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Abstract:
A truly personalized cancer therapy demands the availability of models, of which tumor
dynamics model is imperative. This paper presents a feasibility study of using a tumor growth
model for lung cancer treatment planning. Recent developments in radiation therapy are outlined
in this work, including target tumor based delivery of limited but highly precise treatment doses
during stereotactic body radiation therapy (SBRT). Based on our prior work, we propose a
methodology for quality improvement in treatment management of lung cancer, including the
lung tumor motion. The paper presents the tumor behavior in various therapy scenarios by
simulating different time-dose schemes for drug administration. The results indicate that the
model is adequate and can be further used into the feedback scheme for treatment updates.

Keywords: dynamic system modeling, tumor growth model, model-based treatment, lung
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1. INTRODUCTION

Significant achievements have been obtained in improving
the diagnosis, treatment planning and delivery for patients
with lung cancer. However, survival rates remain poor and
vary widely across Europe. With an estimated of 470,039
new cases in 2018 (11.1%), compared with 449,000 cases
in 2015 (LuCE, 2015), lung cancer has increasing rates in
Europe (WHO, 2018). Lung cancer in EU is the biggest
cancer killer in cancer-related deaths, accounting for a
number of 387,913 of deaths in 2018 (20%).

An investigation of World Health Organization (Inter-
national Agency for Research on Cancer) (WHO, 2018)
reports the statistical analysis of worldwide burden of
lung cancer, our interest lying in Belgium, Hungary and
Romania. The numbers related to lung cancer in Belgium
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in 2018 were: 9,424 (12.18%) new cases of lung cancer in
men (6,214) and women (3,210); with 7,037 lung cancer
related deaths (25.43%). In the same year in Hungary, lung
cancer incidence was 11,004 (15.6%) and the mortality
8,893 (26.9%). In 2018, lung cancer in Romania accounted
for the following numbers: 11,340 (13.6%) new cases and
10,277 (20.2%) deaths. The results imply that lung cancer
is ranked as number one cause of cancer deaths in all the
three countries, being also the first in cancer incidence
in Hungary and Romania and second in Belgium (WHO,
2018).

The main subtype of lung cancer is Non-Small Cell Lung
Cancer (NSCLC), accounting for approximately 85% of
all lung cancer sites (Zappa and Mousa, 2016). The histo-
logical subtypes of NSCLC (adenocarcinoma, squamous
cell carcinoma, large cell carcinoma) are important for
choosing the efficient angiogenesis inhibitors and therapies,
as well as bio-markers (McLean et al., 2018). Angiogenesis
is the physiological process of growing new blood vessels.
Antiangiogenesis is critical for blocking the blood supply
that supports the tumor and by default minimizing the
growth of cancer cells.
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With the advancement of the changing landscape of lung
cancer treatment, radiation therapy (RT) is the most used
modality to address local-regional areas of tissue. RT is
a well-known cancer treatment, with complex and varied
toxic biological effects, wanted to be provoked in diseased
cells, while simultaneously avoiding healthy cells. Stereo-
tactic body radiation therapy (SBRT) is an advanced form
of hypofractionated RT that consists of precise delivery of
higher radiation doses on precised tumor location (Liauw
et al., 2013). SBRT delivery in lung cancer is mostly
performed using a linear accelerator. Clinical practice in
lung cancer meets difficulties in motion management. Posi-
tioning variations of thoracic structures, including tumor,
can occur on different time scale, in all three orthogonal
directions, due to the cyclic breathing motion (Korreman,
2015). Variations in the breathing pattern are crucial for
drawing trajectories of radiation in real time and for
implementing a motion management strategy in SBRT.
Programming the linear accelerator to move synchronously
with the tumor target by introducing active feedback of
tumor position updates the beam delivery.

The burden of lung cancer requires complex research,
including describing it by means of mathematical formal-
ism. Mathematical modeling enables an understanding of
cancer mechanisms by providing quantitative predictions,
describing relationships between biologic components and
extrapolating validated facts (Altrock et al., 2015). Despite
the available cancer models that provide useful insights
into the possible underlying mechanisms of tumor progres-
sion, intra-tumor heterogeneity and treatment responses,
modeling the tumor response to treatment is still missing.

The purpose of this study is to provide first-hand results
towards broadening the improvements for cancer treat-
ment management and follow up. We provide a mathemat-
ical framework of tumor dynamics and integrate it into the
comprehensive mechanism for treatment planning in RT.

This paper is organized as follows. Section 1 introduces the
clinical needs in radiation therapy and treatment planning
for lung cancer. In Section 2, the current advances in radi-
ation oncology delivery and the physics principles of ther-
apeutic ratio used in SBRT are discussed. It also describes
the potential approaches in order to facilitate accurate
tumor targeting in lung cancer, proposing a strategy for
setup correction of tumor position. Section 3 proposes a
tumor growth model that incorporates tumor physiology
and mechanisms. Section 4 presents the results obtained
after simulation of different treatment schedules, followed
by discussion, future directions and study limitations. The
principal outcomes are outlined in the conclusions section.

2. STEREOTACTIC BODY RADIATION THERAPY

2.1 Background

Of the various lung cancer treatment protocols, SBRT
represents the standard of care for peripherally located
early stage NSCLC patients that are medically inoperable
or refuse the surgical resection of the tumor. In practice,
the clinical guidelines from national protocols and/or
published literature are not enough in evaluation of the
tumor and application of SBRT technique (Guckenberger
et al., 2017).

SBRT is an unconventional external beam radiation ther-
apy designed for very precise tumor localization and radia-
tion delivery. SBRT implies the use of image guidance and
specially designed coordinate-system to locate the tumor
in the lungs in order to treat it with limited and highly pre-
cise treatment fields. In SBRT, the target area is mapped
by physicians with four-dimensional imaging. The multi-
ple non-coplanar beams are directed and intersect at the
targeted tumor volume, called radiation ”hot spot”. The
radiation plan takes into consideration also the movement
of the target over time as a result of the patient breathing
cycle. The optimal use of radiation therapy is tailored
according to different relevant characteristics of both the
patient and the tumor. In SBRT, hypofractionated doses
are applied. The principle can be described as follows: high
doses of irradiation are delivered in a single dose or a few
treatment fractions, avoiding treating a volume outside of
the tumor target (Roesch et al., 2014). Conventional frac-
tionation schedules for non-small cell lung cancer consists
of 3 to 5 fractions of 12 to 20 Gy, hence reducing the
radiation induced toxicity and risks.

Strong emphasis has been placed on precise tumor localiza-
tion at the time of radiation delivery to minimize healthy
tissue damage. Clinical experience and a mathematical
modeling of the dose effect pathway are key requirements
of the procedure.

Therapeutic radiation is usually requiring rotating gantries
with mounted linacs in order to overlap the external beams
on the same area of the tumor, providing higher effects.
Most commonly used is the CyberKnife system, a robotic
arm manipulator (Shibamoto and Onishi, 2018). Investi-
gations for local tumor control are made for using image-
guided radiation therapy (IGRT), intensity-modulated RT
(IMRT) or volumetric-modulated arc therapy (VMAT)
(Diwanji et al., 2017).

Cross fertilization between engineering and medicine pro-
vides tools for personalized medicine, with the potential
to quickly change the outcome of lung cancer treatment.
During the last decades, SBRT has been widely applied
in lung cancer with excellent results, but some issues
regarding precise delivery remain controversial. One of the
challenges is the implementation of real time target mo-
tion management caused by the cyclic breathing motion.
An approach for respiration measurement is described in
(Gu et al., 2012), using a radar sensor for experimental
respiration measurements. Other approaches are described
in (Diwanji et al., 2017; Korreman, 2015), but none are
coupled to a predictive control strategy to maximize their
outcome. Techniques and devices used to minimize the
effects of respiratory motion refer to gating, tracking and
immobilization (Ionescu et al., 2017b). These techniques
consist of delivering the radiation in a single phase of the
cyclic breathing, moving the beam delivery device with the
tumor or limiting the respiration induced lung movement.
Basic concepts of respiratory tumor motion exploit the
tumor trajectory, defined as the spatial path described by
the tumor while it is being monitored.

In our prior work, we have proposed a predictive control
approach to update the robot arm responsible for locating
the precise spot of radiation onto the tumor tissue while
breathing. The movement of the tumor location as a result
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Fig. 1. Basic scheme of robotic radiotherapy system with
model-based control strategy.

of the 3D variation in the lung tissue has been successfully
compensated by using tumor dynamic model during tidal
motion (Ionescu et al., 2017b). The study showed that the
combination of predictive control and disturbance filtering
(effects of breathing) increases the accuracy improvement
with 15%.

This paper proposes another step forward towards achiev-
ing the fully personalised therapy management that could
combine RT with antiangiogenesis drugs. It further pro-
vides a model of tumor dynamic response to drug therapies
for scheduled treatment doses and time administrations,
that could be integrated in the planning related decision-
making process.

2.2 Proposed Context

The method proposed in this paper helps to further link
the tumor dynamic response to treatment, expressed as
a mathematical model, to the decision-making system of
treatment planning. Specifically, the model provides in-
sight into the dynamic response to medication, which in
turn helps to decide which dose and intensity of radiation
need to be next applied to the patient. Consequently, the
robotic arm of radiation delivery will have the feedback
and predictive control strategy as given in (Ionescu et al.,
2017b) to apply the required dose and intensity to the
tumor tissue only. Our protocol appears to be more practi-
cal and accurate than what the human eye can perceive or
than individual camera can record. Ideally, all information
could be integrated into a strategy for management of
motion in SBRT treatment.

In order to reduce the position uncertainty of beam deliv-
ery, a mathematical correlation model between the tumor
position during 3D movement and the robot position can
be used. A schematic overview of the robotic angle adjust-
ments for radiation delivery is given in Fig. 1. The result
is a position error that may be further correlated with the
toxicity measured during follow up visits of the patients.
The final extent of the strategy is to develop a general
prediction model for toxicity risk in a similar population,
but with the possibility of individualization. Our focus is
to take account of setup errors in real time delivery of radi-
ation therapy and adapt the treatment management based
on previous treatment response. The treatment strategy is
thus changed from open-loop to closed-loop.

3. TUMOR GROWTH MODEL

The appropriate model structure and parameter identifi-
cation of the mathematical models describing tumor dy-
namics within the respiratory tissue dynamics are crucial
steps in providing improved healthcare for cancer patients.
The aim of the current work is to verify the use of the
model developed in Drexler et al. (2017, 2019) for simu-
lating the effect of the treatment doses at different times.
A realistic lung tumor growth model should involve the
proliferation of the tumor, the necrosis of tumor cells and
the effect of the treatment applied (drug - Bevacizumab or
the therapeutic dose of ablative radiation). The original
contribution proposed in this paper is to reproduce and
predict the change of tumor volume by simulating different
doses of treatment.

Cancer development is closely linked to the tumor micro-
environment, as a result of temporal and spatial expansion
that govern its dynamics (Altrock et al., 2015). This type
of system can be described by differential equations, with
one independent variable that is time (Ionescu et al., 2011;
Ionescu, 2012). The work is based on previous validated
research of (Drexler et al., 2017, 2019), where a third-
order model is developed to include the most relevant
physiological phenomena of cancer:

• proliferation of the tumor;
• necrosis of tumor cells;
• pharmacodynamics of the drug;
• pharmacokinetics of the drug.

These physiological relations are then transposed into a
mathematical formulation. To describe the dynamics of
the system cause-and-reactions, a compartmental model is
developed based on an analogy with the chemical reactions
of the network. Using mass-action kinetics and other
schemes for chemical reaction networks, one may obtain
a simplified model as given by:

X1
a−−→ 2 X1 (1)

X1
n−−→ X2 (2)

X1 + X3
b−−→ X2 (3)

X3
c−−→ O, (4)

These relations describe the essential physiological pro-
cesses in a minimal formulation. For instance, (1) states
that the tumor proliferates with the tumor growth rate a
until potentially doubling its initial volume. This relation
can be translated into ẋ1 = ax1. Necrosis of tumor cells
is defined in (2), with a necrosis rate n independent of
the treatment. The process is incorporated into both pro-
liferating and dead tumor volumes by adding the terms
ẋ1 = −nx1 and ẋ2 = nx1. We assume in (4) that there
is an outflow of the drug treatment with a reaction rate
coefficient c (defined as clearance). This generic assump-
tion is used to form the term ẋ3 = −cx3/(KB + x3). This
equation represents a mixed-order model for describing the
pharmacokinetics, adopting the Michaelis-Menten (M-M)
kinetics with KB as the Michaelis constant of the drug.

In order to define the pharmacodynamic of the treatment
and to simulate its effects on proliferating and necrotic
tumor volume (3), the terms ẋ1 = −bx1x3/(ED50 + x3)
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and ẋ2 = bx1x3/(ED50 + x3) are introduced. This means
that the drug provokes the proliferation of tumor cells
and necrosis takes place. This effect is considered in re-
lation with the reaction rate coefficient b and Michaelis
constant ED50. The median effective dose (ED50) gener-
ates the velocity term x1x3/(ED50 + x3), previously used.
We introduce the constant bk in mg/(kg · mm3 · day) in
order to define those terms that had different dimensions:
mm3/day for velocity terms and mg/(kg · day) for drug
level. The result is the term ẋ3 = −bkx1x3/(ED50 + x3).

The general construction of the chemical reaction equa-
tions is useful for the formulation of the lung tumor growth
model. The differential equations that provides an insight
into lung tumor proliferation or regression as a result of a
treatment are:

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(5)

ẋ2 = nx1 + b
x1x3

ED50 + x3
(6)

ẋ3 = −c x3

KB + x3
− bk

x1x3

ED50 + x3
+ u (7)

where x1 is the time function of the proliferating tumor
volume, measured in mm3, x2 is the time function of the
necrotic tumor volume, also in mm3, while x3 is the time
function of the drug level in time (mg/kg).

The input is represented by u that is the time function of
the drug treatment in mg/(kg · day). The parameters of
the model are defined by means of the equivalent chemical
equations. These values are listed in (Drexler et al., 2017),
after the parametric identification was carried out on mice
experimental measurements. In this paper, the values of
the tumor growth model parameters are re-scaled and
extrapolated to define the dynamics and tumor volumes of
human lung tumor. The output of the model is the total
tumor volume in mm3, considered measurable, consisting
of the sum of the proliferating and necrotic tumor volumes
as:

y = x1 + x2. (8)

The output dynamics is defined by

ẏ = ax1, (9)

as a function of tumor growth rate constant a and the
present volume of proliferating tumor x1. The model has
the potential to relate the effects of the treatment dose and
administration according to variations in the tumor size.
This mathematical modeling strategy can be defined as a
predictor of tumor aggressiveness and treatment prognosis.

4. RESULTS AND DISCUSSION

This section presents the simulation analysis of the effects
from various treatment strategies using the lung tumor
growth model. Four therapies that can be encountered in
clinical practice are examined.

Therapy 1. A single drug dose administration of 10
mg/kg at the beginning of the treatment.

Therapy 2. Periodic drug dose administration of 2
mg/kg at the beginning of the treatment and at each
3 days (Day 0, 3, 6, 9, 12). The drug administration is
equidistant over the defined time period.

Fig. 2. Simulation of Therapy 1. Top: a dose input of 10
mg/kg administrated only in day 0 of the treatment.
Bottom: tumor volumes over a period of 14 days.

Fig. 3. Simulation of Therapy 2. Top: a dose input of
2 mg/kg administrated in each of the following days
of the treatment: day 0, 3, 6, 9, 12. Bottom: tumor
volumes over a period of 14 days.

The duration for Therapy 1 and 2 is 14 days. Using this
approach we observed the tumor dynamic effects on a
smaller time scale of fractionated doses of the drug. These
two therapies are proposed in order to see the difference
between a single, bigger dose of drug administrated one
time and several equal smaller doses of drug administrated
at several equal time distances.

The results obtained with Therapy 1 and Therapy 2 are
presented in Figs. 2 and 3, respectively. We observe that
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Fig. 4. Simulation of Therapy 3. Top: a dose input of
5 mg/kg administrated with an increased frequency,
in the following days of the treatment: day 0, 8, 14,
18. Bottom: tumor volumes over a period of 20 days.

a complete, higher dose of drug provokes a slower growth
of tumor volume compared with fractionated ratios of the
same dose of the drug. The applied doses in the second
therapy are less effective, as seen in the slow increasing
values of total and dead tumor volumes.

Therapy 3. Drug dose administration of 5 mg/kg at
the beginning of the treatment with an increased frequency
over time, namely in Day 0, 8, 14, 18.

Therapy 4. Drug dose administration of 5 mg/kg at the
beginning of the treatment with a decreased frequency, in
the following days of the treatment: Day 0, 2, 6, 12.

Therapy 3 and 4 are simulated over a 20 days period
of time. These therapies have been examined in order to
analyze the changes in tumor volume related to the time
administration of hypofractionated doses. Therapy 3 and
Therapy 4 results are plotted in Figs. 4 and 5, respectively.
Administrating the treatment doses more frequently at the
beginning of the treatment for Therapy 3 results in overall
smaller tumor volumes than in Therapy 4, where the doses
frequency was increased only towards at the end of the
treatment. In Therapy 4, the drug level goes to zero before
the time period is finished, preventing overdosing.

We may conclude that administrating a high dose of
drug in the first phase of the treatment (Therapy 1) or
higher fractionated doses with increased frequency in time
(Therapy 3) leads to a slower increase of tumor volume.
In other words, this principle validates the clinical use of
hypofractionated treatment doses applied in SBRT.

A generalization using fractional calculus to describe the
compartmental models for pharmacokinetics in cancer
treatment has been introduced in (Ionescu et al., 2016).
Complex kinetics simulated with fractional models have

Fig. 5. Simulation of Therapy 4. Top: a dose input of
5 mg/kg administrated with a decreased frequency, in
the following days of the treatment: day 0, 2, 6, 12.
Bottom: tumor volumes over a period of 20 days.

been also recognized and appraised in (Ionescu et al.,
2017a; Copot et al., 2017) for being natural solutions to
models of biological tissues. The role of fractional calculus
in tumor growth phenomena has been recently validated
(Yildiz et al., 2018). As a further development of the
model, one could assume fractional kinetics and anomalous
diffusion in the tumor tissue, with applications in many
fields (Zhou et al., 2015). As a next progressive step,
the concomitant simulation of the system from Fig. 1
with the proposed tumor growth model will advance the
engineering problem of lung cancer.

The major limitation of the study is the absence of vali-
dation of the simulated therapies and delivery adjustment
of treatment on patient data. Evaluation of the combined
use of different treatment patterns with control prediction
of treatment delivery is desperately needed in clinical
practice. In essence, this forms a closed-loop regulatory
system where the controller decides the exact position
for treatment delivery after active feedback. Fractional
calculus is the solution for predicting the tumor behavior
after the administration of therapy in different time-dose
schemes.

5. CONCLUSIONS

A multidisciplinary approach of the radiation therapy
planning of lung cancer treatment is proposed in this work.
Including a physiologically-based, mathematical modeling
of tumor dynamics is a key factor in ensuring a low-risk
and accurate treatment for lung cancer patients. Optimal
decision making process for the treatment dose and time-
of-delivery is an essential contribution to clinical efficacy
in cancer treatment management.

We have shown in this first-hand study that different
scenarios of treatment delivery and dose configuration lead
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to different response in tumor growth and provide insight
into under- and over-dosing risk. Overall, such model could
be integrated into the full SBRT treatment for further
improvement of patient’s life quality.

This research is conceptually outlining a roadmap for
tackling the problem of SBRT treatment management by
using our understanding of tumor physiology and radiation
delivery. Although we still need to put it in practice,
delivering radiation therapy in lung cancer has increasingly
begun to resemble a predictive control strategy. Using
the proposed simulation tools, it is feasible to simulate
time-dependent effects during fractionated treatment and
to compare different time-dose patterns in terms of their
tumor control. The presented approach has the potential
to support the clinicians in their clinical decisions.
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