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Abstract: The potential safety, productivity, and energy benefits of automated vehicles have
driven a surge of research interest in their algorithms. Even within single-lane driving, control
engineers now have a profusion of approaches available to them. Algorithm classes include
classical controllers, receding horizon controllers, and constrained eco-driving formulae based on
Pontryagin’s Minimum Principle. Differing connectivity architectures and collaboration levels
further differentiate algorithms from one another. This study evaluated six controllers in two
drive cycle-based scenarios using an electric powertrain model for energy analysis. Individual-
vehicle and string performance were examined, including string stability and length. Algorithms
with greater access to information generally performed best. Although collaboration affected
energy use only slightly, it made a greater impact on string length.

Keywords: Multi-vehicle systems, trajectory and path planning, nonlinear and optimal
automotive control.

1. INTRODUCTION

Even at lower autonomy levels, longitudinal vehicle con-
trollers can reduce driving effort. These systems could also
help dissipate traffic jams although, as Gunter et al. (2019)
showed, this does not always materialize in production.
The designs vary in their structure, control objective,
and hardware technology. While several literature reviews
have compared available algorithms over the years (Vahidi
and Eskandarian (2003), Xiao and Gao (2010), Sciarretta
and Vahidi (2019)), the individual data sources typically
evaluate designs in different scenarios. Because algorithm
performance depends on the scenario, this makes a scien-
tific comparison difficult or impossible to extract.

Automated car-following has become somewhat common
commercially. It tracks speed or headway relative to the
front vehicle. Some explicit human driver models accom-
plish this as shown in Milanés and Shladover (2014). Clas-
sical adaptive cruise control (ACC) has proven suitable
(Ntousakis et al. (2015)), but researchers including Dollar
and Vahidi (2018b) and Kim et al. (2019) have proposed
optimal control for improved performance. The associated
preview’s shorter-term validity makes receding horizon
control (RHC) a natural choice. RHC also integrates ele-
gantly with connectivity or data-driven prediction models.
Alternatively, He et al. (2019) proposed explicit feedback
control using multiple connected vehicles’ speeds.

� This material is based upon research supported by the
Chateaubriand Fellowship of the Office for Science & Technology of
the Embassy of France in the United States in addition to research
supported by the U.S. Department of Energy Vehicle Technologies
Office (Project No. DE-EE0008232).

Another approach referred to as eco-driving seeks to op-
timize a vehicle’s speed trajectory between two boundary
points. This is typically cast as an open-loop or shrinking-
horizon (Paredes et al. (2019)) problem and solved using
dynamic programming (DP) or Pontryagin’s Minimum
Principle (PMP). Such solutions have typically not in-
cluded traffic as exemplified in Kim et al. (2010) and Han
et al. (2019), focusing instead on powertrain awareness.
However, position-constrained results like the one found
in Han et al. (2018) could potentially fill the role of ACC.

One contribution of this study is a scorecard based on
common scenarios and featuring several different algo-
rithms, some of which have fundamentally different de-
signs. String stability is examined along with overall per-
formance considering both electric vehicle (EV) energy
efficiency and string compactness. While the decentralized
hierarchical controller of Section 6.2 is a special case of
the multi-lane algorithm of Dollar and Vahidi (2020) and
its centralized form is similarly related to Dollar et al.
(2020), the cooperative variant in Section 6.4 is new. Fur-
thermore, this is the first simulation assessment of Section
5’s position-constrained shrinking horizon algorithm in a
string.

Section 3 begins the algorithm discussion with classical
ACC. Then, Section 4 reviews EV eco-driving before
Sections 5 and 6 apply the results to shrinking horizon and
hierarchical controllers. Section 7 reviews the simulation
scenarios and methods and Section 8 presents the results.
Finally, Section 9 reflects on the algorithms’ usefulness
and identifies opportunities for further development.
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2. PROBLEM STATEMENT

2.1 Point-to-Point Car Following

This paper deals with the problem of propelling a vehicle
from one fixed point to another while following another
preceding vehicle (PV), which may be part of a sequence of
vehicles called a string. The ego vehicle senses the position
and speed of the PV and, in connected designs, may
also access the PV’s current acceleration or even future
intentions. The eco-driving or ACC controller commands
acceleration, leaving powertrain and brake control to a
lower-level module.

2.2 Plant Model

The simulated system dynamics follow the approach of
Dollar and Vahidi (2018b). Equation (1) shows the linear
model with position s, velocity v, and acceleration a
composing the state vector x. The acceleration lags its
command u with time constant τa = 0.275 s.

d

dt

[
s
v
a

]
=

⎡
⎣0 1 0
0 0 1
0 0 − 1

τa

⎤
⎦

︸ ︷︷ ︸
A

[
s
v
a

]
+

⎡
⎣ 0
0
1
τa

⎤
⎦

︸ ︷︷ ︸
B

u (1)

Unlike Dollar and Vahidi (2018b) where separate time
constants represent the engine and brake lags, this electric
vehicle (EV)-oriented paper uses a single global time
constant. The longer engine time constant previously
represented phenomena like turbocharger lag that can
have rise time on the order of seconds (Bemporad et al.
(2018)). EVs lack such fluid-dynamic mechanisms.

The model (1) is relatively simple. In the authors’ experi-
mental experience however, algorithm concepts developed
using (1) can still improve efficiency on a real vehicle given
a well-tuned acceleration controller.

3. CLASSICAL ADAPTIVE CRUISE CONTROL

Classical ACC uses current positions and velocities of
the ego and surrounding vehicles in explicit formulae
to produce a control input. This includes the controller
described and evaluated by Ntousakis et al. (2015), which
is reviewed here. Parameters include the desired speed vd
and time headway T . A proportional speed controller tran-
sitions to a proportional-derivative gap controller when
appropriate. Even in gap control mode, the ACC ac-
celeration command uc does not exceed the one from
speed control. In (2), d denotes the current gap, dd the
desired gap, ve and de the speed and gap errors, and asc
the acceleration from speed control. As in all algorithms,
the acceleration command may not exceed the vehicle’s
maximum acceleration u (v). The following control law is
recomputed at each timestep k, although the argument is
dropped.

ve = v − vd (2a)
asc = max {min {−0.4ve, 2} , −2} (2b)

de = d− dd, dd = Tv (2c)

uc =

{
asc speed control

max
{
min
{
ḋ+ 0.25de, asc

}
, −2

}
gap control

(2d)

u = min {uc, u (v)} (2e)

Mode transitions between speed and gap control depend
on current gap with hysteresis. If gap exceeds 120m, the
system switches from gap to speed control; if gap falls
below 100m, the opposite transition takes place.

All parameters in (2) come from Shladover et al. (2012),
which states that the speed gain 0.4 yields a “typical” and
“gentle” response. Time headway T has a major impact
on ACC performance; specifically, it controls the trade-
off between string stability and compactness. Therefore,
Section 8 includes results for two different values of T .
Ntousakis et al. (2015) documents the traffic flow effects
of T in Aimsun simulations.

4. ECO-DRIVING OF ELECTRIC VEHICLES

This section reviews minimum-energy eco-driving of EVs,
leading to the parabolic speed profile employed in the
optimal control approaches of Sections 5 and 6. The
provided solutions follow Sciarretta and Vahidi (2019).

4.1 Basic Optimal Control Problem and Solution

To minimize cumulative energy consumption, the objec-
tive of optimal control problem (OCP) (3) integrates a
battery output power model with constant coefficients p0
and p1 over future time τ until the final time τf . The
result approximates the total energy discharged from the
battery. Both power and regenerative modes use the same
integrand in J ; a negative value for the first term cor-
responds to regenerative braking. The second term with
coefficient p1 accounts for resistance losses that occur in
both power and regenerative modes. Thus (3) accounts for
the major EV energy flows, albeit with less detail than
the energy evaluation model of Section 7.2. Constraints
fix initial and final conditions 0 and sf on position and vi
and vf on velocity.

min J =

∫ τf

0

[
p0u (τ) v (τ) + p1u

2 (τ)
]
dτ

s.t. s (0) = 0

v (0) = vi
s (τf ) = sf
v (τf ) = vf

(3)

In the absence of further active constraints and assuming
constant resistive force, (3) results in speed as the follow-
ing parabolic function of time.

v (τ) =vi +

(
−4vi
τf

− 2vf
τf

+
6sf
τ2f

)
τ

+

(
3vi
τ2f

− 6sf
τ3f

+
3vf
τ2f

)
τ2, τ ∈ [0, τf )

(4)

4.2 Position Constraints

Sciarretta and Vahidi (2019) also provide the implicit solu-
tion for (3) after adding a position constraint that assumes
a known constant PV acceleration ap from initial PV
relative position sp,0 and speed vp,0. The PV acceleration
can either be obtained from connectivity where the PV
need not be automated, or estimated with lag. This study
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does not consider such lag and is more representative of
the connected case.

s (τ) ≤ sp,0 + vp,0τ +
1

2
apτ

2, τ ∈ [0, τf ] (5)

The following equations describe the solution, where the
ego begins at velocity vi and ends at velocity vf = 0.

v (τ) =vi +

(
ap +

4 (vp,0 − vi)

τ1
+

6sp,0
τ21

)
τ

−
(
6sp,0
τ31

+
3 (vp,0 − vi)

τ21

)
τ2, τ ∈ [0, τ1)

(6)

Equation (6) contains the unknown contact time τ1 when
the ego vehicle reaches the position constraint. This time
solves the following cubic equation.

(vi −vf + apτf ) τ
3
1

+

(
4vp,0τf + vf τf − 2viτf +

apτ
2
f

2
− 3sf

)
τ21

+
(
6sp,0τf + viτ

2
f − vp,0τ

2
f

)
τ1 − 3sp,0τ

2
f = 0

(7)

4.3 Speed Constraints

The substitution of a constraint to maximum speed v
instead of position is also quite tractable and yields the
following explicit solution as reported by Sciarretta and
Vahidi (2019). The times τ1 and τ2 in (8) now refer to the
boundaries of the interval where v = v.

v (τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi +
2(v−vi)

τ1
τ − v−vi

τ2

1

τ2 τ ∈ [0, τ1)

v τ ∈ [τ1, τ2]

vf +
2 (v − vf )

τf − τ2
(τf − τ)

− v − vf
τf − τ2

(τf − τ)
2

τ ∈ [τ2, τf )

(8a)

τ2 = τf − τ1

√
v − vf
v − vi

(8b)

τ1 =
3 (vτf − sf )

√
v − vi

(v − vf )
3

2 + (v − vi)
3

2

(8c)

4.4 Free Final Time

So far, this section has considered the final time as fixed.
Now, the final time is varied to minimize the total energy
Eb consumed in the basic parabolic speed trajectory from
Section 4.1. Sciarretta and Vahidi (2019) provide the
following formula for Eb, where h denotes the resistive
acceleration, mv the vehicle mass, and b a combined
modeling constant that cancels from the solution.

Eb =mvhsf +mv

v2f − v2i
2

+ bh2τf + 2bh (vf − vi)

+ 4b

(
3s2f
τ3f

− 3sf (vi + vf )

τ2f
+

v2i + vivf + v2f
τf

) (9)

Applying vf = 0, scaling by the positive constant b, and
dropping terms not depending on τf yields the following

simplified energy Ẽb.

Ẽb = h2τf + 4

(
3s2f
τ3f

− 3sfvi
τ2f

+
v2i
τf

)
(10)

The stationary points of (10), which solve (12), are candi-
dates for the optimal τf along with any bounds. Equation
(10) gives the simplified energies for each candidate and
the minimum follows by direct enumeration.

∂Ẽb

∂τf
= h2 − 4v2i τ

−2
f + 24sfviτ

−3
f − 36s2fτ

−4
f = 0 (11)

h2τ4f − 4v2i τ
2
f + 24sfviτf − 36s2f = 0 (12)

5. SHRINKING HORIZON ECO-DRIVING

With the addition of a few features, Sections 4.1 and 4.2
become the basis of a longitudinal controller referred to
here as Position-Constrained Shrinking Horizon Control
(PCSHC). The shrinking horizon scheme is described
next, followed by the extraction of the control input from
Section 4’s results. Then, Sections 5.3 and 5.4 address
feasibility and close proximity to the PV, respectively.

5.1 The Shrinking Horizon Concept

This controller operates in closed-loop. After solving the
appropriate OCP from Section 4 at step k, the current
input is applied and the process repeated at step k + 1
with a one-step shorter horizon. In other words, shrinking
horizon control repeatedly applies Section 4 in a reference
frame centered at the current time and ego position. The
following equations set the OCP’s speed inputs.

vi = v (k) , vf = 0 (13)

Equation (14) shifts the reference frame to match Section
4. By default, Section 4’s sf = sfd and τf = τfd, although
the module described in Section 5.3 may alter them. Let
t denote global time, while tfd and sfd denote the goal
time and position in the global frame.

sfd = sfd − s (k) , τfd = tfd − t (k) (14)

5.2 Extracting the Optimal Control Input

Assume that the position-constrained OCP described by
(3) and (5) is feasible and the initial gap exceeds its spec-
ified minimum. First, coefficients of the basic parabolic
trajectory of Section 4.1 are determined. If the resulting
position trajectory does not intersect that of the PV, (4) is
differentiated with respect to time and evaluated at τ = 0
to obtain the optimal control input uo. The argument k
is dropped here as in Section 3.

uo =
−4vi
τf

− 2vf
τf

+
6sf
τ2f

(15)

If contact would occur, uo is similarly obtained from (6).

uo = ap +
4 (vp,0 − vi)

τ1
+

6sp,0
τ21

(16)

5.3 Feasibility

The position constraint can render OCP (3) infeasible.
In such cases, an adjustment to the desired boundary
conditions sfd and τfd results in a feasible problem for
actual boundary conditions sf and τf . The adjustment
considers the following two infeasibility cases.
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Preceding Vehicle Stops at an Earlier Position In this
case, the constant acceleration ap leads to the PV stopping
at a position less than sfd and blocking the ego from
reaching sfd. sf is then adjusted to the stopped PV
position and the minimum-energy problem is solved with
τf free. This attempts to avoid waste of energy before the
PV changes its acceleration.

The procedure of Section 4.4 with bounds

−vp,0
ap

≤ τf ≤ min

{
τfd,

3sf
vi

}
(17)

yields the new τf . The lower bound
−vp,0
ap

prohibits arrival

at sf before the PV and, as Sciarretta and Vahidi (2019)

show, the upper bound
3sf
vi

prevents v < 0 in the solution.

Preceding Vehicle Reaches the Final Position Too Late
Even when the preceding vehicle reaches the final position,
it may not do so soon enough for the ego vehicle to meet
its target time tfd. In such cases, the ego vehicle adjusts
τf to the time until the position constraint reaches sfd.
This time solves the following quadratic equation with
τf > τfd.

0 =
1

2
apτ

2
f + vp,0τf + sp,0 − sfd (18)

5.4 Control Under Constraint Violation

The solution of (6) is not defined when a disturbance like
prediction or modeling error results in a small violation of
the gap constraint. In this case, the event at τ1 has already
occurred and uo nominally results from the unconstrained
parabolic speed profile i.e. (15). However, the control
input should always reduce the constraint violation in
this case for safety. Therefore, a modified ACC limits the
acceleration command under a gap constraint violation εd.
The gain on εd is borrowed from the gap gain in (2d).

uc = min
{
ap + ḋ− 0.25εd, ap

}
(19a)

u = min {uc, uo, u (v)} (19b)

6. HIERARCHICAL CONTROLLERS

In reality, the preceding vehicle generally does not pro-
ceed with constant acceleration ap. Some algorithms like
Dollar and Vahidi (2018b) seek improved control by an-
ticipating more complex PV trajectories. In a connected
environment, this information can come from the PV
albeit with limited time horizon. This characteristic of
the problem makes RHC attractive. Relative to PMP-
based shrinking-horizon control, however, RHC typically
loses the capability to plan the speed profile for long-
term energy minimization considering the trip’s duration
and final position. Dollar and Vahidi (2020) addressed
this problem in a multi-lane environment by providing a
shrinking-horizon reference for RHC. This section applies
a similar hierarchical approach on a single lane to assess
its usefulness in car-following situations.

Various strategies for reaching a multi-agent solution
are described and evaluated in the following subsections.
First, the vehicles could solve their individual problems
sequentially based on their PVs’ optimal position tra-
jectories. Alternatively, one lead vehicle could centrally

optimize a string of connected automated vehicles (CAVs)
and send commands to the others. A third approach
could retain each vehicle’s autonomy while considering
neighboring vehicles’ objectives in the optimization. This
improves scalability and possibly security compared to
centralized control. All of these formulate the short-term
OCP as a quadratic program and use a 10 s receding
horizon 1 .

6.1 Reference Trajectory

Each hierarchically-controlled vehicle begins by comput-
ing individualized state and control references xr =

[sr vr ar]
T
and ur. With general PV position constraints

delegated to the downstream RHC, the higher-level plan-
ner follows the speed-constrained solution of Section 4.3.
First, the velocity reference vr (i) takes on the discretized
result of (8a). Then, differentiation and integration of (8a)
results in acceleration and position references ar (i) and
sr (i), respectively. Finally, the omission of the first-order
lag τa from OCP (3) to reduce model order necessitates
an additional step to obtain ur (i). The first-order lag is
therefore approximated as a one-step delay i.e. ur (i) =
ar (i+ 1) where the index i denotes the discrete step in
the N -step prediction horizon. Different sampling times
would require different numbers of delay steps to obtain
matching performance.

6.2 Decentralized

The first hierarchical controller, termed Decentralized
Hierarchical Control (DHC), considers the PV’s trajectory
as fixed and optimizes only the ego vehicle’s control for
its own objective in OCP (20). A quadratic cost penalizes
state and control reference tracking errors xe = x−xr and
ue = u− ur.

min J =xT
e (N)Pxe (N) +

N−1∑
i=0

[
xT
e (i)Qxe (i)

+uT
e (i)Rue (i)

]
s.t. u ≤ u (i) ≤ u

u (i)−mcv (i) ≤ bc, i ∈ {0, 1, · · · N − 1}
v (i) ≥ 0

v (i) ≤ v

a (i) ≤ a

a (i)−mcv (i) ≤ bc
s (i) ≤ sp (i)− d, i ∈ {1, · · · N}

(20)

Constraints prevent excessive or negative velocity, gaps
less than d relative to the PV, and infeasible acceleration
commands. The vehicle’s maximal acceleration from the
model described in Section 7.2 is simplified as a constant u
that intersects with a line in (v, u) space with u-intercept
bc and negative slope mc. Throughout this section, v =
30m/s to allow the highest cycle speeds in Fig. 1. The
linear model (1) links the inputs to the states.

1 While Dollar and Vahidi (2018b) showed efficiency improvement
with horizons longer than 10 s, Dollar and Vahidi (2018a) selected
a 10 s horizon to limit computation time after lane decisions are
introduced. Therefore, such a horizon is used here.
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6.3 Centralized

In Centralized Hierarchical Control (CHC), the lead CAV
receives individualized PMP-based plans from each vehicle
in the string, then optimizes all m vehicles’ control inputs
to minimize collective deviation from these plans. The
centralized OCP therefore uses combined state and input
vectors X and U , corresponding references Xr and Ur, and
a combined linear model. Recall the matrices A and B
from the single-vehicle linear model (1) and let Im denote
the m×m identity matrix.

U = [u1 u2 · · · um]
T
, X =

[
xT
1 xT

2 · · · xT
m

]T
(21)

Ur = [ur1 ur2 · · · urm]
T
, Xr =

[
xT
r1 xT

r2 · · · xT
rm

]T
(22)

d

dt
X = (Im ⊗A)X + (Im ⊗B)U (23)

The objective is the unweighted sum of the individual
objectives from (20), where Xe = X − Xr and Ue = U −
Ur. Let Ξ denote the feasible set of individual states x
and control inputs u from (20), excluding the position
constraint. In the centralized problem, only the lead
CAV’s position s1 is constrained relative to the PV. The
first constraint in (24a) also prevents CAVs from colliding
with one another. In this and the following section, the
subscript 0 denotes the PV i.e. s0 = sp.

min J =XT
e (N)PXe (N) +

N−1∑
i=0

[XT
e (i)QXe (i)

+UT
e (i)RUe (i)

]
s.t. sj (i) ≤ sj−1 (i)− d

{xj , uj} ∈ Ξ

i ∈ {1, · · · N} , j ∈ {1, · · · m}

(24a)

P = Im ⊗ P, Q = Im ⊗Q

R = Im ⊗R
(24b)

The index j specifies a particular CAV, with j increasing
from the front to the rear of the string. Note that the first
position constraint involving s0 only involves one decid-
able state because s0 is considered fixed. The remaining
position constraints each involve two decidable states.

After solving (24a), the lead CAV sends the optimal
control inputs to the others in a master-slave scheme. Each
slave vehicle applies the commanded control input ideally.

6.4 Cooperative

Equation (21) shows that the dimension of OCP (24a)
increases with the number of agents in the string, which
computationally limits the group’s scale. A third hier-
archical approach called Cooperative Hierarchical Con-
trol (CoHC) seeks most of centralization’s benefit with
improved scalability by only considering the ego and its
immediate neighbors. In another distinction from master-
slave CHC, each agent also determines its own control
input. Impacts of the ego’s control moves on its neighbors
are modeled by adding the neighbors’ moves as degrees of
freedom but applying only the ego’s result.

Agent q’s group control and state vectors, references, and
model are defined similarly to (21), (22), and (23) with
only a subset I of vehicles included.
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Fig. 1. The lead vehicle’s drive cycles. The WLTC Low (bottom)
is subdivided into the five segments demarcated with arrows.

Ũ = {uw} , w ∈ [max {1, q − 1} , min {q + 1, m}] ∩ Z

(25)

The cooperative objective is then identical to (24a) except

that Ũ and X̃ replace U and X . The vehicle indexing in
the constraints is modified as follows. The future position
of vehicle number j = max {0, q − 2} is treated as fixed.

I = {j|j ∈ {q − 1, q, q + 1} ∩ {1, · · · m}} (26a)

{xj , uj} ∈ Ξ

sj (i) ≤ sj−1 (i)− d

i ∈ {1, · · · N} , j ∈ I
(26b)

Taking large m as an example, if q = 1 then CAVs 1 and 2
belong to I, but if q = 2 then CAVs 1, 2, and 3 belong to
I. Although CAV 2 belongs to both sets, it applies only
the u from its own optimization, that is, the q = 2 case.

7. SIMULATION METHODS

This section describes the scenarios and analysis by which
the previously discussed algorithms are assessed.

7.1 Drive Cycle Disturbances

The common evaluation scenarios for all algorithms in-
volve a string of 8 intelligent vehicles following an open-
loop PV, which drives a known distance in a known
time. Where applicable, these quantities determine sfd
and tfd. The Worldwide Light-duty Test Cycle (WLTC)
High and Low (World Forum for Harmonization of Vehicle
Regulations (2015)) are evaluated, exposing the strings to
different speeds and numbers of PV stops. Figure 1 shows
the cycles’ speeds over time.

In reality, intelligent driving cannot avoid all speed fluc-
tuations. For example, stop signs require all vehicles to
stop regardless of traffic. However, CAVs may attenuate
other waves, such as temporary disturbances from cut-ins.
To expose the controllers to both situations, full stops in
the cycles are enforced for the string. This decouples the
WLTC Low into five segments as shown in Figure 1.

7.2 Energy Assessment

A Nissan Leaf is modeled using publicly available data
in order to compute the energy consumption for each
simulation as previously described by Dollar et al. (2020).
The process involves computing the motor speed ωm and
torque Tm from vehicle states, looking up the requisite
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Table 1. Controller List

Controller Acronym Section

Adaptive Cruise, 0.8 s Headway ACC, 0.8 s 3
Adaptive Cruise, 1.5 s Headway ACC, 1.5 s 3

Position-Constrained Shrinking Horizon PCSHC 5
Decentralized Hierarchical DHC 6.2
Centralized Hierarchical CHC 6.3
Cooperative Hierarchical CoHC 6.4

motor power Pm, combining with auxiliary loads, and
computing the total current to assess resistance losses.
Newton’s second law provides the traction force Ft con-
sidering resistance force coefficients av and cv.

Ft = mva+ av + cvv
2 (27)

A brake split model then apportions part of the total
traction force Ft to the front-wheel-drive motor subject
to the vehicle dynamics constraints described in Chu
et al. (2011). The minimum traction force F t < 0 weakly
depends on velocity.

Ff =

{
Ft

Ft

F
t
(v) ≤ 0.04

0.73Ft + 0.0108F t (v)
Ft

F
t
(v) > 0.04

(28)

The tire radius rt and single drivetrain gear ratio rg
help determine the motor operating point. A constant
drivetrain efficiency of ηg = 0.95 is assumed.

Tm = Ff

rt
rg

η
−sgnFf
g , ωm =

rg
rt
v (29)

A lookup table Pm = f (ωm, Tm) maps the motor’s speed
and torque to its total power consumption, including
motor and inverter losses, using data from Burress (2013).
Losses in the battery with resistance Rb and open-circuit
voltage V0 are then computed via the battery current
ib. The analysis models the power electrical system as a
combined motor and auxiliary power sink of value Pl in
parallel with the battery. Only one of the two possible
solutions to (30a) satisfies the battery current limit.

ib =
V0 (SOC)±

√
V 2
0 (SOC) − 4RbPl

2Rb

(30a)

PT = Pl + i2bRb = V0 (SOC) ib (30b)

All vehicles begin with a state-of-charge (SOC) of 60%,
from which point the total power PT is integrated to find
later SOC and cumulative energy consumption.

8. RESULTS

Because of its necessity for interpreting other results, this
section begins with string stability. Next, the drive-cycle-
disturbance results at both the single-vehicle and string
levels are presented. Finally, the qualitative performance
of the different algorithms is analyzed in detail to explain
the differences in overall results. Table 1 lists the acronyms
used for each algorithm.

8.1 String Stability

String stability has been defined in terms of range error
(Liang and Peng (1999)) and disturbance attenuation
(Gunter et al. (2019)) trends moving upstream in a
string of vehicles. Since not all algorithms use a target
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Fig. 2. Mean absolute acceleration from the front (lower index) to
rear (higher index) of the string.

Table 2. WLTC High Results

Algorithm First Follower String
Energy MJ % Diff. Energy MJ % Diff.

ACC, 0.8 s 3.728 10.7 30.120 11.8
PCSHC 3.504 4.1 29.598 9.9
ACC, 1.5 s 3.680 9.3 28.665 6.4
DHC 3.453 2.6 27.708 2.9
CoHC 3.463 2.9 27.672 2.7
CHC 3.465 2.9 27.649 2.7
Parabolic 3.367 - 26.934 -

Table 3. WLTC Low Results

Algorithm First Follower String
Energy MJ % Diff. Energy MJ % Diff.

ACC, 0.8 s 1.155 29.5 9.416 32.0
PCSHC 0.949 6.4 8.301 16.4
ACC, 1.5 s 1.115 25.0 8.217 15.2
DHC 0.919 3.0 7.313 2.5
CoHC 0.917 2.8 7.298 2.3
CHC 0.907 1.7 7.173 0.6
Parabolic 0.892 - 7.133 -

position and disturbances cause excess acceleration, we
examine mean acceleration to determine string stability.
If the mean acceleration of a vehicle in response to a
disturbance decreases as string index increases, we say
that the controller is string stable. If the mean acceleration
increases, we say that the controller is string unstable.

The classical ACC of Section 3 resulted in either string
stability or instability depending on the choice of time
headway as shown in Figure 2. The velocity-planned
algorithms differ from the headway-based ACC in their
immediate reduction of acceleration in the string’s first
follower. However, PCSHC resulted in string instability
and by the end of the string, its acceleration exceeded
that of the longer-headway ACC.

8.2 Cumulative Performance

Tables 2 and 3 list the first follower and string results for
each algorithm, in order of improving string performance.
The parabolic trajectory without a PV (Section 4.1) was
also simulated as a high-performing benchmark. Although
it would result in collisions, its performance marks the
point beyond which further improvement is unlikely. Per-
cent changes relative to the parabola reflect the impact of
the position constraint; lower is better.
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Fig. 3. Energy use and string length in WLTC High and Low cycles.

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s) ACC 0.8s

0 1 2 3 4 5 6 7 8

String Index

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s) ACC 1.5s

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s) PCSHC

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s) DHC

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s)

CoHC

0 100 200 300 400

Time (s)

0

20

40

V
el
o
ci
ty

(m
/
s)

CHC

Fig. 4. Velocity trajectories in the WLTC High Cycle.

Considering the string, the hierarchical controllers per-
formed best followed by string-stable ACC, PCSHC, and
string-unstable ACC. However, PCSHC performed rela-
tively well for the first vehicle. This underscores the impor-
tance of string evaluation to obtain a full view of control
performance in traffic. In these scenarios, the hierarchi-
cal controllers’ energy consumption approached that of
the unconstrained parabolic trajectory with only a small
improvement from collaboration. However, the more col-
laborative variants accomplished this energy performance
in a more spacially-compact way as shown in Figure 3.
This feature could translate into energy improvements in
continuous traffic streams where throughput is critical.

In general, calibration of a given control system for a
longer time headway improves energy efficiency and safety
at the expense of string length. The two ACC calibrations
shown in Figure 3 follow this expectation. The hierarchical
algorithms move to the lower left of ACC using a combi-
nation of preview information and collaboration.

8.3 Qualitative Observations

Figures 4 and 5 show the velocity trajectories for the dif-
ferent algorithms. The ACC and PMP-based approaches
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Fig. 5. Velocity trajectories in the WLTC Low Cycle.

clearly operate based on different principles. ACC targets
a headway and thus forms a relatively compact string
behind the PV as its cycle-like velocity traces show. In
contrast, the PMP solutions target the final position and
time, disregarding the PV unless it becomes an active
constraint. This typically results in energy savings and
compact CAV strings, but leaves large gaps between the
PV and first CAV. Such approaches could be viable in
single lane situations without busy side roads. However, in
heavier multi-lane traffic they could invite cut-ins between
the leader and first CAV. Collaboration helped the CAVs
move as one, further compacting the CAV portion of the
string. This phenomenon appears, for example, in the first
150 s of Figure 4. Notably, CoHC and CHC achieved lower
average string length compared to the string-stable ACC
without tracking a headway.

The PCSHC velocity trajectories reveal possible reasons
for its lower string performance compared to other algo-
rithms. Discontinuities appear in its acceleration mainly
because of feasibility adjustments. Since a currently large
negative ap is assumed to persist in future, the controller
tends to overreact to PV acceleration that is likely to
fade or reverse after several seconds. Therefore, refinement
of the future PV position function sp (τ) and smoother
feasibility adjustment may improve performance.

9. CONCLUSION

Five algorithms from three different families were evalu-
ated for energy efficiency in the presence of a PV-related
position constraint. Results generally trended as expected,
with the connectivity-enabled optimal algorithms result-
ing in lower energy consumption compared to unconnected
ones. The ACC controller was either string stable or un-
stable depending on time headway. Position-constrained
shrinking-horizon control performed well for a single ve-
hicle considering its lack of preview information, but was
string unstable and displayed greater string energy con-
sumption compared to stably-tuned ACC. Smoother feasi-
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bility adjustment and a stochastic PV position trajectory
are promising areas for future PCSHC development.

Unexpectedly, this study found less than 2% improvement
in energy consumption from centralization. The main ad-
vantage of collaboration lay in string compactness, which
generally indicates improved throughput in continuous
traffic. These results suggest that decentralized control
is sufficient for single-lane car following in light traffic.
Such scenes might occur on rural single-lane roadways.
Collaborative or centralized control could offer advantages
in higher-demand situations like urban traffic jams.
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