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Abstract: In this paper we present the modeling and control of a pendulum by a cable robot.
The control is based on an exact linearization of the nonlinear MIMO system. The resulting
closed-loop system is subsequently extended by a pendulum damping. The pose of the pendulum
is determined by the connection point of the cables at the pendulum and a reflector at the end
of the pendulum. Due to the model-based control and the capability of an external absolute
measurement of the reflector by means of laser trackers, a high positioning accuracy is achievable,
which is unique in the field of cable robots.
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1. INTRODUCTION

Cable-driven parallel robots (hereinafter referred to as
cable robots) are becoming more and more popular in
research. Their flexible structure and modularity allows
them to carry heavy loads in a large working area where
serial robots are unsuitable.

However, this large workspace also has disadvantages in
terms of control precision. Suitable calibration strategies
are necessary to provide a certain precision and accuracy
for the cable robot. Due to measurement inaccuracies
or manufacturing tolerances, the presented robot will
never achieve an accuracy that would be needed for
industrial applications. Therefore, a control strategy must
be developed which provides a high accuracy, based on the
given sensors. This accuracy can be applied, for example,
to perform pick-and-place operations.

The calibration strategy presented by Hamann et al.
(2019) makes it feasible to calibrate not only the cable
robot but also the measuring system – a laser tracker.
Since both systems are parallel kinematics, the inverse
kinematics used for the underlying optimization are quite
similar. In addition, we take advantage of the fact that
both systems have a modular structure and that we can
perform the static parameter identification module by
module.

The modular sensor system consists of four laser trackers.
Each tracker consists of two galvanometer scanners. The
mirrors mounted on the motors deflect the laser beam.
After calibration based on four laser beam path lengths,
this measuring system provides an absolute position of a
retroreflector in realtime. The measured values generated
by the laser tracker are relative laser beam path lengths
determined by an interferometer.

Fig. 1. System consisting of laser tracker and cable robot

The cable robot is also a modular system which consists
of three modules. Each of these modules actuates one
cable. With the cables connected to the endeffector, three
modules form an entire system with up to 3 DoF. Fig. 1
shows an overview of the system consisting of four laser
trackers (left) and the cable robot with three cables (right).
As it can be seen in the figure, the endeffector of the
robot is connected to a retroreflector which can be tracked
by the laser trackers. In this way, the two systems are
optically and mechanically connected to each other at
the endeffector, allowing to perform an absolute position
determination and a position control.

However, while positioning the endeffector, the reflector
will start to swing which is undesirable for applications
such as pick-and-place. Therefore, a precise position con-
trol is beeing designed in this work. Furthermore, a pendu-
lum damping approach is beeing implemented to stabilize
the pendulum in its equilibrium state.
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1.1 State of the Art

In terms of controller design, the research area of cable
robots focuses on two fields: force control of the cables
and pose control of the platform. Since the focus of this
work is on position control, a brief insight into the current
state of research will be given.

The control of the prototype SEGESTA based on cable
lengths (motions control in joint space) followed by the
control of the cartesian coordinates (motion control in
operational space) was introduced by Fang (2005). This
approach features PD controllers and sets the goal of a
position control which also achieves an optimum cable
force distribution.

The system CABLEV is a kinematically underconstrained
cable robot with movable cable exit points. Heyden et al.
(2002) and Maier and Woernle (2003) established a feed
forward control by identifying flat outputs of the model.
The compensation of the pendulum motion of the platform
is discussed by Heyden et al. (2002). The implementation
of this is done by controlling a linearized model of pendu-
lum motion by linear state feedback. Several years later the
system was extended by Heyden and Woernle (2006) by a
tracking control. All three publications mentioned above
are showing simulative results. A test on the real system
was done by Woernle (2013). Tracking errors of under 4 cm
for the horizontal, 1 cm for the vertical and 2° for the rotary
axis can be achieved. There is also a permanent control
error in two of three control variables. Stoltmann et al.
(2019a) and Stoltmann et al. (2019b) extend the idea of
a flatness based feed forward control to a similar system,
but driven by four instead of three cables in simulation.

In Yingjie et al. (2006) the control of FAST (Five-hundred-
meter Aperture Spherical Radio Telescope) is presented.
The prototype consists of two platforms. At the upper
platform the cables are guided by pulleys. The cables sag
due to their weight and length. The upper platform is con-
trolled by two PID controllers, one for the position of the
platform and the cable forces and one for the orientation
of the platform. The lower platform is connected to the
upper platform by a Stewart platform. A PID controller
is also used for the lower platform. Absolute measuring
laser trackers were used to determine the pose of the
upper platform and the centers of both platforms. The
results are validated on a replica with external dimensions
of 50 m× 50 m× 12 m. The lower platform can be moved
with a position error of maximum 2.55 mm and an ori-
entation error of maximum 8.45× 10−3 rad. In Zi et al.
(2008) the controller concept of FAST is extended by a
fuzzy control to compensate external disturbances. In Li
and Li (2019) a trajectory planning is tested on the real
structure.

Alp and Agrawal (2002) are aiming to design a con-
troller that asymptotically stabilizes a cable robot. For
this purpose, a Lyaponov-based PD controller is designed.
A similar intention is also followed by Kino et al. (2007),
with the difference that the designed controller is robust
towards incorrectly determined cable exit points and cable
length measurements. Oh and Agrawal (2004) are design-
ing a sliding mode controller, which considers workspace
restrictions and guarantees stability. The design is done

on a theoretical basis. A control law with the same struc-
tural design which considers feasible reference signals is
formulated by Oh and Agrawal (2006).

Khosravi et al. (2013) are introducing a PID controller
in combination with a cable force controller for a planar
cable robot with the objective of keeping the cables under
tension at all times. The control loop is cascaded.

Dallej et al. (2012) are introducing a vision-based control
of a cable robot. By Dallej et al. (2019) this concept is
tested on a cable robot with a very large working area
(15 m× 10 m× 6 m). The sagging of cables is also con-
sidered. In addition, an overview of existing and actually
tested control concepts is presented, which compares the
approaches with regard to their workspace, their repeata-
bility and payload.

Begey et al. (2019) are introducing a computed torque
approach for cable robots with flexible cables. The con-
trol results are validated on a planar cable robot with
three cables. The workspace is specified with an area of
1.2 m× 0.96 m. The endeffector is moved on a square path
with an edge length of 0.2 m and a speed of 0.11 m s−1.
There is a mean square position error of 1.7 mm and a
mean square angular error of 7.8× 10−3 rad measured by
a camera system.

The approaches presented above were validated on real
prototypes. There are other approaches that have been
simulatively tested and are not presented here.

1.2 Objective

Based on the existing work of other institutions the fol-
lowing objectives were addressed in this work:

• A positioning accuracy of far less than 1 mm is to be
achieved in order to ensure adequate accuracy for a
pick-and-place application.

• The robot is capable of moving on trajectories with
a length of several decimeters.

• An active pendulum damping is to be realized in order
to affect the positioning as less as possible.

To achieve this, the model of the cable robot with and
without a pendulum equipped is presented in section 2. In
section 3 a controller for the connection point of the cables
at the platform is designed. A pendulum damping con-
troller is also proposed. In the following, both approaches
will be combined. Section 4 shows the results and section 5
an experimental robustness analysis of the positioning and
pendulum damping. In section 6 a conclusion is drawn.

2. MODELING

In the following section the modelling of the cable robot is
presented. In section 2.1, the dynamics of the connection
point are first modelled, followed by section 2.2, where the
spherical pendulum is modelled.

2.1 3-DoF cable robot

For a 3-DoF model of the cable robot, the dynamics can
be expressed as a nonlinear state space model

ẋ = a(x) +B(x)u
y = c(x)

(1)
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Fig. 2. Geometric relationship between the connection
point XT , the detachment point XD and the two
angles θ and ϕ

with state vector x which represents the connection point

XT = [x y z]
T

of the cables at the platform and its
velocity. It is defined as

x = [x y z vx vy vz]
T
. (2)

The system matrix is given by

a(x) = [ẋ ẏ ż 0 0 −g]
T
. (3)

The input vector

u = [F1 F2 F3]
T

(4)

corresponds to three cable forces. The input matrix can be
noted as

B(x) =


0 0 0
0 0 0
0 0 0

1
m · cα1 · cβ1 1

m · cα2 · cβ2 1
m · cα3 · cβ3

1
m · cα1 · sβ1 1

m · cα2 · sβ2 1
m · cα3 · sβ3

1
m · sα1

1
m · sα2

1
m · sα3

 (5)

where θi corresponds to the elevation angle and ϕi to
the azimuth angle of the i-th cable. These angles are
determined by the vector from the connection point XT

to the detachment point XD of the cable at the pulley.
They are dependent on the state vector and are calculated
as follows

αi(x) = atan2

(
di,z,

√
(di,x)

2
+ (di,y)

2

)
,

βi(x) = atan2 (di,y, di,x)
(6)

with
di,x = XDx,i

− x
di,y = XDy,i − y
di,z = XDz,i

− z .
(7)

Fig. 2 shows the geometric relationship between the con-
nection point XT , the detachment point XD and the two
angles θ and ϕ exemplarily for one cable. If it is assumed
that the position of the connection point can be measured
or estimated, the output matrix reads as follows

c(x) = XT = [x y z]
T
. (8)

2.2 Spherical Pendulum

For the following model the cable robot is extended by a
pendulum of length l = ‖r2‖. Fig. 3 shows the extended
endeffector in detail. The model consists of two masses
m1 and m2. In the following, the equations of motion are
determined by means of the Lagrangian mechanics. The
generalized coordinates used for this are as follows

q = [x y z θ ϕ]
T
. (9)

The components x, y and z correspond to the Cartesian
coordinates of the connection point XT or the vector of
mass point m1 respectively. The angles θ and ϕ correspond

to the rotation angles around the coordinate axes y and
x, respectively. Fig. 3 shows these angles for a concrete
example.

In the literature the spherical pendulum is commonly
modeled with the help of spherical coordinates (see Olsson
(1981)). These angles correspond to the rotation around
the y-axis and around the z-axis. This results in a singu-
larity in the equations of motion, which would lead to an
infinitely high angular velocity when rotating around the
z-axis in the equilibrium state.

Subsequently, the direction vectors r1 and r2 are deter-
mined by

r1 =

[
x
y
z

]
(10)

and

r2 =

[
x+ l · sin θ · cosϕ

y + l · sinϕ
z − l · cos θ · cosϕ

]
. (11)

The time derivatives of the direction vectors are

ṙ1 =

[
ẋ
ẏ
ż

]
(12)

and

ṙ2 =

ẋ+ l · cos θ · cosϕ · θ̇ − l · sin θ · sinϕ · ϕ̇
ẏ + l · cosϕ · ϕ̇

ż + l · cos θ · sinϕ · ϕ̇+ l · sin θ · cosϕ · θ̇

 . (13)

The generalized forces affecting the point masses can
be formulated for the i-th direction vector and the j-th
generalized coordinate as

Qj =

N∑
i=1

F i ·
∂ri
∂qj

. (14)

For each point mass or direction vector respectively follows

Qr1 =

[
Fx
Fy
Fz

]
(15)

and

Qr2 =

[
0
0

]
. (16)

For the kinematic structure the kinetic energy T and
potential energy V results to

T =
1

2
·m1 ·

(
ṙT1 · ṙ1

)
+

1

2
·m2 ·

(
ṙT2 · ṙ2

)
(17)

and

V = m1 · g · r1,z +m2 · g · r2,z , (18)

where ri,z is the z component of the i-th direction vector.
The Lagrangian in general is

L = T − V (19)

and the Lagrange’s equation for the j-th generalized coor-
dinate is

d

dt

∂L

∂q̇j
− ∂L

∂qj
−Qj = 0 . (20)

Thus, five equations of motion result. For reasons of clarity,
notation is omitted here. The general structure of the
equations is
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Fig. 3. x-z view (left) and y-z view (right) of spherical pendulum

ẍ = f(ϕ, ϕ̇, ϕ̈, θ, θ̇, θ̈, Fx)
ÿ = f(ϕ, ϕ̇, ϕ̈, Fy)

z̈ = f(ϕ, ϕ̇, ϕ̈, θ, θ̇, θ̈, Fz)

θ̈ = f(ϕ, ϕ̇, θ, θ̇, ẍ, z̈)

ϕ̈ = f(ϕ, θ, θ̇, ẍ, ÿ, z̈) .

(21)

3. CONTROL

In section 3.1, the connection point XT is controlled
using the exact linearization approach. Subsequently, in
section 3.2, a controller for pendulum damping is designed.
Finally, in section 3.3, both approaches are combined.

3.1 Exact Linearization

A controller design based on an exact linearization is
described by Isidori (2002), Adamy (2018) and Föllinger
(1993). This will be the basis of the design in the following.

For the cable robot as MIMO (Multiple Input Multiple
Output) system the following approach of a state space
representation with n states and m inputs can be assumed.

ẋ = a(x) +
∑m
i=1 bi(x)ui

y = c(x)
(22)

This notation is equivalent to the formulation of equa-
tion (1) with ui = Fi where Fi correspond to the force in
the i-th cable. Matrix c(x) is equivalent to equation (8).
The number of inputs and outputs are equal. This is a
requirement for the design.

The connection pointXT is determined by the direct kine-
matics of the cable robot. After a successful calibration, as
presented by Hamann (2018) and Hamann et al. (2019),
both the positions of the pulleys and the cable lengths are
known. Further, the direct kinematics is realized by an
Extended Kalman Filter and will not be discussed here.
In this way the connection point XT can be used as an
output variable.

The required output yi with i = 1 . . .m and its derivatives
with respect to time are in general

yi = ci(x)

ẏi = Laci(x) +
∑m
k=1 Lbk

ci(x)uk

ÿi = L2
aci(x) +

∑m
k=1 Lbk

Laci(x)uk

...

y
(δi−1)
i = Lδi−1

a ci(x) +
∑m
k=1 Lbk

Lδi−2
a ci(x)uk

y(δ) = Lδia ci(x) +
∑m
k=1 Lbk

Lδi−1
a ci(x)uk

with

Lfh(x) =
∂h(x)

∂x
f(x) . (23)

In MIMO case, the term

ỹ(δ) =

m∑
k=1

Lbk
Lδi−1
a ci(x)uk (24)

of the last equation becomes unequal to zero. The degree
of derivative of y is called relative degree δ. The term for
the delta-times derivative of y with respect to time can be
noted compactly in vectorial notation as

◦
y =

◦
c(x) +D(x) · u (25)

with

◦
y =


y(δ1)

y(δ2)

...
y(δm)

 , (26)

◦
c(x) =


Lδ1a c1(x)
Lδ2a c2(x)

...
yLδma cm(x)

 (27)

and
D(x) =

Lb1L
δ1−1
a c1(x) Lb2L

δ1−1
a c1(x) . . . LbmLδ1−1

a c1(x)

Lb1L
δ2−1
a c2(x) Lb2L

δ2−1
a c2(x) . . . LbmLδ2−1

a c2(x)
...

...
. . .

...

Lb1L
δm−1
a cm(x) Lb2L

δm−1
a cm(x) . . . LbmLδm−1

a cm(x)


(28)
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ẋ = f(x,u)

y = h(x)u = γ(x, vi)vi = w
(δ)
i −

δ−1∑
k=0

ai,k

(
y
(k)
i − w

(k)
i

) yi

y
(δ)
i

Trajectory
planning

wi

w
(δ)
i

ki
∫

wi

Control law Exact linearization Cable robot

Controller

Fig. 4. Exact linearization of one output yi with trajectory planning, tracking control and output-feedback control

For the cable robot the vectorial relative degree (relative
degree for each output) is

δ =

[
δ1
δ2
δ3

]
=

[
2
2
2

]
. (29)

The vector-valued functions
◦
c(x) and D(x) result in

◦
c(x) =

[
0
0
−g

]
(30)

and

D(x) =
1

m

[
c (α1) · c (β1) c (α2) · c (β2) c (α3) · c (β3)
c (α1) · s (β1) c (α2) · s (β2) c (α3) · s (β3)

s (α1) s (α2) s (α3)

]
.

(31)
By rearranging equation (25), the control law results in

ux = −D−1(x)
◦
c(x) +D−1(x)v . (32)

with
v = Kxz , (33)

Kx = (λ1 . . . λn) (34)
and

zi = Lδi−1
a ci(x) . (35)

The eigenvalues λi can be chosen according to the desired
dynamics. The control signal u consists of a feedforward
control

r(x) = D−1(x)
◦
c(x) (36)

and a feedback control

M(x) = D−1(x)v . (37)

At this point it is essential that matrix D(x) is invertible.
For the invertibility the following must apply

detD(x) 6= 0 . (38)

Therefore, the column vectors of the matrix from equation
(31) must be linearly independent. Since the column vec-
tors correspond to the acceleration vectors of the cables,
this condition is only fulfilled for geometrically feasible
configurations.

This completes the design of an exact linearization via
feedback. The input output behaviour of the controlled
system is now linear. Each reference variable wi affects
the corresponding output variable yi through a transfer

function Gi(s) = Yi(s)
Wi(s)

. The coefficients of the transfer

function affect the dynamics of the controlled system and
can be specified in several ways. A simple way to do
this is a pole placement. In that way, we are able to
define linear dynamics for each output (components of the
vector XT ) and the control law can be implemented. At
this point, however, some improvements have been made.
These include

• a trajectory planning to avoid step changes of the
reference signal,

• a tracking control reducing tracking errors,
• an output-feedback control to compensate for perma-

nent control errors.

Trajectory Planning The trajectory planning is based
on a cubic polynomial trajectory for the reference position
(see Spong (2012)). This results in a quadratic profile of
the velocity and a linear profile of the acceleration. In this
way a continuous dynamic can be specified. A concrete
profile is shown in the results.

Tracking Control The characteristic polynomial – result-
ing from the eigenvalues of equation (34) – transformed
into the laplace plane reads

Yi(s)

Wi(s)
=

vi,0
sδi + ai,δi−1sδi−1 + ai,δi−2sδi−2 + . . .+ ai,0

.

(39)
This transfer function determines the dynamics for the
controlled system. In case of an ideal tracking control, this
transfer function reads

Yi(s)

Wi(s)

!
= 1 . (40)

That means the numerator of the transfer function must
be extended by the coefficients of the denumerator.

Yi(s)

Wi(s)
=
sδi + vi,δi−1s

δi−1 + vi,δi−2s
δi−2 + . . .+ vi,0

sδi + ai,δi−1sδi−1 + ai,δi−2sδi−2 + . . .+ ai,0
(41)

Output-Feedback Control Due to stick-slip, the control
error is not zero. Therefore, an additional integrator is
implemented, which integrates the residual control error
and adds it to the system as an additional control signal.
Fig. 4 shows the resulting block diagram including exact
linearization of one output yi, extended by a trajectory
planning, tracking control and output-feedback control.
The entire controller is indicated by the subsystem Con-
troller in Fig. 4.

3.2 Stabilization of the Pendulum

In order to stabilize the pendulum, the set of differential
equations (21) were used. These were linearized in the
stable equilibrium according to

Ap =
∂fp

∂xp

∣∣∣∣
xe,ue

Bp =
∂fp

∂up

∣∣∣∣
xe,ue

(42)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9178



with

fp =
[
ẋ ẏ ż θ̇ ϕ̇ ẍ ÿ z̈ θ̈ ϕ̈

]T
xp =

[
x y z θ ϕ ẋ ẏ ż θ̇ ϕ̇

]T
up = [Fx Fy Fz]

T

(43)

The resulting linear state space model

ẋp = Apxp +Bpup (44)

can now be controlled with a linear-quadratic regulator
(LQR). This results in a control law

up = −Kpxp (45)

with
Kp ∈ R3×10 . (46)

3.3 Coupling of Both Approaches

The exact linearization via feedback, presented in section
3.1, was designed to move the connection point precisely.
The LQR introduced in section 3.2, was designed to sta-
bilize the pendulum motion. Both approaches are beeing
combined in the following. For this purpose the control
signals will be superimposed. Fig. 5 shows the resulting
block diagram which will be discussed in the following.

Dynamics The dynamics of the endeffector can be di-
vided into the dynamics of the connection point and the
dynamics of the pendulum. Both blocks are connected to
each other by the state vector. Due to the separate control
of the position of the connection point and the pendu-
lum damping, the feedback of the pendulum dynamics
on the endeffector is neglected (indicated by the dashed
line). From the position controller’s (see subsystem Fig. 4
and Fig. 5) point of view, the pendulum movement is a
disturbance.

Measuring angles For the calculation of the pendulum
angles the connection point and the reflector center are
necessary. The connection point is determined by the di-
rect kinematics of the cable robot. For each endeffector
position, the detachment points of the cables and the cable
lengths are given by a prior calibration. The reflector cen-
ter is measured by the laser tracker. In this case, the direct
kinematics of the laser trackers are used to determine the
reflector center from known tracker positions and laser
beam path lengths. The direct kinematics are realized by
an Extended Kalman Filter.

Due to a non-optimal modeling and calibration of the cable
robot and measurement inaccuracies of the laser trackers,
the pendulum angles cannot be measured correctly. This
causes the pendulum angles in the equilibrium position to
be unequal to zero. Therefore, the pendulum angles are
filtered by a high-pass filter. In this way, the pendulum
angles become nearly zero mean. As a result, changes
in the pendulum angles can still be measured accurately.
The calculation for this is done in block ”dynamics of the
pendulum”.

Control signal selection The LQR is exclusively designed
to control the pendulum motion. Therefore, the states
corresponding to the motion of the connection point are
set to zero. The resulting control signal is u∗

p.

Low-pass filter The low-pass filter is used to integrate
the control signal u∗

p. An integrator cannot be used be-
cause the high-pass filter applies an additional dynamics
to the signal. As a result, after filtering by the high-
pass filter, the pendulum angles converge to zero very
slowly. By choosing suitable parameter, the low-pass filter
approximately works as an integrator.

Superimposing control signals Finally, the two control
signals (u∗

p and low-pass filtered u∗
p) are added to the

reference signals ẅ and ẇ. To avoid step changes in the
reference signal due to deflection of the pendulum, nothing
is added to the position reference w.

Geometric feed forward control The overall aim is precise
positioning of the reflector center. However, we are only
able to control the connection point. The feed forward
control is used to shift the set position on the basis of
the known geometry of the pendulum. Errors caused by
this feed forward control are compensated by an integral
control with gain ki,p. The impact of the integral control is
small compared to the resulting control variables resulting
from the position controller and the pendulum damping.

4. RESULTS

Fig. 6 show the reference signals resulting from trajectory
planning and the errors of the control variables during
movement on the given paths. The control variables are
the components of the position of the reflector center. It
can be seen that there is no permanent control error. We
achieve a positioning accuracy of the reflector center of
15× 10−6 m. During movement tracking errors of up to
5× 10−3 m occur (see Fig. 6, component ex). That means
the pendulum damping as well as the position control were
effective.

5. EXPERIMENTAL ROBUSTNESS ANALYSIS

The nominal parameters chosen for the design may differ
from the real parameters. This includes, for example,
the mass of the platform components. The platform was
assumed to be composed of two masses connected by a
massless rod. Therefore, robustness analyses in which these
masses are varied will to be performed in the following.
The analysis consists of four scenarios in which different
experiments were conducted. In the first scenario, the
influence of a variation on decoupling is examined. For this
purpose, the mass m1 used for the matrix D(x) is varied
according to table 1. Afterwards, the RMSE (root-mean-
square error) between the reference and the controlled
variables are determined.

For pendulum damping both masses are included in the
control. For scenario 2 and 3 the position controller is not
changed. In scenario 2, however, the upper mass m1 and
in scenario 2 the lower mass m2 is varied in the design of
the pendulum damping. The results can be found in the
tables 2 and 3. The nominal case is indicated by the factor
1.0 in the left column. All three scenarios presented up
to now show an influence on the quality of the control.
However, the experiments show that the mass can be
varied in a wide range from 10% – 190% and the control
performance is still good.
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Fig. 5. Pendulum damping control including position control via exact linearization and LQR for stabilization of the
pendulum

Fig. 6. Error of the x-coordinate of the reflector center

In a fourth scenario, the connection point is actuated with
a sinusoidal signal. The reference distance is 0.1 m. The
frequency f̃0 of this signal is increased up to the resonance
frequency of the pendulum. The results are shown in

Table 1. Experimental robustness scenario 1

m̃1 RMSE of x RMSE of y RMSE of z

0.1 ·m1 1.34× 10−3 m 1.84× 10−3 m 1.48× 10−3 m

0.5 ·m1 1.05× 10−3 m 1.43× 10−3 m 1.16× 10−3 m

0.9 ·m1 1.07× 10−3 m 1.39× 10−3 m 1.23× 10−3 m

1.0 ·m1 1.05× 10−3 m 1.32× 10−3 m 0.31× 10−3 m

1.1 ·m1 1.00× 10−3 m 1.31× 10−3 m 1.24× 10−3 m

1.5 ·m1 1.04× 10−3 m 1.39× 10−3 m 1.28× 10−3 m

1.9 ·m1 1.01× 10−3 m 1.25× 10−3 m 1.23× 10−3 m

Table 2. Experimental robustness scenario 2

m̃1 RMSE of x RMSE of y RMSE of z

0.1 ·m1 1.12× 10−3 m 1.37× 10−3 m 0.44× 10−3 m

0.5 ·m1 1.11× 10−3 m 1.36× 10−3 m 1.44× 10−3 m

0.9 ·m1 1.23× 10−3 m 1.35× 10−3 m 0.43× 10−3 m

1.0 ·m1 1.05× 10−3 m 1.32× 10−3 m 0.31× 10−3 m

1.1 ·m1 1.12× 10−3 m 1.34× 10−3 m 0.43× 10−3 m

1.5 ·m1 1.12× 10−3 m 1.36× 10−3 m 1.44× 10−3 m

1.9 ·m1 1.12× 10−3 m 1.37× 10−3 m 0.45× 10−3 m

Table 3. Experimental robustness scenario 3

m̃2 RMSE of x RMSE of y RMSE of z

0.1 ·m2 1.12× 10−3 m 1.25× 10−3 m 0.41× 10−3 m

0.5 ·m2 0.93× 10−3 m 1.41× 10−3 m 1.18× 10−3 m

0.9 ·m2 0.94× 10−3 m 1.41× 10−3 m 1.19× 10−3 m

1.0 ·m2 1.05× 10−3 m 1.32× 10−3 m 0.31× 10−3 m

1.1 ·m2 0.95× 10−3 m 1.34× 10−3 m 1.19× 10−3 m

1.5 ·m2 0.95× 10−3 m 1.42× 10−3 m 1.19× 10−3 m

1.9 ·m2 0.95× 10−3 m 1.42× 10−3 m 1.18× 10−3 m

table 4. These results demonstrate clearly the competing
behaviour of the two controllers (position and pendulum
controller). For an excitation close to the resonance fre-
quency, the connection point as well as the reflector center
come to a deadlock and the controlled variable is no longer
able to follow the reference variable.

Table 4. Experimental robustness scenario 3

f̃0 RMSE of x RMSE of y RMSE of z

0.1 · f0 0.31× 10−3 m 0.65× 10−3 m 0.60× 10−3 m

0.5 · f0 2.32× 10−3 m 41.60× 10−3 m 1.07× 10−3 m

0.9 · f0 2.09× 10−3 m 67.82× 10−3 m 2.94× 10−3 m

1.0 · f0 1.50× 10−3 m 65.54× 10−3 m 3.10× 10−3 m

6. CONCLUSION

In this work, we presented the modeling and control of
a 3-DoF cable robot. The endeffector of the robot was
extended by a pendulum. At the end of the pendulum
a reflector is attached. The position of the reflector is
determined in real time by laser trackers using an Ex-
tended Kalman Filter. The control objective is the precise
positioning of the reflector center. The challenge is to
compensate for oscillations of the pendulum.

The positioning of the connection point of the cables at the
endeffector is based on an exact linearization. In order to
damp oscillations of the pendulum, the control concept
was extended by a LQR for control of the pendulum
angles. On the basis of the geometry of the endeffector
(mainly length of the pendulum), the reflector center can
be positioned quite well in this way open-loop. In order to
reduce the residual error, an integral controller is used.

The RMSE of the positioning of the reflector center is
15× 10−6 m. We are able to achieve a tracking error of up
to 5× 10−3 m (see Fig. 6).

In addition, robustness analyses were carried out. For this
purpose, the masses of the platform were varied in the
controller design in order to analyze the influence on the
control result. It turns out that the design is robust to
a variation of the masses. The control result, however,
depends on the given trajectory. For excitations close to
the resonance frequency of the pendulum, an acceptable
position control is not possible anymore.

For the future, we aim to apply the concept of exact lin-
earization to the model of the pendulum, so that a parallel
positioning and pendulum damping can be achieved.
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