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Abstract: In this paper, we propose a game of the Byzantine Generals, which is a coordination
game of agents seeking consensus by strategically transmitting information on a sequence of
time-varying communication graphs. The first scenario of the game is where the generals cannot
communicate with others at the same “level” in the communication graph. The second scenario
is where those generals can. In either scenario, we examine the influences of the number of
traitors and the decision rule held by the generals on equilibrium predictions of the game.
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1. INTRODUCTION

The Byzantine Generals Problem is a classic research ques-
tion in the field of distributed systems (e.g., Lamport et al.
(1982); Fischer (1983)). Fundamental to the functioning of
those systems is a consensus reached by its components,
possibly after information transmission among them. In
the problem, several divisions of the Byzantine army are
camped outside an enemy city, with each division com-
manded by a lieutenant. The lieutenants receive a message
in the form of “attack” (0) or “not attack” (1) from a
commander, send these messages among themselves, and
decide on whether to attack via a majority voting. How-
ever, some of these generals, including the commander,
might be traitorous, trying to prevent a good decision from
being reached, such as by sending conflicting messages
to others – a problem known as the “Byzantine fault.”
Lamport et al. (1982) has proposed an algorithm to ensure
that the loyal generals will reach a consensus. The authors
also show that the loyal generals can reach a consensus
agreement if the fraction of traitorous generals is less than
1
3 . If the fraction is above 1

3 , consensus can no longer be
guaranteed. Recently, Byzantine fault tolerant algorithms
have been explored in a wide range of applications, such
as in operation systems and signal processing (Duan et al,
2014; Kotla et al, 2007; Kailkhura et al, 2018; Sousa et al,
2018; Kapitza et al, 2012; Cowling et al, 2006).

In this paper, we propose to reformulate the original
Byzantine Generals problem into a game-theoretic prob-
lem. In the game, the generals would transmit messages
among themselves on a sequence of communication graphs.
The strategic communication protocol is that the comman-
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der sends its messages to some lieutenants, who would
decide on the messages sent to their “neighbors” in the
communication graph (who are lieutenants at the same
“level” and the next “level”) and on their positions based
on the messages received. At the end of the protocol, they
will deliver a vote on their positions, which will determine
their payoffs from the game. We will study the Nash equi-
librium strategies of the generals – their strategic, mutual
best responses. A significant difference from Lamport et al.
(1982) is that we will still assume that the traitorous
generals can send anything they wish. But the strategies of
the traitors need to be optimally calibrated with those of
the generals they communicate with and, importantly, vice
versa. We will explore conditions for the game including
the decision rule for the loyal generals and the sequence
of communication graphs, under which different kinds of
equilibria, an optimal consensus, a less optimal consensus
or no consensus, may arise. As in Lamport et al. (1982),
we will also address the question of “fault tolerance” –
the maximum number of traitors in the game beyond
which there will no longer be an optimal-consensus type
of equilibria.

To the best of our knowledge, there are not many ex-
isting game-theoretic studies motivated by the Byzantine
Generals problem. Halpern (2003) contains an informal
discussion of how the problem can be thought of as a game
between two opposing teams. The most relevant work,
such as the electronic mail game formulated in Rubinstein
(1989) as well as its follow-up work (e.g., Binmore and
Samuelson (2001)), has shown that a lack of common
knowledge generated by faulty communication can make
coordinated actions impossible. However, an electronic
mail game is usually played by two agents. Especially, the
game does not cover the first type of Byzantine fault – the
agents may send conflicting information to others, which
is, instead, the focus of our study.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17199



At a general level, our study relates to the literature on
games of strategic information transmission. This strand
of research started with the seminal work of Crawford and
Sobel (1982), which develops a two-stage game with a
sender transmitting a message to a receiver. The sender
has private information about the statistical distribution
of the state of the world unknown to the receiver and
may send false messages to mislead the receiver if their
interests do not align. The Crawford-Sobel model was
later expanded to accommodate settings where a sender
interacts with multiple receivers (Battaglini and Makarov,
2014; Golosov et al., 2014) or where multiple senders and
receivers communicate on a static network (Galeotti et al.,
2013). The contribution of our work is that we will consider
the agents pass the messages on a dynamic sequence of
communication graphs and that many of these agents are
both a sender and a receiver.

Our study also relates to the literature on voting games,
though to a lesser extent (e.g., Palfrey (1988); Downs et al.
(1957); Davis et al. (1970); Baron and Ferejohn (1989);
Austen-Smith and Banks (1988); Shepsle (1979); Myerson
(2000); Snyder Jr et al. (2005); Riker (1982); Shepsle
(2012); Coughlin (1992); Enelow and Hinich (1984)). As
far as we know, a voting game normally does not cover
a communication protocol between politicians and voters.
Yet we do not consider the issues of legislative bargaining
or party competitions or assume a certain distribution for
the voters’ preferences as in a voting game.

The paper will proceed as follows. First, we formulate
the game of the Byzantine Generals. Second, we study
two scenarios, with one where the lieutenants cannot
communicate with others at the same “level” in the
communication graph, and the other where they can. In
the meantime, we explore equilibrium predictions in either
scenario by assuming a specific decision rule. Third, we
discuss future directions for this work.

2. PROBLEM FORMULATION

In the game of interest, there is a set of generals n =
{1, 2, . . . , n} connected on a communication graph G =
{V, E}, which is a directed graph. Any two connected
agents i and j in V may have a directed edge (i, j) or
two directed edges (i, j) and (j, i) between them.

We partition n into K ∈ N disjoint subsets of generals,
K⋃

k=0

nk = n. (1)

The node set n0 = {u} has u designated as the comman-
der. The node set nk represents the set of the generals
at level k ∈ {0, 1, . . . ,K}. For general i, let its neigh-
bor set at level k be Nik = {j : j ∈ nk and (i, j) ∈
E or (j, i) ∈ E}. We require that for i ∈ nk, j ∈ Nik+1 and
k ∈ {0, 1, . . . ,K}, only (i, j) exists in E .

Assumption 1: Message Passing. At time k ∈
{0, 1, . . . ,K}, general i at level k send a message of 0 or 1
to each of their neighbors at levels k and k + 1.

Assume that i will send messages to his neighbors at level
k based on the messages received from his neighbors at
level k − 1. i will send messages to his neighbors at level

k + 1 based on the messages received from his neighbors
at both level k − 1 and level k.

In other words, for i ∈ nk, its messages to neighbors at
level k are denoted as the |Nik|-vector [mij ]1×|Nik

| and
determined by the map,

[mpi] 7→ [mij ], (2)

where
p ∈ Nik−1 and j ∈ Nik. (3)

Its messages to neighbors at level k+ 1 are denoted as the
|Nik+1|-vector [miq]1×|Nik+1| and determined by the map,

[mpi]× [mji] 7→ [miq], (4)

where
p ∈ Nik−1, j ∈ Nik and q ∈ Nik+1. (5)

The messages are passed on a sequence of communication
graphs G(k); k ∈ {0, 1, . . . ,K}, each of which is a weakly
connected digraph. We call this sequence an ascending
chain of G’s spanning subgraphs,

G(k) ⊂ G(k + 1), (6)

which will reach G at time K,

G(K) = G, (7)

with the following property

E(k) ⊂ E(k + 1) (8)

where

E(k + 1)−E(k) = {(j, h) : j ∈ nk+1 and h ∈ nk+1 ∪nk+2}
(9)

and
E(K)− E(K − 1) = {{j, h} : j, h ∈ nk}. (10)

The message mjh ∈ {0, 1} can thus be regarded as being
passed on the directed edge (j, h) in G(k + 1).

Assumption 2: Own Position There are two types
of generals, loyal generals, and traitors, with their types
known to only themselves. Each general i needs to de-
termine his own position vi ∈ {0, 1} based on messages
received.

At level 0, the commander u determines his position
vu ∈ {0, 1}. At level k ∈ {1, 2, . . . ,K}, the loyal generals
determine their positions with the messages received from
the generals at level k − 1 and level k, and send those
positions to its neighbors at level k + 1. A loyal general’s
position is the value he sends to his neighbors at level k+1.
By contrast, the value a traitor sends to his neighbors may
not necessarily be his own position. A traitor may send
whatever messages they would like to any neighbor.

Assumption 2.1. Decision Rule Each loyal general
i ∈ nk; k ∈ {0, 1, . . . ,K} can only observe messages sent
to him from layers k − 1 and k. General i will send the
simple majority value of the messages received from layer
k− 1 to his neighbors at layer k. He will adopt the simple
majority value among the messages received from layer
k − 1 and k as his own position vi, and send this value to
the neighbors at layer k + 1. If “0”s and “1”s respectively
make up one-half of all the received values, assume that
i may take either value as vi. A traitor may send to his
neighbors whatever he wishes.

Assumption 3: Final Vote. The game will end at time
K. The state of the game is realized through a final,
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majority vote on the positions of the generals described
by vector

v = [vi]1×n. (11)

The loyal generals will vote truthfully on their positions,
while the traitors may vote strategically. By “majority” is
meant any desirable majority – in other words, at least a
simple majority.

Assumption 4: Possible Outcomes. There are three
possible types of outcomes. One outcome is no consensus,
which is entirely possible when the total number of gen-
erals is even. The second and third outcomes are that a
consensus on either 0 or 1 will be reached. Only one of
the consensus outcomes can be regarded as the “general
will,” which we call the optimal consensus, and to which
the traitors are opposed.

Assume for simplicity the preference structure of the loyal
generals and traitors as follows. If no consensus is made,
each general receives payoff 0. If they have an optimal
consensus, each traitor receives payoff 1, and each loyal
general receives payoff 2. If they have the less optimal
consensus, each traitor receives payoff 2, and each loyal
general receives payoff 1. The outcome and the payoffs
are only realized at the end of the game. Other than the
commander, the lieutenants have no prior information of
whether 0 or 1 will be the optimal consensus.

In this game, it is natural to investigate the subgame
perfect Nash equilibrium. Generals’ strategies

mij , vi ∈ {0, 1} : i ∈ nk and j ∈ nk ∪ nk+1, 0 ≤ k ≤ K
(12)

are a subgame perfect Nash equilibrium of the game if for
any general i at any level k unilaterally deviating to play
an alternative strategy

m∗ij , v
∗
i ∈ {0, 1}; j ∈ nk ∪ nk+1, (13)

he cannot receive a better payoff.

3. ANALYSIS AND RESULTS

3.1 Lieutenants Cannot Communicate

We first consider the scenario where the lieutenants at
each layer cannot communicate among themselves with
Assumptions 1, 2.1, 3, and 4 in Section II.

The simplest game in this scenario only has two stages.
Given that the lieutenants cannot communicate, the com-
munication graph is a one-layer tree. In the set of generals
n = {1, 2, . . . , n}, u ∈ n is the commander. At the root of
the tree he sends a message, mui ∈ {0, 1}, to each of the
other n − 1 generals, i, at layer 1, i ∈ n − {u}. General
i will then choose his position vi ∈ {0, 1} based on mui.
Then a final majority vote will be delivered on [vi]1×n and
the payoffs from the voting outcome are realized.

Theorem 1. If the following holds,

1) Only the commander is traitorous;
2) The game only has two stages and takes place on a

tree, with the generals at layer 1 unable to communicate
among themselves.

then any subgame perfect Nash equilibrium will not realize
the general will, but the less optimal consensus.

Proof of Theorem 1: Assume without loss of generality
that the general will is to realize “1” as the outcome, and
that the traitor prefers “0” over “1”. If a simple majority
decides the final vote, there are two cases to consider.

1) The total number of generals is odd (2m + 1, m ∈ N).
In this case, it is impossible not to reach a consensus,
though a non-consensus might be the commander’s most
preferred outcome. Then one dominant strategy of u is
that mui = 0, i ∈ n − u. In fact, in any equilibrium he
only needs to send “0” to at least m + 1 lieutenants.

By Decision Rule, a lieutenant at layer 1 will take
whatever message from u as his position. The above
scenario is a subgame perfect Nash equilibrium because
u has no incentives to change its strategy, and any
unilateral deviation by any single lieutenant from “0”
to “1” is unable to change the outcome. If u only sends
“0” to m lieutenants instead, there always exists one of
those m lieutenants preferring to deviate to adopt “1”
as his position.

2) The total number of generals is even (2m, m ∈ N+). If
the commander’s most preferred outcome is “0”, it will
send “0” to at least m lieutenants as above, and this
will be a subgame perfect Nash equilibrium.

Even if the commander’s most preferred outcome
is a non-consensus, his best strategy is to opt for
his second-best option, which is to realize “0” as the
consensus outcome. For a non-consensus to occur, u has
to send exactly “0” to m − 1 lieutenants and “1” to m
lieutenants, and use “0” as his position. This scenario
cannot be a subgame perfect Nash equilibrium, because
there will always be a lieutenant receiving “0” as the
message defecting to adopt “1” as his position 1 .

Then in any equilibrium, u has to send “0” to at least
m lieutenants and takes “0” as his position, which means
that he “sincerely” votes according to his preference and
therefore will not defect. Also, none of the lieutenants
will unilaterally deviate to take “1” as their positions,
which either will not change the outcome, or will bring
about a non-consensus.

In all, the traitorous commander can always exploit Deci-
sion Rule to disrupt the general will from being reached in
equilibrium. A similar argument applies to the cases where
the final vote is based on other kinds of majorities. �

A more general scenario than the one in Theorem 1 is that
the game has multiple stages and the lieutenants at each
layer cannot communicate among themselves. In the set
of generals n = {1, 2, . . . , n}, u ∈ n is the commander
sending a message, mui ∈ {0, 1}, to each of the generals
at layer 1, i ∈ n1. At layer k ∈ {1, 2, . . . ,K}, general
j will determine his position vi ∈ {0, 1} based on the
received messages from layer k−1 and send messages to his
neighbors at layer k + 1. Then a final majority vote will
be delivered on [vi]1×n and the payoffs from the voting
outcome are realized.

We first require that this game takes place on a multi-
layer tree, which means that each non-commander general
only has one sender from the previous layer and multiple
receivers from the next layer.

1 This reasoning applies in all other results in the paper and will
not be repeated.
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Definition 1. (“Critical Mass”). Suppose the total num-
ber of generals is 2m + 1 (or 2m, m ∈ N). For a subset of
generals ns, if

1) They have the same most preferred outcome, “0” or
“1” or nonconsensus.

2) As a result of their message passing, either the total
number of generals who will take their favourable po-
sitions by Decision Rule is a desirable majority, or a
nonconsensus will occur.

we say ns is a “critical mass”.

Remark 1. Given general i at layer k ∈ {0, 1, 2, . . . ,K} of
the tree-structured communication graph G(k), denote the
subtree of size K − k + 1 with the root node i as Ti. Let
the set of nodes in the subtree Ti be nTi

. When the vote
is decided by a simple majority, a necessary and sufficient
condition for a set of non-commander traitors n′ to be a
“critical mass” is the following inequality

(|
⋃
i∈n′

nTi
| > m+1 (or m)) ∨( |

⋃
i∈n′

nTi
| = |n′| = m+1 (or m))

(14)

Theorem 2. If the following holds,

1) Some generals may be traitorous.
2) The game has multiple stages, with the lieutenants at

layer k ∈ {1, 2, . . . ,K} receiving messages only from
layer k − 1 and transmitting messages to its neighbors
on layer k+1, and the communication graph G(k) being
a tree.

3) Assume that a simple majority will decide the final
vote. The inequality in Remark 1 holds (does not hold)
for the number of traitors.

Then there will not be (will be) a subgame perfect Nash
equilibrium realizing the general will.

Proof of Theorem 2: As in Remark 1, let the set of traitors
be n′ ∈ n. We first consider the case when |n| = 2m + 1,
and proceed to prove the condition in Remark 1 to be both
necessary and sufficient.

Necessity. There are two cases to consider.

1) If |
⋃

i∈n′ nTi
| = m+ 1 but

∑
i∈n′ |nTi

| 6= |n′|, it means
that some of these m + 1 generals are loyal because
|
⋃

i∈n′ nTi
| ≥ |n′|. It cannot be an equilibrium that

these m + 1 generals vote “0” and the other m generals
vote “1,” from which a unilateral deviation by any loyal
general among the m + 1 generals will be profitable.

2) If |
⋃

i∈n′ nTi
| < m+ 1, the number of generals holding

0 as their positions will not be a majority because
the commander is loyal. The only kind of subgame
perfect Nash equilibrium in the game is 1 realized as
the outcome.

Sufficiency. When |
⋃

i∈n′ nTi
| > m+1, any traitor i in any

equilibrium will only send 0 to its neighbors in the next
layer. By Decision Rule, the number of generals holding 0
as their positions will be a simple majority. Then the only
kind of subgame perfect Nash equilibrium in the game is
0 realized as the outcome.

Alternatively, when |
⋃

i∈n′ nTi | = m + 1, which is the
second inequality in the condition in Remark 1. It is a
subgame perfect Nash equilibrium that these m+1 traitors

vote “0” and the m loyal generals vote “1”, because none
can unilaterally deviate to make himself better off.

When |n| = 2m, or the final vote is decided by other kinds
of majorities, a similar argument applies. �

Theorem 1 is a special case of Theorem 2 – if the comman-
der is traitorous, the condition in Remark 1 easily holds.
Theorems 1 and 2 could still apply when the loyal generals
adopt a different decision rule – a loyal general may take
the exact opposite value of the message received from the
commander as his own position. Despite the existence of a
traitorous commander, the general will might be enforced
in equilibrium if the loyal generals have no specific decision
rule. (e.g., acting randomly.)

We now consider the scenario in which the lieutenants at
the same layer cannot communicate, but the communica-
tion graph may not be a tree. Given the neighborhood
structure of the generals, it would be particularly difficult
to generalize on a necessary and sufficient condition by
which a critical mass will form. Therefore, we derive a
sufficient condition for a subset of generals being a critical
mass below.

Theorem 3. If the following holds,

1) Both the commander and the generals from level 1 are
traitorous with the same preferred positions.

2) The game has multiple stages, with the lieutenants at
layer k ∈ {1, 2, . . . ,K} receiving messages only from
layer k − 1 and transmitting messages to its neighbors
on layer k + 1.

Then there will not be a subgame perfect Nash equilibrium
realizing the general will.

Proof of Theorem 3: As before, suppose without loss of
generality that the general will is “1”. If the commander
and the generals from layer 1 are traitorous, their goal is
to have enough generals adopt their positions eventually.

At layer k, any traitorous general i has a dominant
strategy, which is to send at least mi ∈ N neighbors at
layer k + 1 his real position, “0”.

By Decision Rule, at layer k + 1, a loyal general at layer
k+1 will adopt the majority value of the received messages
as their positions, and send his positions onto layer k + 2.
A traitorous general at layer k + 1 will do the same as
those traitors did at layer k.

None will unilaterally deviate because

1) the traitors have no incentives to change their strate-
gies.

2) given the traitors’ strategies, none of the loyal generals
can unilaterally reverse the game outcome.

Then in any equilibrium, the traitors will make sure there
is a majority to adopt their preferred positions. �

There could be more sufficient conditions along similar
lines. For instance, the commander does not have to be
traitorous. Alternatively, we could further require more
generals below layer 1 to be traitorous. This leads to a
more general discussion in Section 3.2 on the connection
between the existence of a critical mass of traitors and the
equilibrium prediction.
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3.2 Lieutenants Can Communicate

Now we consider the scenario where the lieutenants at each
layer may communicate among themselves, with the same
set of assumptions as in Section 3.1.

The primary difference from the second game is that
at layer k ∈ {1, 2, . . . ,K}, general i will determine his
position vi ∈ {0, 1} and send messages to his neighbors
at layer k + 1 based on the messages from layer k − 1
and k. Then when receiving conflicting messages, it may
be impossible to deduce using Decision Rule whether the
traitors are from his layer or the previous layer or both.

layer = 0

u

layer = 1
v1

layer =1
v2

layer = 2

v3

layer = 2
v4

layer = 2
v5

layer =2

v6

Fig. 1. Traitors exist from both layer 1 and layer 2

Example 1. Figure 1 shows a communication graph G(2)
(with a commander and two layers of lieutenants). Sup-
pose the second lieutenant v1 from layer 1 and the fifth
lieutenant v5 from layer 2 are traitorous.

On receiving the likely identical messages from both v1
and v5, v4 may not know both of them to be traitorous.
On receiving the likely conflicting messages from the
commander u and v2, v1 may not tell whether one or both
of them are traitorous.

The following statement is a tautology. If we have

1) Some generals are traitorous.
2) The game is played as described by Decision Rule.
3) The traitors constitute a critical mass

then there will not be a subgame perfect Nash equilib-
rium realizing the general will. Given a set of generals
n and a sequence of communication graphs G(k), k ∈
{0, 1, . . . ,K}, the existence conditions for a critical mass of
traitors would be unrealistic to determine ex ante. It would
be realistic, however, to examine whether such a critical
mass exists based on an algorithm. And we propose one
such algorithm below.

Theorem 4. By Algorithm 1, the set of traitors in the game
n′ are a critical mass if ns is a desirable majority.

Proof of Theorem 4: By Algorithm 1, if general i at layer
k ∈ {0, 1, . . . ,K} is a traitor, it is then an element of the
set ns.

A loyal general i at layer k ∈ {0, 1, . . . ,K} first determines
what messages to send to its neighbors at the same layer.
If he has more traitors in his neighbors than loyal generals
from layer k − 1,

Algorithm 1

Input:
nk,G(k); k ∈ {0, 1, . . . ,K},n′

Output:
ns

Initialize:
ns ← ∅, n∗s ← ∅, n̄s ← ∅

for 0 ≤ k ≤ K do
for i ∈ nk do

if i ∈ n′ then
ns ← ns ∪ {i}
else if |{j ∈ nk−1 : {i, j} ∈ Ek and j ∈ n′}| >

|{j ∈ nk−1 : {i, j} ∈ Ek and j 6∈ n′}| then
n∗s ← n∗s ∪ {i}
else go to the next general in nk

for i ∈ nk do
if |{j ∈ nk−1 ∪ nk : j ∈ ns ∪ n∗s and {i, j} ∈ Ek}| >
|{j ∈ nk−1 ∪nk : j 6∈ ns ∪n∗s and {i, j} ∈ Ek}| then
n̄s ← n̄s ∪ {i}

else go to the next general in nk.
ns ← ns ∪ n̄s

return ns

|{j ∈ nk−1 : {i, j} ∈ Ek and j ∈ n′}| >
|{j ∈ nk−1 : {i, j} ∈ Ek and j 6∈ n′}| (15)

by Decision Rule that he will send the traitors’ preferred
value to its neighbors at layer k in the game. Then we let
i be an element of the set n∗s.

By Decision Rule, the loyal general i will determine his
position as well as the messages sent to his neighbors at
layer k + 1 based on messages received from layer k − 1
and layer k.

Then if i has more neighbors from layer k − 1 and layer
k who will send him a traitor’s preferred value than
neighbors from these two layers who will not,

|{j ∈ nk−1 ∪ nk : j ∈ ns ∪ n∗s and {i, j} ∈ Ek}| >
|{j ∈ nk−1 ∪ nk : j 6∈ ns ∪ n∗s and {i, j} ∈ Ek}| (16)

he will adopt this value as his position and send it to
neighbors at layer k + 1. We let i be an element of the
set n̄s.

At the end of the k-th iteration (k ∈ {0, 1, . . . ,K}), the
updated set ns denotes the union of the set of traitors and
the set of loyal generals who will adopt the same positions
with the traitors up to layer k.

At the end of the algorithm, if |ns| is a desirable majority,
then the original set of traitors n′ are a critical mass by
definition. �

Finding the minimum number of traitors who will con-
stitute a critical mass is equivalent to solving the follow-
ing integer programming problem for the communication
graph G.

min |n′| (17)

such that n′ ⊂ n
|ns| is a desirable majority 2

The integer programming problem is unlikely to be com-
puted in polynomial time. Nevertheless, it does not have to
be computed – If the commander is traitorous, his strategy

2 ns is obtained by Algorithm 1.
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is to selectively influence those from below layers such
that a desirable majority holding his preferred positions
will eventually be obtained, regardless of whether other
traitors might exist in the game. He could revise his
strategy accordingly if such a goal falls short. Then in any
subgame perfect Nash equilibrium, the general will is not
realized with the existence of a traitorous commander.

By this reasoning, if the commander has a preferred value
(instead of a nonconsensus), he will have a majority voting
for this value in equilibrium. Therefore, the minimum
number of traitors that may constitute a critical mass for
all instances of the above problem is 1.

4. CONCLUSION

In this paper, we have formulated a game of the Byzantine
generals on a sequence of time-varying communication
graphs. We have proposed a decision rule and studied
equilibrium predictions of the game with the presence
of traitorous generals. We found that when a traitorous
commander exists, there will be no subgame perfect Nash
equilibrium realizing the general will under either rule. In
other cases, the number of traitors will impact equilibrium
predictions.

For future work, we would like to investigate the more
general case of the game, where a lieutenant can act at
multiple times in the game. It will be worthy of studying
how a general may deduce who are the traitors from the
messages transmitted, as well as how the decision rules
may influence the game equilibria.
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