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Abstract: In this paper, the problem of order selection for nonlinear dynamical Takagi-Sugeno
(TS) fuzzy models is adressed. It is solved by reformulating the TS model in its Linear Parameter
Varying (LPV) form and applying an extension of a recently proposed Regularized Least Squares
Support Vector Machine (R-LSSVM) technique for LPV models. For that, a nonparametric
formulation of the TS identification problem is proposed which uses data-dependent basis
functions. By doing so, the partition of unity of the TS model is preserved and the scheduling
dependencies of the model are obtained in a nonparametric manner. For the local order selection,
a regularization approach is used which forces the coefficient functions of insignificant values of
the lagged input and output towards zero.
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1. INTRODUCTION

In recent work on linear parameter varying (LPV)
system identification, nonparametric identification ap-
proaches based on least squares support vector machines
(LSSVM) are investigated (Tòth et al., 2011; Bachnas
et al., 2014; Mejari et al., 2016). The LSSVM approach
exploits the reproducing kernel theory to provide a non-
parametric approximation of functions based on a series
expansion with kernel functions evaluated on the observed
data points. Inspired by this approach, in this contribution
the identification of Takagi-Sugeno (TS) models (Takagi
and Sugeno, 1985) is investigated using a data-dependent
formulation in order to provide a convex framework for
local order selection of these models.

In order to find a suitable local model structure, a wrapper
approach can be used for a given choice of the partitioning
strategy (see Kahl et al. (2015) for an overview of different
structure selection approaches in the system identification
context), which assesses the usefulness of a considered
local regressor subset by means of the approximation or
generalization properties of a model. This is done by
comparing models, which are built of different regressor
subsets and can be extended easily to the selection of
scheduling variables and hyper-parameters of TS models.
However, if every possible subset has to be evaluated by
exhaustive search, the resulting high-dimensional combi-
natorial optimization problem quickly becomes intractable
and greedy strategies like stepwise selection have to be
used (see, e.g., Hong and Harris, 2001; Belz et al., 2017).
Alternatively, with the aim of obtaining sparse local mod-
els, the original combinatorial optimization problem can be

approximated by lasso-like convex relaxation (Tibshirani,
1996). For TS models a grouped lasso regularization was
used by Luo et al. (2014) in order to force sparseness
in the number of local models by exploiting the block-
structured representation of TS models. With the same
aim, Lughofer and Kindermann (2010) introduced a rule
weighting, i.e. the inclusion of an additional weighting fac-
tor into the fuzzy basis functions, and forced it to zero by
incorporating an l1 penalty into a nonlinear optimization
problem. Additionally, they applied a sparse estimator for
parameter estimation of the local models. All approaches
have in common that the partitioning and thereby the
fuzzy basis functions have to be determined in advance
or in a successive manner and are, therefore, biased by the
individually chosen partitioning strategy. Additionally, as
the output of a TS model is nonlinear in the parameters of
the basis functions, a nonlinear optimization problem has
to be solved in order to partition the scheduling space,
thus one may stack in local minima.

In this contribution, the partitioning problem is relaxed by
using data-dependent basis functions preserving convexity.
In order to determine the consequent parameters of the
model the utilization of either explicitly regularized global
estimation or implicitly regularized local regression are
investigated. Furthermore, the local order selection is
solved by exploiting the LPV formulation of TS models
and applying the regularization approach proposed by
Mejari et al. (2016).

2. PROBLEM FORMULATION

The aim of the empirical multivariate modeling problem
consists in finding the unknown functional relationship
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between n input variables x ∈ Rn and the output variable
y ∈ R:

y(k) = f(x(k)) + v(k), k = 1, . . . , N (1)

based on a data set DN = {x(k), y(k)}Nk=1 with N
elements, containing measurements of input variables and
the output of the process under consideration. In order to
model dynamical systems, x(k) contains delayed values
of the measured system inputs u(k) ∈ Rnu and the
measured output y(k) ∈ R. In this contribution, single-
input single-output (SISO) systems are considered. But,
the approaches can directly be applied to multi-input
systems. The term v(k) is assumed to be an independent
and identically distributed random variable with zero
mean and finite variance σ2. The function f : Rn → R
is the nonlinear function representing the system behavior
to be modeled. In this contribution, the TS model class is
considered assuming f to be smooth.

2.1 Takagi-Sugeno Model Class

A Takagi-Sugeno fuzzy model consists of c ∈ N+ su-
perposed local models ŷi(k) = f(θi,LM,ϕ(k)) : Rn →
R, weighted by their corresponding fuzzy basis function
(FBF) φi(z(k)) : Rnz → [0, 1], depending on the schedul-
ing variables z(k) = [z1(k) . . . znz

(k)]> ∈ Rnz , respec-
tively:

ŷ(k) =

c∑
i=1

φi(z(k)) · ŷi(k). (2)

As local model type ARX models of the form

ŷi(k) =

n∑
r=1

θi,r,LM · ϕr(k) (3)

are considered in this paper. ϕr(k) is the r-th element of
the vector

ϕ(k) =[1 y(k − 1) . . . y(k − ny),

u(k − Tτ ) . . . u(k − nu − Tτ )]>,
(4)

n = ny + nu + 1, θi,r,LM is the r-th element of the local
parameter vector

θi,LM = [θi,0 θ
>
i,y θ

>
i,u]> ∈ Rn, (5)

and Tτ is a discrete dead time. θi,0 ∈ R is the offset
of the local model, θi,y ∈ Rny is the parameter vector
corresponding to y(k), and θi,u ∈ Rnu corresponds to u(k).

The fuzzy basis functions φi(z(k)) define a validity region
of the corresponding local models. They are defined by

φi(z(k)) =
µi(z(k))∑c
j=1 µj(z(k))

, (6)

with the membership functions µi(z(k)). In this contribu-
tion, Gaussian membership functions are used

µi(z(k)) = exp

(
−1

2

‖ z(k)− vi ‖22
σ2
i

)
, (7)

where vi ∈ Rnz represents the partition’s prototype and
σi ∈ R+ specifies the width of the Gaussian function
aggregated in the parameter vector θi,MF = [v>i σi]

>,
so that µi(z(k)) = µi(θi,MF, z(k)). For simplicity an
Euclidean norm is considered.

As the TS model interpolates between the local ARX
models (which are assumed to have identical structure)

it can be written in LPV-ARX form. Inserting (3) to (2)
yields:

ŷ(k) =

c∑
i=1

n∑
r=1

φi(z(k)) · θi,r,LM · ϕr(k), (8)

and by introducing the coefficient functions

θ̃r(z(k)) =

c∑
i=1

φi(z(k)) · θi,r,LM, (9)

the TS-fuzzy model is a special case of an LPV-ARX
model:

ŷ(k) =

n∑
r=1

θ̃r(z(k)) · ϕr(k), (10)

where the same fuzzy basis function for each regressor is
used to parametrize the coefficient functions as common
in the TS framework.

2.2 Structure Selection of TS models

The structure selection problem of data-driven TS mod-
els consists of three parts: i) the choice of appropriate
scheduling variables z(k) and input variables u(k), ii) the
partitioning of the scheduling space by an appropriate
parametrization of the fuzzy basis functions φi(z(k)) of
a predefined type as well as the choice of the number of
local models c, and iii) the selection of a suitable local
model structure characterized by ny, nu, and Tτ . As the
output of a TS model is nonlinear in the parameters of
its basis functions, a nonlinear optimization problem has
to be solved in ii). Alternatively, heuristic construction
strategies were proposed like grid partitioning, data-point-
based methods, clustering-based approaches or heuristic
tree construction algorithms like LOLIMOT each with
individual advantages and drawbacks (see, e.g., Nelles,
2001). In order to solve iii), the approaches mentioned in
the introduction can be applied. In this contribution, i)
is assumed to be given by the modeling exercise. In order
to solve ii) and iii) the approach proposed in section 3 is
used by extending the approach proposed in Mejari et al.
(2016) to TS models.

3. IDENTIFICATION APPROACH

3.1 Regularized LSSVM for Order Selection of LPV
Models

The approach proposed in Mejari et al. (2016) is based
on the method developed in Tòth et al. (2011) where an
componentwise LSSVM is used to describe the nonlinear
dependence of the coefficient functions of an LPV model.
The approach proposed in Mejari et al. (2016) incorporates
an additional regularization step in order to select the
dynamical order of the model. The approach consists of
three steps. In a first step, the approach proposed by Tòth
et al. (2011) is used to estimate the coefficient functions
of an over-parametrized LPV model in a non-parametric
manner. The LSSVM formulation for the estimation of an
LPV model starts from:

argmin
ρ,e

I(ρ, e) =
1

2

n∑
r=1

ρ>r ρr +
λ

2

N∑
k=1

e2(k)

s.t. e(k) = y(k)−
n∑
r=1

ρ>r φr(z)ϕr(k),

(11)
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with e = [e(1) · · · e(N)]> ∈ RN , the unknown parameter
vector ρr ∈ RnH , the feature maps φr : R → RnH , and
the regularization parameter λ ∈ R+. The Lagrangian dual
problem associated with (11) is:

L(ρ, e,α) = I(ρ, e)−
N∑
k=1

αk

(
e(k)− y(k) +

n∑
r=1

ρ>r φr(z(k))ϕr(k)

)
,

(12)

with α = [α1 · · ·αN ]> ∈ RN being the Lagrangian
multipliers. Setting derivatives with respect to ρ, e, and
α to zero and eliminating ρ and e gives the following set
of equations

y(k) =

n∑
r=1

(
N∑
k=1

αkϕr(k)φ>r (z(k))

)
φr(z(k))ϕr(k) +

1

λ
αk.

(13)

Instead of specifying φ(z(k)), in the LSSVM setting

the inner product φ>r (z(k))φr(z(k)) is defined by an
a priori chosen positive definite kernel function Kr =
φ>r (z(k))φr(z(k)) which enables the description of the
nonlinear scheduling dependencies of the model coefficient
functions. As stated in Tòth et al. (2011) or Mejari et al.
(2016), a common choice of the kernel function is the
Radial Basis Function (RBF):

Kr(z(k), z(m)) = exp

(
−1

2

‖ z(k)− z(m) ‖22
σ2
r

)
, (14)

with the hyper-parameter σr specifying its width. Based
on Kr, the N × N kernel matrix Ω is constructed whose
(k,m)-th element is given by

[Ω]k,m =

n∑
r=1

[Ωr]k,m ,

[Ωr]k,m = ϕr(k) (Kr(z(k), z(m)))ϕr(m)

(15)

The solution of the LSSVM estimation problem in terms
of the Lagrangian multipliers is given by

α =
(
Ω + λ−1IN

)−1
Y , (16)

with Y = [y(1) . . . y(N)]
> ∈ RN , and the coefficient

functions to be estimated are obtained as

ϑ̂r(·) = ρ>r φr(·) =

N∑
k=1

αkKr(z(k), ·)ϕr(k). (17)

In order to shrink the previously estimated coefficient

functions ϑ̂r corresponding to insignificant lagged values
of the input and the output, that is the elements of ϕ,
towards zero, in the second step, the following regularized
convex optimization problem is solved:

argmin
{wr}nr=1

N∑
k=1

(
y(k)−

n∑
r=1

w>r ζ(z(k))ϑ̂r(z(k))ϕr(k)

)2

+ γ

n∑
r=1

‖ wr ‖∞,

(18)

where ζ(z(k)) is a vector of monomials in z(k) which has
to be specified a priori. wr ∈ Rnw is a vector of unknown
parameters, and γ ∈ R+ is a regularization parameter.
The term

w>r ζ(z(k))ϑ̂r(z(k)) = ϑ̄r(z(k)) (19)

represents the scaled versions of the original coefficient
functions introduced for the regularization. The regular-
ization term γ

∑n
r=1 ‖ wr ‖∞, i.e. the sum of the infinity

norms l1,∞, forces all elements of the vector wr either to
be equal to zero or non-zero.

As the l1,∞-norm induces a bias in the estimated coefficient
functions, in a final step, the non-zero coefficient functions
are re-estimated with the approach proposed in Tòth et al.
(2011), that is computing (16), in order to obtain unbiased
estimates.

3.2 Order Selection of Takagi-Sugeno Models

The approach described in section 3.1 can been used to
determine the (local) dynamical order of a TS model in
its LPV form (10) as it has already be investigated in
Kahl and Kroll (2018). However, due to the application of
the kernel trick in the LSSVM framework, the parameter
vectors ρr of the parametric LPV model in (11), which
we think of as TS model (8), are neither accessible, nor
can a partition of unity be preserved in this setting.
To circumvent this drawbacks in the TS framework, we
investigate a nonparametric TS formulation (in the primal
weight space) for local order selection consisting of the
following three steps:

S1 Partition the scheduling space by means of data-based
FBFs

S2 Estimate local model parameters of an over-parame-
trized TS model by either use of explicit global or
implicit local estimation

S3 Penalize the coefficient functions of the resultant
model to force sparseness in the number of lagged
inputs/outputs

Nonparametric Takagi-Sugeno Partitioning (S1) In the
first step, each membership function µi is centered on each
training data point z of the scheduling variable, such that:

µi(z(k)) = exp

(
−1

2

‖ z(k)− z ‖22
σ2
i

)
(20)

and

φi(z(k)) =
µi(z(k))∑N
j=1 µj(z(k))

. (21)

By doing so, the scheduling space partitioning is given by
means of the training data at hand, such that the data
points are assigned to the local models by the correspond-
ing basis function φi. σi is treated as hyperparameter and
can be determined by cross validation. This approach is
strongly related to piecewise affine (PWA) system identifi-
cation (see, e.g., Garulli et al. (2012) for a survey) and has
been generalized to local linear model networks, which can
be interpreted as TS models, in Münker and Nelles (2017).
The approach proposed in Münker and Nelles (2017) first
solves a local regression problem to obtain an estimate
of the local model parameters. Afterwards, the parame-
ters are clustered and assigned to the corresponding local
models to obtain a compact rule base. In this contribution,
the clustering step applied in (Münker and Nelles, 2017)
is omitted in order to avoid the solution of a non-convex
optimization problem in steps S1 to S3. However, the
clustering can be applied once the correct model order is
found, which is out of the scope of this paper.
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Estimation of Local Model Parameters (S2) Clearly, the
obtained model lacks sparseness and at least n · N local
model parameters have to be estimated and thus regular-
ization is required to prevent overfitting. In fact, (11) is
the constrained version of the ridge regression problem in
the feature space. In the TS model identification setting,
for given θi,MF, i = 1, . . . , c the ridge regression problem
is

argmin
θLM

1

2
‖ Y −ΛθLM ‖22 +

λ

2
‖ θLM ‖22, (22)

where λ ∈ R+, θ>LM =
[
θ>LM,1 . . .θ

>
LM,c

]
∈ Rn·c, ϕ =

[ϕ(1) . . . ϕ(N)]> ∈ RN×n, and Λ = [Γ1ϕ . . .Γcϕ]
> ∈

RN×c·n is the extended regression matrix with Γi =
diag(φi(z(1)) . . . φi(z(N))) ∈ RN×N . The solution is given
by

θ̂LM =
(
Λ>Λ + λInc

)−1
Λ>Y , (23)

where Inc is the n · c× n · c identity matrix. As for c = N
local models n · N local model parameters have to be
estimated the solution can also be derived from its dual
problem. Converting (22) into a constrained minimization
problem

argmin
θLM,e

I(θLM, e) =
λ

2
‖ e ‖22 +

1

2
‖ θLM ‖22

s.t. e = Y −ΛθLM,

(24)

the corresponding Lagrangian is

L(θLM, e,α) =
λ

2
‖ e ‖22 +

1

2
‖ θLM ‖22

+α ( e− Y + ΛθLM) .
(25)

Proceeding as for the LSSVM, i.e. setting derivatives with
respect to the primal variables to zero and eliminating
the primal variables by substitution, the dual problem is
obtained as

argmin
α

1

2
α
(
ΛΛ> + λIN

)
α> −αY (26)

with IN is the N×N identity matrix. The solution is given
by

α =
(
ΛΛ> + λIN

)−1
Y . (27)

By using the dual, only N parameters α have to estimated.
With the centers of the FBFs given by the training data,
the local model parameters in the primal space are given
by

θLM = αΛ. (28)

Alternatively, the local estimation approach can be used to
obtain the consequent parameters as stated in Münker and
Nelles (2017). In local estimation, the parameters of each
local model are estimated independently of the remaining
ones by using the basis functions to weight each least
squares problem

argmin
θi,LM

‖ Γ
1/2
i (Y −ϕθi,LM) ‖22 . (29)

The solution is given by

θi,LM =
(
ϕ>Γiϕ

)−1
ϕ>ΓiY , i = 1, . . . , c. (30)

As for local estimation the aggregation of the local models
is not taken into account, it does not provide an optimal
TS model in terms of minimal modeling error. However,
the number of effective parameters is reduced and thus
some implicit regularization is provided (Nelles, 2001).

Local Order Selection (S3) With the partitioning given
by the training data points of z(k) (thus, z(k) is assumed
to be known) and the estimates of the local model pa-
rameters determined either by the explicitly regularized
global approach (23) (alternatively, using (27) with (28))
or the implicitly regularized local estimation approach
(30), the coefficient functions of the TS model are given

by (9). With θ̃r(z(k)) given, the regularization approach

(18), with ϑ̂r(z(k)) = θ̃r(z(k)), can be applied in order to
determine the local order of the TS model.

4. NUMERICAL EXAMPLE

In order to evaluate the performance of the proposed
approach, a slightly modified version of the case study in
(Gringard and Kroll, 2017) is considered. The test system
is a TS-fuzzy system consisting of c = 5 superposed
second-order lag elements with input-dependent attenu-
ation and amplification. Gaussian membership functions
like (7) are used for partitioning. The prototypes are cho-
sen to be {vi} = {−3;−1; 0; 1; 3} and the parameters spec-
ifying the width of each Gaussian is σi = 0.3∀i. The i-th
local model is defined by the following difference equation
obtained from discretization of the respective continuous
second-order lag elements:

yi(k) =(2− 2Diω0Ts)︸ ︷︷ ︸
θi,1,LM

y(k − 1)

− (2Diω0Ts − ω2
0T

2
s − 1)︸ ︷︷ ︸

θi,2,LM

y(k − 2)

+Kiω
2
0T

2
s︸ ︷︷ ︸

θi,3,LM

u(k − 2),

(31)

with the sample time Ts = 10 ms, natural frequency ω0 =
50 rad/s, the local gains {Ki} = {6; 1.5; 3; 7.5; 4.5}, and
local damping ratios {Di} ≈ {0.45; 0.71; 0.2; 0.58; 0.32}.
The global system is given by the following NARX process:

y(k) = f(ϕ(k), z(k)) + e(k), (32)

where ϕ(k) = [y(k−1), y(k−2), u(k−2)], z(k) = u(k−2),
and the Gaussian distributed additive zero-mean white
noise e(k). Note, that the scheduling space is chosen to
be one-dimensional for the sake of simplicity. But, the
approaches are also applicable to higher dimensions of z.

Different models are estimated from a training-data set
of length N = 1000 and tested on a separate noise-free
validation data set of length Nv = 1000 in 50 Monte-
Carlo runs with different realizations of the noise and the
input. The input is chosen to be a uniformly distributed
white noise process u(k) ∼ U(−5, 5). The average Signal-
to-Noise Ratio (SNR) over the 50 Monte-Carlo runs is 18
dB, corresponding to a standard deviation of the noise of
0.5. The SNR is defined as

SNR = 10 dB · log10

( ∑N
k=1(y0(k))2∑N

k=1(y(k)− y0(k)2

)
, (33)

with y0(k) being the noise-free system output. The models
are evaluated in a simulation of the validation data set
which means that the output is only based on current
inputs and the previous predictions of the output. To
assess the generated models, the Best Fit Rate (BFR) is
used:
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Fig. 1. Coefficient functions of the true system (black), and
of estimated TS model for global (blue), and for local
parameter identification (red)

BFR = 100% ·max

1−

√√√√∑Nv

k=1(y(k)− ŷ(k))2∑Nv

k=1(y(k)− ȳ(k))2
, 0

 .

(34)

4.1 Order Selection Results

For the identification an overparametrized TS model with
na = nb = 5 is considered. σi of all fuzzy membership
functions (7) are kept equal. The values of the hyper-
parameters are determined via a combination of trial
and error and grid search optimizing the BFR on an
independent calibration data set of length Nc = 1000 and
are fixed in the Monte-Carlo studies. For global estimation,
the obtained values are σi = 0.25, λ = 2.125 · 10−2, and
γ = 1.1 · 104. For local estimation, σi = 0.1 is obtained
and γ is chosen identical to the global approach yielding
the correct dynamical order and dead time in 48 of the
50 Monte-Carlo runs for both, global and local consequent
parameter estimation.

4.2 Global versus Local Consequent Parameter Estimation

In this section, we further investigate the results regarding
the obtained coefficient functions and estimates of the local
model parameters. Fig. 1 shows the obtained coefficient
functions for the determined hyper-parameters and the
correct dynamical order for one noise realization. As can
be seen, for both approaches the coefficient functions are
captured well. But, for both approaches there is a slight
deviation in the fit of the coefficient function θ̃3(z(k))
in the range [−0.7, 0.4]. For the global estimation, there
is a smooth but biased approximation in this range.

−4 −2 0 2 4

1

1.5

2

θ 1

−4 −2 0 2 4

−1.5

−1

−0.5

θ 2
−4 −2 0 2 4

0

1

2

z(k)
θ 3

Fig. 2. Local model parameters of the true system (black
crosses), and of estimated TS model for global (blue
dots), and for local parameter identification (red dots)

For the local estimation, the estimate oscillates around
the coefficient function of the underlying system. The
corresponding values of the BFR on the validation data set
are 92.36 % for the global identification and 93.39 % for
local identification approach, both indicating an excellent
fit. The estimated local model parameters corresponding
to each local model in z(k) are depicted in Fig. 2 and
compared to the local parameters of the TS system. As
can be seen, the estimates for the local estimation are
comparable to the local parameters of the true system,
whereas the results for the global estimation show highly
oscillatory behavior.

4.3 Discussion

For the determination of the local dynamical order using
the approach described in section 3.2 just the coefficient
functions θ̃r(z(k)) have to be estimated. As both esti-
mation approaches provide good approximations of the
coefficient functions, the results for the order selection are
similar in this example. The results for the estimates of
the local model parameters vastly differ for both estima-
tion approaches. Due to the nonparametric partitioning
of the scheduling space, the estimates using the global
identification approach show oscillatory behavior although
a regularization is used to prevent ill-conditioning. Accord-
ing to Murray-Smith and Johansen (1995), this is due to
compensation effects where the negative contribution of
one local model is compensated by the positive contribu-
tion of the neighboring ones. This significantly harms the
interpretability of the model and may be disadvantageous
when used for control purposes. Moreover, for a rule-
base simplification based on parameter-space clustering,
like proposed in Münker and Nelles (2017), the global
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Fig. 3. Local model parameters of the true system (black
crosses), of the estimated TS model for global (blue
dots), and for local parameter identification (red dots)
in the parameter space

estimates are not useful (see Fig. 3). On the contrary, the
local estimation is robust against the overparametrization
and still provides results which are comparable to local
linearizations of the system with a higher approximation
accuracy of the coefficient functions. Note, in order to
obtain smoother results for the local model parameters for
local estimation, the bandwidth σi can be adjusted. This
however would decrease the BFR.

5. CONCLUSIONS AND OUTLOOK

In this contribution, a convex framework for local dy-
namical order selection of Takagi-Sugeno fuzzy models
was proposed. Data-dependent membership functions were
used such that the partitioning of the scheduling space
was given by the training data at hand. In this way, the
nonlinear parameter dependencies of the system can be
estimated in a non-parametric but convex setting. Solving
a nonlinear optimization problem to find a suitable parti-
tioning of a TS model is avoided. Especially, for dynamical
order selection, this is an important aspect. In order to
obtain estimates of the local model parameters, explicitly
regularized global estimation and implicitly regularized
local estimation were investigated. Subsequently, the reg-
ularization approach proposed in Mejari et al. (2016) was
applied, where the LPV form of the TS model is exploited.
A simulation example demonstrated the capability of the
proposed approach to find the correct dynamical order in
96 % of all cases. However, the values of the estimated local
model parameters showed major differences for the used
estimation approaches. The local parameter estimation
approach was robust against the overparametrization and
should be preferred in this setting. The current investi-
gations were carried out under the assumption of known
scheduling variables and examined a single input single
output system. The extension to systems with multiple
inputs is straightforward and will be investigated in a real
world case study.
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