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Abstract
In this paper it is proposed to extend the result described in Khalil and Praly (2014) and
the references therein, regarding the high-gain observer-based nonlinear control to the case of
systems with diffusion sensor dynamic. Based on some usual hypotheses, we provide sufficient
conditions involving the high-gain parameter and the length on the PDE sensor. In fact it is
brought into light an explicit trade off between them: the larger the observer gain, the smaller
the length of the PDE sensor needs to be. The stability analysis of the closed loop is based on
a Lyapunov functional.
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1. INTRODUCTION

The present paper deals with the design of output feedback
control for a class of nonlinear cascade ODE-PDE systems.
Throughout the past decades, the high-gain observers have
been used extensively for the design of output feedback
control of nonlinear systems, see Khalil and Praly (2014)
and the references therein. An important advantage of
using the high-gain observers is that they can recover
the performances of state feedback control in the sense
that, for instance, the trajectories of the system under
output feedback approach those under state feedback as
the observer gain increases.

Moreover, from the work Atassi and Khalil (1999), it is
well known that the separation principle holds not only
because the observer gain is made high, but also because,
by designing the feedback control as a globally bounded
function, the state of the plant is protected from peaking
phenomenon Khalil (1996) when the high-gain observer
estimates are used instead of the true states.

In fact, the design of output feedback control for cascade
ODE-PDE systems has not been yet very much studied,
one can cite for instance the work Krstic (2009) for a linear
ODE or the work Wu (2013) where a nonlinear ODE is
considered. However in this later work, the nonlinear ODE
is restrictive and the method, based on LMIs, does not
provide explicit conditions regarding the length that the

PDE must satisfy in order to ensure global exponential
stability of the overall system.

In the present paper we propose to extend the design
of high-gain observer-based output feedback control for
nonlinear systems with sensors described by heat PDEs.
More precisely, we will derive explicit sufficient conditions,
involving both the high-gain and the length of the PDE,
ensuring exponential convergence of the overall closed
cascade ODE-PDE. It has also to be noticed that the
observer designed here is more simple that the one
designed in Ahmed-Ali et al. (2015) for the same cascade
ODE-PDE systems which used backstepping technics.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, Rn denotes the n-dimensional Euclidean
space with vector norm |.|, Rn×m is the set of all n×m real
matrices, and the notation P > 0, for P ∈ Rn×n, means
that P is symmetric and positive definite. In matrices,
symmetric terms are denoted ∗; λmin(P ) (resp.λmax(P ))
denotes the smallest (resp. largest) eigenvalue. L2(0, D) is
the Hilbert space of square integrable functions z(x), x ∈
[0, D] with the corresponding norm ‖z(x)‖L2

=

√∫ D

0
z2(x)dx.

H1(0, D) is the Sobolev space of absolutely continuous
functions z : (0, D) → R with the square integrable
derivative d

dx . H2(0, D) is the Sobolev space of absolutely

continuous functions dz
dx : (0, D) → R and with d2w

dx2 ∈
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L2(0, D). Given a two-argument function u(x, t), its partial

derivatives are denoted ut = ∂u
∂t , uxx = ∂2u

∂x2 .

2. PROBLEM STATEMENT

Let us consider the following class of systems:



Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X, v)
u(D, t) = X1

ux(0, t) = 0
ut = uxx, x ∈ [0, D]
y(t) = u(0, t)

(1)

where v ad y represent respectively the input and the
output of the above system. Throughout the paper, we
assume the following hypotheses:

H1: The function f is globally Lipschitz in both X and v
with a Lipschitz constant K0.

H2: : There exists a globally Lipschitz function α(X), such
that the following dynamical system{

Ẋi = Xi+1

Ẋn = f(X,α(X))

is globally exponentially stable.

Using the converse Lyapunov theorem, we can say that
there exists a positive function satisfying V0(X) > 0,
V0(∞) = ∞, and positive parameters ci, i = 1, . . . , 4 such
that:


c1|X|2 ≤ V0(X) ≤ c2|X|2

| ∂V0

∂Xi
| ≤ c3|X|∑n−1

i=1
∂V0

∂Xi
Xi+1 + ∂V0

∂Xn
f(X,α(X)) ≤ −c4|X|2

(2)

for all X.

3. OUTPUT FEEDBACK DESIGN

Based on the above hypotheses, we propose the following
high-gain observer-based output feedback control:



Żi = Zi+1 − liθi(û(0, t)− y), i = 1, . . . , n− 1

Żn = f(Z, v)− lnθn(û(0, t)− y)
v = α(Z)
û(D, t) = Z1

ûx(0, t) = 0
ût = ûxx − l1θ(û(0, t)− y) x ∈ [0, D]

(3)

The vector gains L = (l1, . . . , ln)T is chosen such that the
matrix (A− LC) is Hurwitz where

A =



0 1 0 . . . . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 0 . . . 0
...

...
... 0 1 0

...
0 0 . . . 0 0 1 0
0 0 . . . . . . 0 0 1
0 0 . . . 0 0 0 0


and C = [1, 0, . . . , 0].

Let us consider the dynamical error system e = Z−X and
ũ = û− u, then we obtain, for x ∈ [0, D]

ėi = ei+1 − liθiũ(0, t), i = 1, . . . , n− 1

ėn = f(Z,α(Z))− f(X,α(Z))− lnθnũ(0, t)

Ẋi =Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))

ũt = ũxx − l1θũ(0, t),

with ũ(D, t) = e1 and ũx(0, t) = 0.

If we now introduce the change of coordinate

w(x, t) = ũ(x, t)− e1,

then we have

ėi = ei+1 − liθie1 − liθiw(0, t) i = 1, . . . , n− 1

ėn = f(Z,α(Z))− f(X,α(Z))− lnθne1 − lnθnw(0, t)

Ẋi =Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))

wt =wxx − e2,

with w(D, t) = 0 and wx(0, t) = 0.

As we can easily see the above system can be written as
an interconnection of two sub-systems:


ėi = ei+1 − liθie1 − liθiw(0, t), i = 1, . . . , n− 1
ėn = f(Z,α(Z))− f(X,α(Z))− lnθne1 − lnθnw(0, t)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))

and{
wt = wxx − e2
w(D, t) = 0
wx(0, t) = 0

By using the classical change of coordinates ξi = θ1−iei,
then we derive
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ξ̇i = θξi+1 − θliξ1 − liθw(0, t), i = 1, . . . , n− 1

ξ̇n = θ1−n [f(Z,α(Z))− f(X,α(Z))]− θlnξ1 − θlnw(0, t)

Ẋi = Xi+1, i = 1, . . . , n− 1

Ẋn = f(X,α(Z))

and{
wt = wxx − e2
w(D, t) = 0
wx(0, t) = 0

Let us now introduce the following augmented vector state

η = [ξ,X]T , where ξ = (ξ1, . . . , ξn)T ,

then these two sub-systems can be written as


η̇ = F0(η, w(0, t))
wt = wxx − e2
w(D, t) = 0
wx(0, t) = 0

(4)

where F0(η, w(0, t)) is given by
θξi+1 − θliξ1 − liθw(0, t), i = 1, . . . , n− 1

θ1−n [f(∆ξ +X,α(Z))− f(X,α(Z))]− θlnξ1 − θlnw(0, t)

Xi+1, i = 1, . . . , n− 1

f(X,α(∆ξ +X))

 .

where ∆ = diag(1, . . . , θn−1). Notice that since w(D, t) =

0, then w(0, t) = −
∫D
0
wx(x, t)dx.

Remark 1. The well-posedness problem of the system (4)
can be proven by using the work of Pazy (1983) and by
using similar arguments those used in Ahmed-Ali et al.
(2015). For instance, it is not difficult to see that the
infinite dimensional part of the system (4) can be written
in the Hilbert space L2(0, D) as an ordinary differential
equation :

ẇ(t) = A0w(t) + F (w(t), ξ2)

with

A0 =
∂2

∂x2

which is defined the Dense Domain

D(A0) = {w ∈ H2(0, D), wx(0) = w(D) = 0}
and

F (w(t), ξ2) = −θξ2
It is well know that the operator A0 generates a strongly
continuous exponentially stable semigroup. Furthermore
for w, w̄ ∈ L2(0, D) and ∀ξ2, we have ||F (w(t), ξ2) −
F (w̄(t), ξ2)||2 ≤ L0||w(t) − w̄||2 with a positive constant
L0. Then by using Theorem 6.1.5 of Pazy (1983) we
can conclude that if w(t0) ∈ D(A0) then w(t) ∈
C1((0,∞), L2(0, D)) with w(t) ∈ D(A0). On the other
hand , since F0 defined in system (4) is continuous and
globally Lipschitz with respect to all their arguments, then
we also conclude that η ∈ (C1(0,∞),R2n).

Theorem 2. Consider the system (2). Then, there exist θ0
and D?(θ) such that ∀θ > θ0 and ∀D ∈ (0, D?(θ)) the
following inequality holds:

|X|+ |e|+
∫ D

0

ũ2(x, t)dx ≤M1e
−σ1t

for some positive constant M1 > 0 and σ1 > 0.

Proof. In order to prove the exponential stability of the
system (4), we will divide the proof in three parts: for the
infinite dimensional sub-system, for the finite dimensional
one and finally for the overall error system.

Infinite dimensional sub-system

In this first part we will analyse the sub-system

{
wt = wxx − e2
w(D, t) = 0
wx(0, t) = 0

(5)

In order to do this, we consider the following functional :

W =
1

2

∫ D

0

w2(x, t)dx+
1

2

∫ D

0

w2
x(x, t)dx

Then

Ẇ =

∫ D

0

w(x, t)wt(x, t)dx+

∫ D

0

wx(x, t)wxt(x, t)dx

which gives

Ẇ =

∫ D

0

w(x, t)(wxx(x, t)− e2)dx+

∫ D

0

wx(x, t)wtx(x, t)dx

From the fact that w(D, t) = 0, then we have wt(D, t) = 0.

From this and by using the integration by parts, we can
easily derive that

Ẇ = −
∫ D

0

w2
x(x, t)dx−

∫ D

0

w(x, t)e2dx−
∫ D

0

w2
xx(x, t)dx

+

∫ D

0

wxx(x, t)e2dx

Using Young inequality leads to

Ẇ ≤−
∫ D

0

w2
x(x, t)dx− 1

2

∫ D

0

w2
xx(x, t)dx

+
1

2

∫ D

0

w2(x, t)dx+D|e2|2

Using Wirtinger inequality (as in Lemma 2 of Fridman and
Blighovsky (2012)), then we have

Ẇ ≤−(
π2

4D2
− 1

2
)

∫ D

0

w2(x, t)dx− π2

8D2

∫ D

0

w2
x(x, t)dx

+D|e2|2

since |e2| ≤ θξ2, we obtain the following inequality,

Ẇ ≤−(
π2

4D2
− 1

2
)

∫ D

0

w2(x, t)dx− π2

8D2

∫ D

0

w2
x(x, t)dx

+Dθ2|η|2
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Finite-dimensional system

Let us now analyse the unperturbed sub-system

η̇ = F0(η, 0).

By considering the following Lyapunov function,

V (η) =
1

θ2(n−1)
V0(X) + ξTPξ

where P is a positive definite symmetric matrix which
satisfies

P (A− LC) + (A− LC)TP = −I

then, we can derive the following inequalities satisfied by
V : 

c′1|η|2 ≤ V (η) ≤ c′2|η|2

|∂V∂η | ≤ c
′
3|η|

where 

c′1 = min
{

c1
θ2(n−1) , λmin(P )

}
c′2 = max

{
c2

θ2(n−1) , λmax(P )
}

c′3 = max
{

c3
θ2(n−1) , 2λmax(P )

}
with c1, c2 and c3 defined in (2).

Now let us compute the derivative of V along the solution
of the unperturbed system, we obtain,

V̇ =
∂V

∂η
F0(η, 0).

After some computations as in Khalil and Praly (2014),
we can easily derive the following inequality:

V̇ ≤ − c4
2θ2(n−1)

|X|2 −
[
θ − 2λmax(P )K0 −

2c23
c4
K2

0

]
|ξ|2.

for some positive constant K0 independent of θ, and c4
defined in (2).

Choosing θ > θ0 such that

θ0 = max

{
2λmax(P )K0 +

2c23
c4
K2

0 +
c4
2
, 1

}
we deduce that

V̇ ≤ −c′4|η|2
with

c′4 =
c4

2θ2(n−1)
.

From this, we deduce that the unperturbed system is
globally uniformly exponentially stable.

Now let us compute the derivative V̇ along the sub-system
η̇ = F0(η, w(0, t)), we obtain,

V̇ =
∂V

∂η
F0(η, w(0, t))

which can be rewritten as follows:

V̇ =
∂V

∂η
F0(η, 0) +

∂V

∂η
(F0(η, w(0, t))− F0(η, 0))

Using the above inequalities, we easily derive that

V̇ ≤ −c′4|η|2 + |∂V
∂η
|| (F0(η, w(0, t))− F0(η, 0)) |

Using again Young inequality, this leads to:

V̇ ≤ −c′4|η|2 + β|∂V
∂η
|2 +

1

β
| (F0(η, w(0, t))− F0(η, 0)) |2

for β > 0.

On the other hand, we can easily see that, from the
definition of F0,

| (F0(η, w(0, t))− F0(η, 0)) | ≤ θ|L||w(0, t)|

which also gives

| (F0(η, w(0, t))− F0(η, 0)) | ≤ θ|L|
∫ D

0

|wx(x, t)|dx

Now using Schwartz inequality, we obtain

| (F0(η, w(0, t))− F0(η, 0)) |2 ≤ θ2|L|2D
∫ D

0

w2
x(x, t)dx

and from this we derive that

V̇ ≤ −(c′4 − βc′23 )|η|2 +
1

β
|θ2|L|2D

∫ D

0

w2
x(x, t)dx

Stability of the overall error system

At this stage, we now consider the Lyapunov functionnal
W1 = W + V . Then from the two previous parts, its time
derivative satisfies the following inequality

Ẇ1 ≤ −
[
c′4 − βc

′
3
2 −Dθ2

]
|η|2 −

[
π2

4D2
−

1

2

]∫ D

0

w2(x, t)dx

−
[
π2

8D2
−

1

β
θ2|L|2D

]∫ D

0

w2
x(x, t)dx

In order to ensure the exponential stability, it is not
difficult to see that we need to choose β sufficiently small

so that c′4 − βc′3
2
> 0 and we have to choose D such that

D < D?(θ) = min

{
1

θ2
(c′4 − βc′3

2
),

π√
2
,

(
π2β

8θ2|L|2

)1/3
}

This ends the proof.

Remark: The expression for D∗(θ) shows that as θ
increases, D∗(θ) decreases. Hence there is a trade off
between θ and D; the larger the observer gain θ, the
smaller the length of the PDE sensor.
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4. CONCLUSION

An extension of the design of high-gain observer-based
output feedback control for nonlinear systems with sensors
described by heat PDEs has been proposed by bringing
into light explicitly the expected trade-off between the
gain of the observer and the length of the PDE. Further
works will be undertaken in the same vein by i) considering
actuators PDEs and ii) by relaxing the global exponential
assumption. This later extension will require careful
analysis of the peaking phenomenon.
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