the state, ui = Vdc,idi is the input, di is

the duty cycle of the DC-DC converter, yi = Vi is the output,
and ILi is the load current. The term Bli ∑k∈Ei DikIk describes
the interaction between DG i and other DG units through the
distribution lines k with current Ik, k ∈ Ei. The set Ei ⊂ E
describes the set of the distribution lines connected to DG i.
The state space matrices are given as follows:

Agi =

[
0 1

Cti

− 1
Lti
−Rti

Lti

]
, Bi =

[
0
1

Lti

]
BLi =

[
− 1

Cti
0

]
, Bli =

[
− 1

Cti
0

]
Ci = [ 1 0 ]

(3)

Dynamics of Distribution Lines: It is assumed that there are m
distribution lines in the DC microgrid system. The resistive-
inductive distribution line k with parameters (Rk,Lk) and the
line current Ik, from DG i to DG j, is modeled as follows:

İk =−
Rk

Lk
Ik +

1
Lk

(DikVi +D jkVj) (4)

Load Model: It is assumed that the loads are connected to the
DG terminals at PCCs. The load current ILi in (2) is modeled as
follows:

ILi = GiVi + I∗Li
(5)

where Gi is the load conductance and I∗Li
is a constant current

load of DG i.

DC Microgrid Model: The overall microgrid system with the
dynamics in (2) in presence of the loads in (5) can be presented
as follows:

ẋgi = Aixgi +Biui +BLi I
∗
Li
+Bli ∑

k∈Ei

DikIk

İk =−
Rk

Lk
Ik +

1
Lk

N

∑
i=1

DikVi

yi =Cixgi

(6)
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where

Ai =

− Gi
Cti

1
Cti

− 1
Lti
−Rti

Lti

 (7)

for i = 1, . . . ,N and k = 1, . . . ,m.

3. PI-BASED VOLTAGE CONTROL FRAMEWORK

In this section, we formulate the control objectives aiming
at the voltage stabilization of a DC microgrid system and
voltage tracking by an appropriate design of PI controllers. The
voltage controllers ensure that the voltage signals at PCCs track
reference voltages Vre f ,i provided by a higher-level controller.

Control Structure: The control input of DG i, i = 1, . . . ,N can
be structured as follows:

ui = KPi(Vi−Vre f ,i)+KIi

∫
(−Vi +Vre f ,i)dt (8)

where KPi and KIi respectively are the proportional and the
integral parameters of the PI controllers. The term

∫
(−Vi +

Vre f ,i)dt is defined as a new variable vi with the following
dynamics:

v̇i =−Vi +Vre f ,i (9)

Change of Coordinates: For a given Vre f ,i and I∗Li
, the unique

equilibrium point of (6)-(8) is given by:
V̄i =Vre f ,i

Īk =
1

Rk

N

∑
i=1

DikVre f ,i

Īti =Vre f ,iGi + I∗Li
+ ∑

k∈Ei

Dik Īk

ūi =Vre f ,i +Rti Īti

v̄i =
ūi

KI,i
, ȳi =Vre f ,i

(10)

By change of the coordinates as ũi = ui − ūi, ỹi = yi − ȳi,
Ṽi =Vi−V̄i, Ĩti = Iti− Īti , ṽi = vi− v̄i, and Ĩk = Ik− Īk, the system
dynamics in (6) and (9) can be rewritten as follows:

˙̃xi = Ãix̃i + B̃iũi + B̃li ∑
k∈Ei

Dik Ĩk

˙̃Ik =−
Rk

Lk
Ĩk +

1
Lk

N

∑
i=1

DikṼi

(11)

where x̃i =
[

Ṽi Ĩti ṽi
]T and

Ãi =

[
Ai 0
−Ci 0

]
, B̃i =

[
Bi
0

]
B̃li =

[
Bli
0

]
, C̃i = [Ci 0 ]

(12)

Closed-loop System of DG i: The closed-loop system of DG i
with the PI-based control law in (8) is presented as follows:

˙̃xi = Ãix̃i + B̃iũi + B̃li ∑
k∈Ei

Dik Ĩk

˙̃Ik =−
Rk

Lk
Ĩk +

1
Lk

N

∑
i=1

DikṼi

ũi = KPiṼi +KIi ṽi

ỹi = C̃ix̃i

(13)

The main objective is to design the proportional and integral
gains KPi and KIi , i = 1, . . . ,N which guarantee the stability of
the DC microgrid system.

4. PROPOSED CONTROL DESIGN APPROACH

In this section, a solution for the PI-based voltage stabilization
of the DC microgrid system, based on the Lyapunov theorem
and the LaSalle’s invariance principle (Khalil (2006)), is pro-
posed.

4.1 VOLTAGE CONTROL DESIGN STRATEGY

Consider the following separable quadratic-type Lyapunov
function for the microgrid system in (13) consisting of N DG
units and m distribution lines:

V(x̃, Ĩ) = Vline(Ĩ)+
N

∑
i=1

Vi(x̃i) (14)

where x̃ =
[

x̃T
1 . . . x̃T

N
]T , Ĩ =

[
Ĩ1 . . . Ĩm

]T , and

Vline(Ĩ) =
m

∑
k=1

αLk Ĩ2
k

Vi(x̃i) = x̃T
i Pix̃i

(15)

where α > 0 and Pi > 0 is a positive-definite matrix. The
time derivative of Vline(Ĩ) and Vi(x̃i) along the closed-loop
trajectories of (13) are as follows:

V̇line(Ĩ) =−2α

m

∑
k=1

Rk Ĩ2
k +α(Ṽ T D Ĩ + ĨT DT Ṽ ) (16)

V̇i(x̃i) = x̃T
i (Ã

T
i Pi +PiÃi)x̃i + x̃T

i PiB̃iũi + ũT
i B̃T

i Pix̃i

+ ∑
k∈Ei

ĨT
k DikB̃T

li Pix̃i + x̃T
i PiB̃li ∑

k∈Ei

Dik Ĩk
(17)

where Ṽ =
[

Ṽ1 . . . ṼN
]T .

By replacing ũi with ũi − K̃ix̃i + K̃ix̃i, V̇i(x̃i) is expressed as
follows:

V̇i(x̃i) = x̃T
i
(
(Ãi + B̃iK̃i)

T Pi +Pi(Ãi + B̃iK̃i)
)

x̃i

+(−K̃ix̃i + ũi)
T B̃T

i Pix̃i + x̃T
i PiB̃i(−K̃ix̃i + ũi)

+ x̃T
i PiB̃li ∑

k∈Ei

Dik Ĩk + ∑
k∈Ei

Dik ĨT
k B̃T

li Pix̃i

(18)

Therefore,

V̇(x̃, Ĩ) =−2α

m

∑
k=1

Rk Ĩ2
k +α(Ṽ T D Ĩ + ĨT DT Ṽ )+

N

∑
i=1

x̃T
i Qix̃i

+
N

∑
i=1

(
(−K̃ix̃i + ũi)

T B̃T
i Pix̃i + x̃T

i PiB̃i(−K̃ix̃i + ũi)
)

+
N

∑
i=1

(
x̃T

i PiB̃li ∑
k∈Ei

Dik Ĩk + ∑
k∈Ei

Dik ĨT
k B̃T

li Pix̃i

)
(19)

where
Qi = (Ãi + B̃iK̃i)

T Pi +Pi(Ãi + B̃iK̃i) (20)

In the next theorem, we show that V̇(x̃, Ĩ) ≤ 0 for all (x̃, Ĩ) by
an appropriate choice of ũi, i = 1, . . . ,N.
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Theorem 1. Consider the closed-loop microgrid system in (13).
The following control law makes V̇(x̃, Ĩ)≤ 0 for all (x̃, Ĩ).

ũi = Kix̃i (21)
where

Ki = K̃i−βiB̃T
i Pi (22)

where βi is a real positive scalar and Pi > 0 has the following
structure:

Pi = α

[Cti 0 0
0 ρ2i −ρ1iρ2i
0 −ρ1iρ2i ρ1i(ρ1iρ2i +1)

]
(23)

and ρ1i > 0 and 0 < ρ2i < α−1β
−1
i RtiLti .

Moreover, the gain matrix K̃i =
[

k̃1,i k̃2,i k̃3,i
]

is obtained as
follows:

k̃1,i = 1−Lti(ρ
−1
2i

+ρ1i)

k̃2,i = αβi
1

Lti
ρ2i

k̃3,i = ρ1i(Rti − k̃2,i)

(24)

Proof 1. The proof of Theorem 1 is as follows:

Neutral interactions Ĩk. By employing Pi in (23), it can be
shown that

N

∑
i=1

(
x̃T

i PiB̃li ∑
k∈Ei

Dik Ĩk + ∑
k∈Ei

Dik ĨT
k B̃T

li Pix̃i

)
+α(Ṽ T D Ĩ + ĨT DT Ṽ ) = 0

(25)

The above equation indicates that the interactions within the DC
microgrid systems are neutral due to the structured Lyapunov
matrix Pi in (23). As a result, (19) simplifies to:

V̇(x̃) =−2α

m

∑
k=1

Rk Ĩ2
k +

N

∑
i=1

x̃T
i Qix̃i

+
N

∑
i=1

(−K̃ix̃i + ũi)
T B̃T

i Pix̃i +
N

∑
i=1

x̃T
i PiB̃i(−K̃ix̃i + ũi)

(26)

The first term in (26), i.e.−2α ∑
m
k=1 Rk Ĩ2

k , is non-positive. In the
next step, we show that Qi ≤ 0 for i = 1, . . . ,N.

Qi ≤ 0. The negative semi-definiteness of Qi is equivalent to
the negative semi-definiteness of matrix Q̃i = P−1

i QiP−1
i . We

definite new matrices Yi = P−1
i and gi = K̃iP−1

i . As a result, Q̃i
is presented as follows:

Q̃i = YiÃT
i + ÃiYi + B̃igi +gT

i B̃T
i (27)

Matrices Yi > 0 and gi are parametrized as follows:

Yi =

 α−1C−1
ti 0 0

0 y22i y23i
0 y23i y33i

 (28)

gi = [ g1i g2i g3i ]

=
[

k̃1,i
αCti

k̃2,iy22i + k̃3,iy23i k̃2,iy23i + k̃3,iy33i

] (29)

By replacing Yi and Gi in (27), Q̃i is rewritten as follows:

Q̃i =

−
Gi

C2
ti

α
Q̃12i Q̃13i

Q̃12i Q̃22i Q̃23i

Q̃13i Q̃23i 0

 (30)

where

Q̃12i =
1

Cti
y22i −

1
αCtiLti

+
1

Lti
g1i

Q̃13i =
1

Cti
y23i −

1
αCti

Q̃22i =−2
Rti
Lti

y22i +2
1

Lti
g2i

Q̃23i =−
Rti
Lti

y23i +
1

Lti
g3i

(31)

The non-positiveness of Q̃i ≤ 0 implies that the third column
and row of Q̃i must be equal to zero. We also consider Q̃12i = 0.
As a result,

y23i =
1
α

g3i =
Rti
α

y33i =
1

αk3,i
(Rti − k̃2,i)

y22i =
1

αLti
(1− k̃1,i)

(32)

By replacing y23i , y22i , y33i , and g3i from (32) and g2i from (29)
in (31), it can be shown that Q̃22i simplifies as follows:

Q̃22i =
2

Lti
k̃3,i(−αy33iy22i +

1
α
) (33)

As Yi = P−1
i , it can be easily shown that −αy33iy22i +

1
α
=

−αy33iρ
−1
2i

where ρ2i =Pi[2,2]. Due to the positive definiteness
of Pi, ρ2i is a positive scalar. Therefore, Yi and Q̃i are presented
as follows:

Yi =

 α−1C−1
ti 0 0

0 α−2y−1
33i

+ρ
−1
2i

α−1

0 α−1 y33i


Q̃i =

−
Gi

C2
ti

α
0 0

0 − 2α

Lti
k̃3,iy33iρ

−1
2i

0
0 0 0


(34)

If we assume that k̃3,i > 0, Q̃i ≤ 0; therefore, Qi ≤ 0.

PI control law ui. We consider the control law as ũi = K̃ix̃i−
βiB̃T

i Pix̃i with a real positive scalar βi. Therefore, V̇(x̃) is
expressed as follows:

V̇(x̃, Ĩ) =−2α

m

∑
k=1

Rk Ĩ2
k +

N

∑
i=1

x̃T
i Qix̃i−2

N

∑
i=1

βix̃T
i PiB̃iB̃T

i Pix̃i

(35)

Since −βix̃T
i PiB̃iB̃T

i Pix̃i ≤ 0, V̇(x̃, Ĩ) ≤ 0 for all (x̃, Ĩ). Due to
the structure of ũi = KPiṼi + KIi ṽi, the term (k̃i,2 − βi

Lti
ρ2i)Ĩti

must be equal to zero. Therefore, there is the following equality
constraint on k̃2,i and ρ2i :

k̃2,i =
βi

Lti
ρ2i (36)

Constraints on K̃i. From (32), (33), and (36), the gain matrix
K̃i is subject to the following constraints:
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y22i > 0⇒ k̃1,i < 1
y33i > 0⇒ k̃2,i < Rti

k̃2,i =
βi

Lti
ρ2i

Q̃22i ≤ 0⇒ k̃3,i > 0

(37)

Structure of the Lyapunov matrix Pi. Since Pi = Y−1
i , the

matrix Pi is structured as (23), where ρ1i =
1

αy33i
> 0 and

ρ2i > 0. Moreover, based on (36) and the inequality constraint
on k̃2,i in (37), the choice of ρ2i must satisfy the following
constraint:

0 < ρ2i < α
−1

β
−1
i RtiLti (38)

Explicit equalities on gain matrix K̃i. From (32), (36), and the
relationship between Yi and Pi, the gain matrix K̃i is obtained as
(24).

Proportional and integral gains (KPi ,KIi). The proportional
and integral terms of the PI controllers are obtained as follows:

KPi = k̃i,1 = 1−Lti(ρ
−1
2i

+ρ1i)

KIi = k̃i,3 +
αβi

Lti
ρ1iρ2i

= ρ1iRti

(39)

for i = 1, . . . ,N.
Theorem 2. The PI control law given in (21) and (22) with the
coefficients in (39) guarantees the stability of the closed-loop
microgrid system.
Proof 2. In Theorem 1, it is shown that V̇(x̃, Ĩ) ≤ 0 for all
(x̃, Ĩ). We use the LaSalle’s invariance principle to show that
the closed-loop microgrid system with control law given in (21)
is asymptotically stable. To this end, we need to show that the
only solution of V̇(x̃, Ĩ) = 0 is (x̃, Ĩ) = 0, ∀t > 0. To see this,
note that V̇(x̃, Ĩ) = 0 implies that

Ĩk = 0

x̃T
i Qix̃i = 0

B̃T
i Pix̃i = 0

(40)

for k = 1, . . . ,m and i = 1. . . . ,N. It is required to show that
the only state trajectory of the system which satisfies all the
constraints in (40) is origin. Let’s compute the set χ as follows:

χ =
{

Ĩk = 0
}︸ ︷︷ ︸

χ1

∩
{

x̃i : x̃T
i Qix̃i = 0

}︸ ︷︷ ︸
χ2

∩
{

x̃i : x̃T
i PiB̃iB̃T

i Pix̃i = 0
}︸ ︷︷ ︸

χ3

(41)

From the set χ1, it is concluded that

Ĩk = 0⇒ ˙̃Ik = 0⇒ Ṽi = Ṽj; i, j ∈ V (42)

Based on the set χ2, we should find a state trajectory x̃?i which
maximizes the term f (x̃i) = x̃T

i Qix̃i. Note that the maximum
value of f (x̃i) is zero. Therefore,

d f (x̃i)

dx̃i

∣∣∣∣∣
x̃?i

= 2Qix̃?i = 0 (43)

By premultiplying of the above equation by Yi = P−1
i and

defining a new variable ỹ?i = Y−1
i x̃?i , we have

Q̃iỹ?i = 0 (44)
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Fig. 2. Layout of an islanded DC microgrid with 6 DG units and 7 distribution
lines.

where Q̃i and Yi are defined in (34). It can be shown that the
vector ỹ?i satisfying (44) is characterized as ỹ?i =

[
0 0 ỹ?3,i

]T .
As a result, we have

x̃?i = Yiỹ?i
=
[

0 1
α

ỹ?3,i ỹ?3,iy33i

]T (45)

Therefore, the state trajectory which satisfies the conditions in
set χ2 is in the form of (45). As a result,

Ṽi = 0⇒ ˙̃Vi = 0
Ĩk=0
===⇒ Ĩi = 0 (46)

Moreover,

Ĩi = 0⇒ ỹ?3,i = 0
ṽi=ỹ?3,iy33i
======⇒ ṽi = 0 (47)

From (42), (46), and (47), we have
χ1∩χ2 =

{
x̃i = 0 & Ĩk = 0

}
(48)

Since {x̃i = 0} ∈ χ3, the largest invariant set of χ is origin, and
therefore there are not any other state trajectories that converge
to the origin. As a result, the origin in (13) is asymptotically
stable.

4.2 PROPOSED VOLTAGE CONTROL DESIGN ALGORITHM

The PI voltage controller design for each DG whose dynamics
are given in (13) is based on the following steps.

Input: Model of each DG.

Output: Decentralized PI voltage controllers Ki.

(i) Design of the structured Lyapunov matrix Pi in (23) by
choosing ρ1i and ρ2i .

(ii) Finding the coefficients of the PI controllers in (39).

5. SIMULATION RESULTS

In order to evaluate the proposed voltage control scheme,
simulation studies are performed on an islanded DC microgrid
with DC-DC buck converters, borrowed from Sadabadi et al.
(Nov. 2018). The microgrid consists of N = 6 DG units and
m = 7 distribution lines as graphically shown in Fig. 2. The
parameters of each DG and the distribution lines are given in
Sadabadi et al. (Nov. 2018).

The stabilizing PI voltage controller of each DG is designed
by using the proposed algorithm in Subsection 4.2. The voltage
controllers are applied to the DC microgrid in Fig. 2 imple-
mented in MATLAB/Simscape Electrical.
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Fig. 3. Dynamic response of DG1 due to voltage reference changes: (a) volt-
age signal at PCC1 and (b) duty cycle of the buck converter of DG1.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
46

47

48

49

50

 V
(V

)

(a)

V
2

V
3

V
6

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

 Time (s)

0

0.2

0.4

0.6

0.8

1

d

(b)

d
2

d
3

d
6

Fig. 4. Dynamic response of the neighbors of DG1 due to voltage reference
changes at PCC1: (a) voltage signal at PCC2, PCC3, and PCC6 and
(b) duty cycle of the buck converter of DG2, DG3, and DG6.

The performance and transient behavior of DG1 in voltage
tracking scenario is assessed in this study. The voltage reference
of DG1 is initially set at 52V . Then, the reference is stepped
down to 47V at t = 0.5s and stepped up to 52V at t = 0.9s. Fig. 3
shows the dynamic responses of DG1. The results indicate that
the proposed voltage control technique is able to regulate the
voltage at PCCs with zero steady state error and small transient
time.

The voltage signals at PCC2, PCC3, and PCC6 as well as the
control inputs of DG2, DG3, and DG6 are depicted in Fig. 4.
As one can observe from Fig. 4, due to the line-independent
voltage control design, the voltage changes at PCC1 have
negligible effects on the voltage signals of the neighbors of
DG1.

6. CONCLUSION

This paper studies the scalable voltage stabilization for DC
microgrids with DC-DC buck converters. Using a Lyapunov-
based framework together with the LaSalle’s invariance prin-
ciple, a decentralized PI-based voltage controller is proposed,

which relies on only the local electrical parameters of each DG
unit. A set of parameters of stabilizing PI-based voltage con-
trollers is presented. The control design strategy is scalable and
allows the plug-and-play operation of DG units. The proposed
voltage control scheme guarantees the asymptotic stability of
the DC microgrid systems. Future works include the extension
of our results to boost converters and DC microgrids with con-
stant power loads.
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