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Abstract: This paper develops an interactive visualization system, called iHPPVis, to analyze
and locate the cause of quality-related faults for the heavy plates production. A time distribution
of the products under different operating conditions based on Marey‘s graph is presented and
the process data for corresponding conditions to identify clusters and outliers is visualized,
which utilizes the alternative dimension reduction algorithms. The crucial stage that leads to
the abnormality of product quality is also diagnosed, and the data distribution of heterogeneous
process variables in the crucial stage is exhibited. By integrating alternative algorithms with
interactive visual analysis to achieve quality-related fault diagnosis, iHPPVis can facilitate the
improvement of heavy plates quality. A case study is conducted to demonstrate its effectiveness
and exhibit a pilot application of visual analytics for the heavy plates production.
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1. INTRODUCTION

As a typical complex industrial process, the hot rolling
production of heavy plates characterized by multi-stage,
higher-dimensional process variables and huge volumes of
data. It generally consists of several main stages (Fig. 1),
i.e., heating, rolling, cooling, and hot levering (Tang and
Wang, 2011). In the hot rolling process of heavy plates,
the production indices of each stage are regarded as a
significant foundation to evaluate the operating state. It
is important to explore the internal relationship between
plant-wide production process variables and product qual-
ity. Valuable decision support information can be provided
to the field operator. In addition, the visual analytics can
explore the valuable information of industrial big data, and
realize the intellectualization of hot rolling production.

Data visualization has been continuously improved with
the development of information technology in decades.
Through the application of visualization technologies,
more reliable decisions are provided with diversified fields,
such as business (Yue et al., 2020), sports (Wu et al.,
2018b), transportation (Chen et al., 2015), etc. Although
many commercial companies in the industrial field have
begun to engage in related research, including Predix plat-
form from GE Digital, MindSphere platform from Siemens,
these researches have not been able to carry out in-depth
exploration for visual analysis. In academic research, there
are only a few studies analyzing industrial data (Xu et al.,
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2017; Wu et al., 2018a). For example, Xu et al. (2017)
proposed ViDX, a visual analytics system, to identify pat-
terns of production and diagnose problems in automobile
assembly lines. Wu et al. (2018a) developed a visualization
system to support on-site operators in monitoring equip-
ment condition.

It should be noted that designing and developing such a
visual analytic system with huge volumes of heavy plates
production data presents two major challenges. First,
given the scale of the industrial big data in Supervisory
Control And Data Acquisition System (SCADAS) and
Manufacturing Execution System (MES), there is a need
to explicitly show the operating conditions of the plant-
wide production process and to optimize the data analysis
performance. Second, it is difficult to intuitively represent
the complicated relationship between production process
variables and quality indices of heavy plates.

To address the aforementioned challenges, we propose a
highly interactive visualization system called iHPPVis,
which aims at identifying patterns of operating conditions
and locating the root of quality-related faults. The major
contributions of this paper are as follows:

• An interactive visualization system is developed,
which assists users in analyzing the big data of heavy
plates production.

• A visual analytics method is proposed, which en-
hances with new features to support users in exploring
the root cause of the abnormality on product quality.

• A case study with domain experts is conducted to
demonstrates the usefulness and effectiveness of iHP-
PVis .
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厚板生产工艺流程

1.1 厚板生产的背景及意义
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Fig. 1. Heavy plate production process.

2. REQUIREMENT ANALYSIS

In this section, we summarized the most critical require-
ments, following multiple in-depth discussions with four
domain experts, including two experienced on-site oper-
ators, one manager of the heavy plate production line,
and one scientist who had been working on the heavy
plate production for more than ten years. Then we de-
veloped an early prototype and then improved the designs
iteratively according to the feedback from these domain
experts. Finally, we accomplished the current version of
the visualization system, and illustrated four requirements
which can be grouped into two levels as follow.

This manager proposes two overall-production-level
requirements to supply an overview of the heavy plate
production.

R1: Visualize the root cause of the abnormality
on plates quality. The system should not only highlight
the products of abnormal quality and show when and why
quality-related faults have occurred, but also provide a
comprehensive overview for on-site operators.

R2: Display the overview of industrial big data
in the plant-wide production process. The visual
encoding should present various operating conditions of
heavy plate production, furthermore, exhibit the distribu-
tion of high dimensional process variables, which provides
guidance for further analysis.

Two on-site operators provide three detailed-diagnosis-
level requirements to focus on a detailed analysis that
leads to the abnormality on plates quality.

R3: Present different hierarchies of diagnostic anal-
ysis. To support a comprehensive exploration of plant-
wide production process, the system should be able to
provide different hierarchies of production data.

R4: Integrate feature extraction and dimension
reduction algorithms. The system should support in-
teractions to extract the features of industrial data and
reduce the dimensions of production indices.

R5: Support real-time and interactive analysis of
the large volume of industrial data. The assembly line
of heavy plates production sets up hundreds of measuring
sensors. It is essential to provide real-time and interactive
analysis in the system.

3. SYSTEM ARCHITECTURE

Motivated by the above design requirements, we design
a visual analytics system, to allow users to explore the
reason of the abnormalities on product quality. iHPPVis
is a web-based application with three major parts, a data
storage module, a data processing module and a visualiza-
tion module as shown in Fig. 2. The data storage module
(Fig. 2a) is based on MongoDB (Chodorow, 2013) and
Hadoop (Shvachko et al., 2010). Furthermore, this module
collects massive information from plant-wide production
process heterogeneous sensors, such as process data in
SCADAS and MES, and product quality data in final
quality control system. The data processing module (Fig.
2b) is based entirely on Python3, which cleans and fil-
ters the collected data. Then the mathematical model is
established for statistical analysis and visual analysis of
cleaned data. This Python3-based data analysis module
forms the backend and it guarantees the efficiency of our
visualization module. Data visualization module (Fig. 2c)
provides users with visual analysis and interactive services.
It is a front-end interface of the system based on D3.js and
Vue.js that connects users. In order to comprehensively
analyze the system workflow, we will describe each part of
the system architecture in detail.

Data storage
Heterogeneous
data collecting

Data storage

HadoopMongoDB

A
Data processing

Data clean

Summary statistics
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Data filter

Fault Diagnosis
Dimensionality reduction

B
Z z z z z z z z
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Fig. 2. System architecture. iHPPVis consists of three ma-
jor parts: a) Data storage module; b) Data processing
module; c) Visualization module.

3.1 Data Storage & Data Processing

The raw industrial data is considerably large in size, which
is collected from more than 1,200 sensors in the production
line. And its overall scale is more than 20tb with about one
hundred thousand of products ranging from June 2018 to
October 2019. After collecting the raw information from
the hot rolling production of heavy plates, further data
storage and data processing should be indispensable.
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Fig. 3. iHPPVis facilitates the exploration of heavy plates production process.

We first utilize Apache Hadoop2 on two clusters with 35
data nodes and 960 cores to collect and parallel process in-
dustrial big data based on Map-Reduce. It transforms data
collected from multi-source heterogeneous data sources
into uniform format (a set of vectors or matrices). The
uniform format is helpful for further analysis and explo-
ration. Furthermore, the processed results are stored in
MongoDB3 database, which is deployed in the cloud and
supports real-time query, with the size of more than 5TB.

The next step is to process two types of anomalous data
which are missing data and infinite values. It’s significant
to clean and filter anomalous data, which is derived from
industrial sensors anomaly.After discussion with domain
experts, we determine to replace anomalous data with the
appropriate values calculated by interpolation algorithm.

At the last but not least, we reveal that industrial big
data still has several issues such as high dimensions and
multiple redundancy, which is not conducive to subsequent
visual analysis. We adopt Maximal Information Coefficient
(MIC) (Reshef et al., 2011) to extract feature variables.
MIC algorithm is widely used in various applications for
its versatility and efficiency (R4, R5). After the industrial
process data Xraw = {x1, x2, . . . , xn} and quality data
Y = {y1, y2, . . . , ym} are filtered and cleaned, we calculate
MIC between Xraw and Y as follows:

MIC [xi; yj ] = max
|Xraw||Y |<B

I[xi; yj ]

log2 (min (|Xraw| , |Y |))
(1)

where I[xi; yj ] represents the mutual information between
the i-th process variable xi and the j-th quality index yi

for i ∈ 1, 2, ..., n, j ∈ 1, 2, ...,m. Thus, we effectively extract
industrial process data and proceed to visual analysis.

3.2 Visualization

iHPPVis is developed to support multi-level exploration
and comparison of different conditions, which consists
of five parts: a control panel (Fig. 3A) to present the
configuration data, select the automatic algorithm for
subsequent analysis and promote interactively changing
the configuration (R4); a condition overview (Fig. 3B) to
exhibit the time distribution of the products under differ-
ent operating conditions, and troubleshoot inefficiencies of
production capacity on the plant-wide production process
(R2); an embedding view (Fig. 3C) reveals process data
for corresponding operating condition to identify clusters
and outliers (R2, R3); a diagnosis view (Fig. 3D) to
diagnose the crucial stage that leads to the abnormality
of product quality (R1, R3); a key stage view(Fig. 3E)
to exhibit the data distribution of heterogeneous process
variables in the key stage, further analysing the detailed
causes of problems with the quality of products (R3). It
combines automatic algorithms and domain knowledge to
enable three kinds of analysis: the monitoring of operating
conditions, analysis of the relationship between process
variables and product quality, and root cause of quality-
related faults, thereby promoting product quality enhance-
ment and guiding production operations. The proposed
visualization system aims at five requirements which could
be divided into two levels. In this section, we first describe
each component of the iHPPVis. Then, we illustrate the
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user interactions provided to enable the exploration and
analysis of heavy plate production.

4. VISUAL DESIGN

4.1 Control Panel

The control panel (Fig. 3A) aims at supporting visual op-
eration on the system configuration of product parameters
and automatic algorithm types to diagnose product quality
(R4). It shows several types of system configuration data:
the detailed parameters of each product, the key stage vari-
ables recommended based on number of user clicks, and
the automatic algorithms for subsequent analysis includ-
ing the dimension reduction algorithm in embedding view
(Fig. 3C), the multivariate statistical analysis algorithm in
diagnosis view (Fig. 3D). Moreover, the control panel sup-
ports two types of visual encoding, namely quality-based
and category-based. Due to the interactions provided by
the control panel, on-site operators could utilize their
domain knowledge, including the in-depth understanding
of production technology and extensive on-site operational
experience, to explore the cause of abnormality on the
product quality (R1).

After modifying the configuration data, the timeline (Fig.
3F) will then update its range to the selected days and
display the number of products of different quality in a
finer resolution. By brushing the corresponding range on
the timeline, users can click the search button to invoke
the product quality analysis algorithm, and the returned
result will be added to the condition overview and the
embedding view.

4.2 Condition Overview

The condition overview (Fig. 3B) exhibits the time distri-
bution of the products under different operating conditions
(R2). The essential target of this view is to analyze the
impact of multi-operating condition conversion for product
quality. The condition overview is inspired by Marey’s
graph (Tufte, 1986) and VIDX (Xu et al., 2017) system.
Marey’s graph is a traditional method for describing bus
or train schedules. It adopts a parallel layout of time axes.
Each time axis is used to represent a bus or train stop. The
polylines between time points on the axes indicates when
the vehicles arrived at the stop based on the schedules.
This visual encoding can be directly applied to plant-wide
production process data if we represent each sub-stage
station on the whole production line as a bus or train stop,
and the production process of a product as a polyline. The
angle of the line segments between the axes implies its time
on each sub-stage. In addition, the condition overview sup-
ports simultaneous highlighting with the embedding view
and provides interaction for subsequent analysis (R5).

By observing the condition overview experiment (Fig. 4),
it illustrates the different types of visual patterns:

a. Visual pattern a (Fig. 4a) implies that the no abnormal
operating condition has occurred and the production line
works without abnormality.

b. Visual pattern b (Fig. 4b) illustrates that the production
line is affected by part of stages, which leads to a slight
decrease in production capacity.

c. Visual pattern (Fig. 4c) indicates that the production
line has been completely suspended for a short period
of time, which may be due to the change of the type of
products.

S1

time

production line

a

b

cThe production line was completely
suspended for a short period.

Part of production line
was interrupted.

The production line worked
without abnormality.

P1

Pn

…

S2 Si…

Fig. 4. Visual patterns of condition overview.

4.3 Embedding View

Abnormalities are not only closely related to production
conditions, but also to high-dimensional process variables.
We explore the underlying relationship by embedding view
(Fig. 3C), which projects high-dimensional process data X
onto a 2D space, and their relative similarities are reflected
through their placements to help users discover clusters
and outliers (R2). Many dimension reduction algorithms,
such as principal components analysis (Wold et al., 1987)
and multidimensional scaling (Borg and Groenen, 2003),
could be used for this target. In embedding view, we adopt
the t-distributed stochastic neighbour embedding (t-SNE)
algorithm because t-SNE repels dissimilar points strongly
to form more obvious clusters (Maaten and Hinton, 2008)
(R3). Therefore, the embedding view is visualized so
that similar products are placed nearby while dissimilar
products are placed faraway.

C = tSNE (X) (2)

where C is the embedded data. Following that, we could
distinctly observe the abnormal batches in the outlier area.
In embedding view, we provide other dimension reduction
algorithms, which can be selected in the control panel.
Furthermore, the view not only supports two types of
user interactions including panning and zooming, but also
provides brushing the outlier area to interact with the
diagnosis view in real time (R5).

4.4 Diagnosis View

The diagnosis view (Fig. 5) is designed to diagnose the
crucial stages that lead to the abnormality of product
quality (R1, R3). First of all, normalize process variables
for the standard products and the product selected in the
embedding view. Then calculate the upper and lower limits
of the process variables for standard product. Finally, show
them in the area chart which is the top part of diagnosis
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Fig. 5. Diagnosis view.

view (Fig. 5a). Because of the noise from industrial data,
this view utilize exponentially weighted moving average
(EWMA) (Izadi et al., 2009) to reduce noise and extract
features (R4). An EWMA filter is defined as:

z(k) = x(k) + (1− α)z(k − n) (3)

where x(k) is the sequence of original raw process data,
z(k) is the sequence of filtered data, α is filter parameter
and n is the order of filter. However, exclusively consid-
ering unidimensional anomaly detection is not compre-
hensive enough. We adopt multivariate statistical anal-
ysis to troubleshoot quality-related faults. The variable
contributions are displayed in the bottom part of diag-
nosis view (Fig. 5b). Users are provided with conjoint
analysis through the aforementioned two methods. Be-
sides, iHPPVis supports alternative algorithms based on
multivariate statistical analysis, e.g., total projection to
latent structures (T-PLS) (Gang et al., 2009), concurrent
canonical correlation analysis (Zhu et al., 2016) (R5).

4.5 Key Stage View

The key stage (Fig. 3E) exhibits the data distribution
of heterogeneous process variables for key stage, further
analysing the root cause of abnormality on the product
quality (R1, R3). In this view, each variable of selected
key stage is sorted in descending order of deviation. It’s
effective to assist users in taking more accurate actions
in production, such as calibrating a specific sensor, prior-
itizing maintenance of a specific piece of equipment, etc.
Moreover, every view of data distribution supports two
types of user interactions such as drag and drop.

5. CASE STUDY

Affected by space limitation, only one case study is given
here. The ultimate goal of iHPPVis is to provide domain
experts with an efficient and effective tool to capture the
reason for the fluctuation of the plate shape. Based on the
purpose of this study case, We applied a sampled dataset
from the real production of large-scaled steel factory in
eastern China. It contains the 30-day data of 9589 plates.
In addition, we had trained four aforementioned domain
experts in basic knowledge and use skills before this
experiment. The results are shown in the (Fig. 6).

In the scenario, the domain experts would like to explore
and analyze the shape quality of heavy plates and to
investigate the case of abnormality on product quality.
First of all, the experts chose to look over the capacity of
heavy plates throughout the month by timeline (Fig. 6A),
and they focused on the production data of heavy plates
from September 3 to September 6. Because the number
of abnormal quality plates on this day is 762, but the

plates of normal quality account for less than half of the
total, which is 527 (R2). Under our suggestion, the experts
selected the dimension reduction algorithm t-SNE and the
diagnostic algorithm T-PLS in the control panel and set
the system parameters (R4, R5). Then they viewed the
operating conditions of production through the condition
overview (Fig. 6B). After examination, experts discovered
that the types of plates produced would change constantly,
and consider that the reason is consistent with their ex-
pertise (R2). Afterwards, they explored the embedding
view (Fig. 6C) for identifying the abnormal batches in
the outlier area. Combining interaction with the condition
overview, experts found that the data distribution of ab-
normal plates is very similar (R3). They wanted to further
explored how each stage affects quality of these plates
by the diagnosis view (Fig. 6D), then domain experts
discovered that the cooling stage leads to the wave shape
on edge of plates (R1, R3). Therefore they excluded the
other unrelated stages on control panel. After observing
the key stage view (Fig. 6E), the excessive flux of cooling
water leaded to the lower temperature of plates(R3). By
querying the historical maintenance records, maintainers
found that the 15th flow sensor failed to detect at 3 pm on
September 5. The domain experts consider that the anal-
ysis of iHPPVis was not only consistent with the results
of on-site maintenance, but also practical and efficient.

Through the aforementioned case study, we demonstrate
the effectiveness and usability of iHPPVis, which enables
situation-aware exploration and analysis of heavy plates
production. Overall, our cooperative experts are satisfied
with the strong analytical capability of our system. Espe-
cially the visualization is helpful to on-site operators (R5).
A whole picture of the heavy plates production is presented
in conjunction with the condition overview and the embed-
ding view (R1). Smooth interactions with prompt visual
feedback allow users to explore from overall-production-
level situation to detailed diagnosis analysis (R2). The
diagnosis view accurately locates the crucial stage that
leads to the abnormality of product quality. The root
cause is further displayed in the key stage view (R1, R3).
When compared with standard data analysis software in
the process industry, iHPPVis has already processed raw
industrial big data and provided a comprehensive analysis
of the whole heavy plates production process and specific
product quality with well-coordinated views. To the best
of our knowledge, iHPPVis is the first visualization sys-
tem analyzing the hot rolling production of heavy plates,
which closely follows domain requirements. The experts
with basic knowledge can effectively analyze complicated
industrial data in heavy plate production.

However, our research is still in progress. We will some
improvements for the foregoing shortcomings. Firstly, the
visual representation of the diagnosis view is not explicit
enough. It is necessary to integrate multiple analysis of
quality-related fault diagnosis in one view. Secondly, the
extensive experience accumulated from on-site operators
also needs to be further analyzed. Mining knowledge from
their operation can effectively improve the quality of
heavy plates. Finally, as the more industrial sensors are
installed in the heavy plates production, our system will be
confronted with the issue of computation efficiency when
more real-time massive data need to be analyzed.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12229



The rough rolling process
was interrupted for ten minutes.

B
Clusters and outliers of
process data were identified.

C

The period of abnormal product quality was selected.A

The excessive flux of cooling water
leads to abnormal product qualityE The cooling stage was selected for

further exploration and analysis.

D

Fig. 6. Results of domain experts experiment.

6. CONCLUSION

In this paper, we develop a highly interactive visualization
system called iHPPVis, which assists on-site operators
in analyzing industrial big data: a condition overview
presenting the time distribution of the products under
different operating conditions; a embedding view visu-
alizing the process data for corresponding conditions to
identify clusters and outliers; a diagnosis view identifying
the crucial stage that leads to the abnormality of product
quality; a key stage view exhibiting the data distribution
of heterogeneous process variables in the crucial stage.
By integrating multiple algorithms with interactive vi-
sual analysis, iHPPVis can facilitate the improvement of
product quality in production. A case study demonstrates
its effectiveness and exhibits a pilot application of visual
analytics for industrial data of heavy plates production.
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