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Abstract: Increasing the number of grid-connected inverters in power systems imposes several chal-
lenges. One of the main challenges is the complexity and uncertainty of the dynamical model of the
inverters due to the large numbers of grid-connected inverters and disconnection of inverters. To address
this challenge, we present a scalable direct-quadrature current control strategy for parallel voltage source
inverters in a rotating reference frame. The control structure is based on a decentralized multivariable
proportional integral (PI) current control mechanism and provides stability and zero steady-state errors.
The proposed control approach has the main advantages of flexibility, allowing disconnection/connection
of inverters on the basis of the required power level. The effectiveness of the proposed vector current
control strategy is evaluated through simulation case studies in MATLAB/Simscape Electrical.
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1. INTRODUCTION

Renewable energy sources are commonly interfaced to the grid
through voltage source inverters (VSIs) with passive output
filters. The duty of the filters is to mitigate the current harmonic
contents injected by the inverters. One of the common control
problems in the grid-connected VSIs is about the design of a
current controller scheme (Sadabadi et al. (Oct. 2017)).

The most widely used current control approach for VSIs is
vector current control that is based on the control of two inde-
pendent d-axis and q-axis current components in a Synchronous
Reference Frame (SFR), while the synchronization is done via
a phase-locked loop (PLL) (Svensson (May 2001)). This type
of control approaches basically involves a transformation from
three-phase steady state into the d-q axis in order to control
active and reactive power separately (Hannan et al. (December
2018)).

The vector current control approaches for VSIs with L-type
filters usually utilize conventional Proportional-Integral (PI)
controllers (e.g. Schauder and Mehta (1993)) or modified PIs
(e.g. Bahrani et al. (July 2011,A)) whose duty is to compensate
for the only dominant pole of each axis by the zero of the PI
controllers.

The problem of the current control of VSIs becomes challeng-
ing when multiple VSIs are connected to the same grid. In this
case, there are interactions among different VSIs. To deal with
this case, a typical strategy is to assume that each inverter is
decoupled from others and the control schemes are designed
based on the single-inverter model and without considering the
interaction terms. This strategy only works for stiff AC grids as
the interactions among different inverters are not significant and
each VSI can be independently controlled. However, in weak
AC power grids with high grid impedances, interactions among

inverters cannot be ignored. Neglecting the interaction terms
results in instability and/or poor performance of the system.
Therefore, the impact of the interactions among inverters and
their influence on the overall stability are important. Moreover,
as the number of VSIs connected to the power grid is increas-
ing, a new VSI tied to the grid impacts the overall AC network
characteristics and the operation of other VSIs (Bayo-Salas
et al. (2016)). Disconnection of VSIs from the AC network
influences the system stability and performance. A change in
the architecture of the AC grid might reduce the overall stability
as well as the desired performance specifications of the system.
Therefore, the current controllers of VSIs must be appropriately
designed such that they guarantee stability under uncertainty in
the grid configuration.

To the best of authors’s knowledge, the literature is mainly
limited to single-inverter systems and only few references are
devoted to parallel grid-tied inverters. A stability analysis of
control interactions in a two-parallel-VSI system has been
carried out in Bayo-Salas et al. (2016). A control approach
for an AC grid-based multi-infeed VSI has been proposed in
Li et al. (2010). A frequency-domain current control approach
for parallel grid-connected inverters has been presented in
Kammer et al. (Jul. 2019). A main drawback of these methods
is that the control design is based on the global model of the
system. Therefore, these control approaches cannot guarantee
the stability of the whole grid if there is a change in the grid
configuration (e.g. due to the disconnection of an inverter).

The main objective of this paper is to investigate and de-
velop a new systematic control strategy for the parallel grid-
connected VSIs. More specifically, we are interested in the
design of decentralized multivariable PI controllers, which are
the most well-known and easy-to-implement regulators, in the
synchronous reference frame (dq frame). The current control
design is based on a scalable approach, where the design of
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Fig. 1. Schematic diagram of N-parallel grid-tied voltage source inverters.

each current controller is independent of the interconnection
of other inverters to the grid. The PI control design problem
is formulated as a linear matrix inequality (LMI) which is
always feasible. Each VSI has its own controller in order to
control its own inverter side current and there is no coupling
among the other current controllers. The proposed approach is
applicable to both single-phase and three-phase systems. The
scalability of the design and asymptotic stability of the paral-
lel grid-connected VSIs are ensured by utilizing a Lyapunov-
based framework with a separable quadratic-type structured
Lyapunov function as well as the LaSalle’s invariance principle.
The proposed control approach has the main advantages of
flexibility, allowing disconnection/connection of VSIs on the
basis of the required power level. The efficiency of the proposed
current control strategy is evaluated via simulation case studies
carried out in MATLAB/Simscape Electrical.

The rest of the paper is organized as follows: A dynamical
model of parallel grid-tied inverters is presented in Section
2. Section 3 proposes a decentralized multivariable PI-based
current control framework. The scalable control design strategy
is presented in Section 4. Simulation case studies are given in
Section 5. Finally, Section 6 concludes the paper.

Throughout the paper, matrices In and 0m×n are the identity ma-
trix of dimensions n×n and the zero matrix of dimension m×n
, respectively. The symbols AT and ? indicate the transpose of
matrix A and symmetric blocks in block matrices, respectively.
For symmetric matrices, P > 0 (P ≥ 0) shows that matrix P is
positive-definite (positive semidefinite), whereas P < 0 (P≤ 0)
indicates that P is a negative-definite (negative semidefinite)
matrix.

2. DYNAMICAL MODEL

This section presents a mathematical model of three-phase
parallel grid-tied voltage source inverters with L filters, as
shown in Fig. 1. In this figure, Zti = Rti + jω0Lti , Zg = rg +
jω0Lg, and Zlinei = rlinei + jω0Llinei respectively are inverter
impedance, grid impedance, and line impedance. The angular
frequency of the system is ω0 = 2π f0 , where f0 is the nominal
frequency. The dynamics of each inverter are mathematically
described as follows:

dii
dt

=−Ri

Li
ii +

1
Li

Vi−
rg +Rline

Li
ig−

Lg +Lline

Li

dig
dt
− 1

Li
Vg (1)

where

Ri = Rti + rlinei , Li = Lti +Llinei (2)

VN+1

ii

PI Control circuit

iiref

ui

PLL
abc/dq Ki (PI) dq/abc VSI i

ii,d

ii,q

Fig. 2. PI current control circuit of VSI i.

for i = 1, . . . ,N, where ii, ig, Vi, and Vg are the inverter current,
the grid current, the terminal voltage of inverter i, and the
grid voltage, respectively. The grid current can be expressed
as ig = ∑

N
j=1 i j.

2.1 Interaction Terms in Parallel Grid-tied Inverters

The interaction terms among all N inverters are described as
follows:

L


di1
dt
di2
dt
...

diN
dt

=−R


i1
i2
...

iN

+


V1−Vg
V2−Vg

...
VN−Vg

 (3)

where

L =


L1 +Lg +Lline Lline +Lg · · · Lline +Lg

Lline +Lg L2 +Lg +Lline · · · Lg +Lline
...

...
. . .

...
Lg +Lline Lg +Lline · · · LN +Lg +Lline



R =


R1 + rg +Rline Rline + rg · · · Rline + rg

Rline + rg R2 + rg +Rline · · · rg +Rline
...

...
. . .

...
rg +Rline rg +Rline · · · RN + rg +Rline


(4)

The interactions between two different inverters depend on the
grid impedance. If the grid is stiff, i.e. Lline+Lg ≈ 0 and Rline+
rg ≈ 0, the dynamics of the inverters are decoupled. As a result,
in the stiff grids, the problem of current control of N-parallel
inverters is equivalent to the current control of N decoupled
inverters. However, in a weak grid, the grid impedance provides
coupling among inverters. Hence, the interaction terms should
be considered in the control design and analysis.

2.2 Mathematical Model of Parallel Grid-tied Inverters in
Synchronous Reference Frame

Under balanced conditions, the grid-connected system com-
posed of N parallel inverters in Fig .1 is described in the syn-
chronous reference frame (dq frame) by the following equa-
tions: [

dii,d
dt

dii,q
dt

]
= Agi

[
ii,d
ii,q

]
+Bui

[
Vi,d
Vi,q

]

+Bg1i

[
ig,d
ig,q

]
+Bg2i

[
dig,d

dt
dig,q

dt

]
+Bwi

[
Vg,d
Vg,q

]
yi(t) =Cgixgi(t); i = 1, . . . ,N

(5)

where yi = [ ii,d ii,q ]
T is the output of the inverter i. The signals

ii,d , ii,q, ig,d , ig,q, Vi,d , Vi,q, Vg,d , and Vg,q are the d and q
components of the inverter-side current, the grid current, the
VSI terminal voltage, and the grid voltage, respectively. The
state space matrices are given as follows:
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Agi =

[
−Ri

Li
ω0

−ω0 −Ri
Li

]
, Bg1i =

[
− rg+Rline

Li

Lg+Lline
Li

ω0

−Lg+Lline
Li

ω0 −
rg+Rline

Li

]

Bg2i =

[
−Lg+Lline

Li
0

0 −Lg+Lline
Li

]
, Bui =

[
1
Li

0
0 1

Li

]

Bwi =−

[
1
Li

0
0 1

Li

]
, Cgi =

[
1 0
0 1

]
.

(6)

3. DECENTRALIZED MULTIVARIABLE PI-BASED
CURRENT CONTROL FRAMEWORK

In this section, a decentralized multivariable PI-based dq cur-
rent control strategy for the three-phase multi-parallel grid-tied
inverters in Fig. 1 is developed. The proposed control approach
aims at the current stabilization of the inverters and ensures that
current signal of each inverter tracks a qd reference current with
zero steady state error.

3.1 Current Control Structure

The control input of the inverter i, i = 1, . . . ,N is structured as
follows: [

Vi,d
Vi,q

]
= KPi

([
ii,d
ii,q

]
−
[

iire f ,d
iire f ,q

])
+KIi

∫ (
−
[

ii,d
ii,q

]
+

[
iire f ,d
iire f ,q

])
dt

(7)

where iire f ,d and iire f ,q respectively are the d and q components
of the reference signal of the inverter i. The parameters KPi ∈
R2×2 and KIi ∈ R2×2 are the proportional and integral gains
of the multivariable PI controllers, respectively. The terms∫
(−ii,d + iire f ,d)dt and

∫
(−ii,q+ iire f ,q)dt are defined as two new

variable Ii,d and Ii,q with the following dynamics:[
dIi,d
dt

dIi,q
dt

]
=−

[
ii,d
ii,q

]
+

[
iire f ,d
iire f ,q

]
(8)

The PI-based control circuit of VSI i is shown in Fig. 2. In this
figure, an enhanced phase-locked loop (PLL) is used to derive
the frequency and phase of the system. The dynamics of the
PLL are neglected as the grid under study is assumed not to be
very weak (Davari and Mohamed (Feb. 2017)).

3.2 Closed-loop Dynamics of Inverter i

For given iire f ,d and iire f ,q, the equilibrium point of (5)-(8) is
given by

īi,d = iire f ,d , īi,q = iire f ,q

īg,d =
N

∑
j=1

i jre f ,d , īg,q =
N

∑
j=1

i jre f ,q

V̄i,d = Riiire f ,d−ω0iire f ,q

+(rg +Rline)īg,d− (Lg +Lline)ω0 īg,q +Vg,d

V̄i,q = Riiire f ,q−ω0iire f ,d

+(rg +Rline)īg,q +(Lg +Lline)ω0 īg,d +Vg,q[
Īi,d
Īi,q

]
= K−1

Ii

[
V̄i,d
V̄i,q

]
(9)

The system dynamics in (5) and (8) can be written as follows:

ẋi = Aixi +Biui +B1i ĩg +B2i
˙̃ig

yi =Cixi
(10)

where
xi =

[
ii,d− īi,d ii,q− īi,q Ii,d− Īi,d Ii,q− Īi,q

]T
ui =

[
Vi,d−V̄i,d Vi,q−V̄i,q

]T
ĩg =

[
ig,d− īg,d ig,q− īg,q

]T
yi =

[
ii,d− īi,d ii,q− īi,q

]T
(11)

and

Ai =

[
Agi 02×2
−Cgi 02×2

]
, Bi =

[
Bui

02×2

]
, B1i =

[
Bg1i
02×2

]
B2i =

[
Bg2i
02×2

]
, Ci = [Cgi 02×2 ]

(12)

The PI-based control law ui is presented as follows:
ui = Kixi (13)

where Ki = [ KPi KIi ]. The main objective is to design the
proportional and integral gains KPi and KIi such that the stability
of the closed-loop dynamics given in (10) is guaranteed.

4. PROPOSED CONTROL DESIGN STRATEGY

In this section, a scalable control design solution for the prob-
lem of PI-based current stabilization of the parallel voltage
source inverters is proposed.

4.1 PI-based Current Stabilization of Parallel VSIs

Consider the following separable quadratic type Lyapunov
function for the system in (10) consisting of N inverters.

V (x) =
N

∑
i=1

Vi(xi)+Vgrid(ĩg) (14)

where x =
[

xT
1 xT

2 . . . xT
N
]T and

Vi(xi) = xT
i Pixi

Vgrid(ĩg) = α(Lg +Lline)ĩTg ĩg
(15)

where
Pi = diag

(
αLiI2, P̃i

)
(16)

and α > 0 and P̃i ∈ R2×2 is a positive-definite matrix. We need
to show that the time derivative of V (x) along the closed-loop
trajectories of the system given in (10) is non-positive. The time
derivative of Vi(xi) and Vgrid(ĩg) are presented as follows:

V̇i(xi) = xT
i Qixi + xT

i PiB1i ĩg + ĩTg BT
1i

Pixi + xT
i PiB2i

˙̃ig + ˙̃iTg BT
2i

Pixi

V̇grid(ĩg) = α(Lg +Lline)(
˙̃iTg ĩg + ĩTg

˙̃ig)
(17)

where
Qi = (Ai +BiKi)

T Pi +Pi(Ai +BiKi) (18)
Due to the structure of the Lyapunov matrix Pi in (16), it can be
shown that

N

∑
i=1

(xT
i PiB2i

˙̃i+ ˙̃iT BT
2i

Pixi)+α(Lg+Lline)(
˙̃iTg ĩg+ ĩTg

˙̃ig) = 0 (19)

As a result, V̇ (x) can be formulated as follows:

V̇ (x) =
N

∑
i=1

xT
i Qixi +2α ĩTg

[
−(rg +Rline) 0

0 −(rg +Rline)

]
ĩg

(20)
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Fig. 3. Block diagram of 2DOF current controller of VSI i.

4.2 Scalable Current Control Design

The time derivative of V (x) in (20) indicates that the asymptotic
stability of the overall system with N inverters can be ensured
by the stabilization of each inverter via a fixed-structure Lya-
punov matrix Pi in (16). The stabilization of VSI i is based on
the design of the PI controller Ki such that

Qi = (Ai +BiKi)
T Pi +Pi(Ai +BiKi)≤ 0 (21)

The negative semi-definiteness of Qi is equivalent to the neg-
ative semi-definiteness of matrix Q̃i = P−1

i QiP−1
i presented as

follows:
Q̃i = YiAT

i +AiYi +BiGi +GT
i BT

i (22)
where Yi = P−1

i and Gi = KiP−1
i are parametrized as follows:

Yi =


α−1L−1

i 0 0 0
0 α−1L−1

i 0 0
0 0 y33i y34i
0 0 y34i y44i

 (23)

Gi =

[
g11i g12i g13i g14i
g21i g22i g23i g24i

]
(24)

By replacing Yi and Qi from (23) and (24) in (22), Q̃i is rewritten
as follows:

Q̃i =


−2Ri
αL2

i
+

2g11i
Li

1
Li
(g12i +g21i)

−1
αLi

+
g13i
Li

g14i
Li

? −2Ri
αL2

i
+

2g22i
Li

g23i
Li

−1
αLi

+
g24i
Li

? ? 0 0
? ? ? 0


(25)

The non-positiveness of Q̃i implies that the third and fourth
columns and rows of Q̃i must be equal to zero. As a result,

g14i = 0, g23i = 0, g13i =
1
α
, g24i =

1
α

(26)

We can show that under the following constraints on g11i , g12i ,
g21i , and g22i , the first 2×2 block of Q̃i is negative-definite. The
negative semi-definiteness of Q̃i implies that Qi ≤ 0.

g11i <
Ri

αLi
, g22i <

Ri

αLi

(g12i +g21i)
2 < 4(

−Ri

αLi
+g11i)(

−Ri

αLi
+g22i)

(27)

Considering the above conditions on gi, Q̃i ≤ 0. As a result, the
following inequality is feasible, meaning that there always ex-
ists a solution Gi constrained as (26)-(27) and Yi > 0 satisfying
the following linear matrix inequality (LMI).

YiAT
i +AiYi +BiGi +GT

i BT
i ≤ 0 (28)

4.3 Asymptotic Stability of Parallel Voltage Source Inverters

In Subsection 4.2, it has been shown that Qi ≤ 0. Therefore,
V̇ (x) ≤ 0 for all x. We use the LaSalle’s invariance principle
(Khalil (2006)) to show that the closed-loop system of N VSIs
with the proposed PI control law is asymptotically stable. To

this end, we need to show that the only solution of V̇ (x) = 0 is
x(t) = 0, ∀t > 0. To see this, note that V̇ (x) = 0 implies that

α ĩTg

[
−(rg +Rline) (Lg +Lline)ωo
−(Lg +Lline)ωo −(rg +Rline)

]
ĩg = 0⇒ ĩg = 0,

x̃T
i Qix̃i = 0,

(29)

for i = 1. . . . ,N. It is required to show that the only state
trajectory of the system that satisfies all the constraints in (29)
is origin. Let’s compute the set χ as follows:

χ =
{

ĩg = 0
}︸ ︷︷ ︸

χ1

∩
{

x̃i : x̃T
i Qix̃i = 0

}︸ ︷︷ ︸
χ2

(30)

The trajectories in the set χ1 are as follows:

ĩg = 0⇒
N

∑
j=1

i j,d = 0 &
N

∑
j=1

i j,q = 0 (31)

Moreover, the set χ2 implies that there is a state trajectory x?i
that maximizes xT

i Qixi, where the maximum value is zero. As a
result, x?i satisfies the following equation:

d(xT
i Qixi)

dxi

∣∣∣∣∣
x?i

= 2Qix?i = 0 (32)

Without loss of generality, x?i is defined as Yiỹ?i . Therefore,
the above constraint implies that Q̃iỹ?i = 0. It can be easily
shown that the vector ỹ?i satisfying Q̃iỹ?i = 0 is specified as
ỹ?i =

[
0 0 ỹ?3,i ỹ?4,i

]T . As a result, x?i =
[

i?i,d i?i,q I?i,d I?i,q
]T is

characterized as follows:
x̃?i = Yiỹ?i

=
[

0 0 y33i ỹ
?
3,i + y34i ỹ

?
4,i y34i ỹ

?
3,i + y44i ỹ

?
4,i
]T (33)

Therefore,
i?i,d = 0⇒ i̇?i,d = 0 (34)
i?i,q = 0⇒ i̇?i,q = 0 (35)

and
I?i,d = y33i ỹ

?
3,i + y34i ỹ

?
4,i

I?i,q = y34i ỹ
?
3,i + y44i ỹ

?
4,i

(36)

Considering the system dynamics as well as the conditions in
(34) and (35), u?i = 0. As a result,

KPi

[
i?i,d
i?i,q

]
+KIi

[
I?i,d
I?i,q

]
= 0

KPi

[
0
0

]
+KIi

[
y33i ỹ

?
3,i + y34i ỹ

?
4,i

y34i ỹ
?
3,i + y44i ỹ

?
4,i

]
= 0

KIi

[
y33i y34i
y34i y44i

][
ỹ?3,i
ỹ?4,i

]
= 0[

g13i g14i
g23i g24i

][
ỹ?3,i
ỹ?4,i

]
= 0⇒

[ 1
α

0
0 1

α

][
ỹ?3,i
ỹ?4,i

]
= 0

(37)

Note that
[

g13i g14i
g23i g24i

]
= KIi

[
y33i y34i
y34i y44i

]
. Based on (37) and

(26), ỹ?3,i = 0 and ỹ?4,i = 0. Hence, I?i,d = 0 and I?i,q = 0. As a re-
sult, the largest invariant set of χ is origin and there are not any
other system trajectories that converge to the origin. Therefore,
the origin of the closed-loop system is asymptotically stable.

4.4 Performance Specifications of Parallel Voltage Source
Inverters

One of the requirements of the multivariable current control
design in the grid-tied parallel VSIs is that the closed-loop
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Fig. 4. Schematic diagram of a grid-connected system with 3 VSIs.

response has small rise time and overshoot. Moreover, high
closed-loop bandwidth is required to reject low frequency har-
monics generated by the grid voltage. The decentralized PI con-
trollers guarantee the stability of the closed-loop parallel VSI
system in Fig. 1. However, in order to improve the performance
of the closed-loop system, a pre-filter Kri is designed to shape
the reference signals. The pre-filter adds a degree of freedom
to the control structure. The structure of the two-degree-of-
freedom (2DOF) controller is shown in Fig. 3. The pre-filter Kri
is designed as a solution of the following optimization problem:

min
Kri(s)

∥∥Ti(s)Kri(s)−Tre f ,i(s)
∥∥

∞ (38)

where Ti(s) is the closed-loop model of VSI i with the PI
controller Ki and Tre f ,i(s) is a reference model designed based
on the desired performance of VSI i.
4.5 Proposed Decentralized Vector Current Controller Design
Algorithm

The decentralized multivariable vector current controller design
for each VSI whose dynamics are given in (10)-(12) is based on
the following steps.

Input: Model of each VSI.

Output: Decentralized PI-based vector current controllers Ki
and pref-filters Kri.

(i) Finding the decision variables Yi and Gi via the LMI given
in (28).

(ii) Design of the stabilizing PI controllers as Ki = GiY−1
i .

(iii) Design of the pre-filter Kri using the optimization problem
in (38).

5. SIMULATION RESULTS

In this section, we consider a grid-connected system composed
of 3 parallel VSIs, as graphically shown in Fig. 4. In order to
mitigate over-voltage problems in this grid, an LVR has been
installed. Activation of the LVR leads to a drastic increase in
the harmonic distortion of the voltage and current signals and a
shutdown of all VSIs. As a result, the current controllers of the
VSIs must be robust against the change in the grid impedance
(Lg ∈ {0,LLV R}). The dynamical model and structure of the
PLL are given in Equation (9) of Karimi et al. (January 2008).

A. Case Study 1: Current Reference Tracking

The first case study assesses the performance and transient
behavior of the proposed current control strategy in current
reference tracking. The d and q components of the current
signal of VSI1 are initially set at 5A and 20A, respectively. The
current reference signals of the d- and q-axis components of the

Table 1. Parameters of parallel inverters in Fig. 4.

L-filter parameters

Rt(mΩ) Lt(µH)

VSI 1 32 450
VSI 2 32 450
VSI 3 32 450

LVR impedances

ZLV R RLV R = 3mΩ LLV R = 800µH
Line impedances

Line 1 impedance (Zline1 ) rline1 = 0.018Ω, Lline1 = 5.4µH
Line 2 impedance (Zline2 ) rline2 = 0.018Ω, Lline2 = 5.4µH
Line 3 impedance (Zline3 ) rline3 = 0.045Ω, Lline3 = 13.5µH

Grid line impedance (Zline) Rline = 0.252Ω, Lline = 75.6µH
Grid parameters

Vg = 230V f0 = 50Hz
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Fig. 5. Dynamic responses of VSI1 due to step changes in reference current
signal at t = 0.5s and t = 0.6s: (a) dq-components of current signal i1
and (b) three-phase current i1.
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Fig. 6. Dynamic responses of VSI2 and VSI3 due to step changes in reference
current of VSI1.

inverter 1 are changed to 25A and 10A at t = 0.5s and t = 0.6s,
respectively. Fig. 5 and Fig. 6 respectively show the dynamic
responses of VSI1 and other VSIs. The results indicate that
the proposed control technique is able to regulate the current
signals with zero steady state error, no overshoot, and small
transient time (rise time ≤ 2.5ms). Moreover, the coupling
between d and q axes is negligible.

B. Case Study 2: Uncertain Grid Impedance

We study the performance and robustness of the proposed
PI-based current controllers against the variations in the grid
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Fig. 7. Dynamic responses of VSIs due to the activation of LVR at t = 0.4s.

impedance configuration. To this end, it is assumed that the
LVR is initially deactivated. The reference values for ii,d and
ii,d , i = 1,2,3 are respectively set at 20A and 10A. The LVR
is suddenly activated at t = 0.4s. Fig. 7 shows the three-phase
current of all VSIs. As shown, except for some small transients,
the change in the grid impedance does not compromise the
tracking performance of the proposed current controllers. The
results of this test validate the robustness of the proposed
active current controller with respect to the grid impedance
uncertainty.

C. Case Study 3: Robustness to System Architecture

The main purpose of this case study is to illustrate the superi-
ority of the proposed current controllers in robustness to the
uncertainty in the architecture of the parallel voltage source
inverters in Fig. 4. To this end, it is assumed that the current
controllers regulate the d and q terms of the current of the
inverters. The reference values of ii,d and ii,d , i= 2,3 are respec-
tively set at 20A and 10A and i1re f ,d = 25A and i1re f ,q = 15A. At
t = 0.2s, VSI2 is disconnected from the system. Due to this
disconnection, the system architecture is changed. However,
since the current controllers are robust with respect to the dis-
connection of inverters, it does not require to retune the current
controller of VSI1 and VSI3. The three-phase current of VSI1
and VSI3 as well as the grid current are depicted in Fig. 8. The
results indicate the robustness of the multivariable PI current
controllers against uncertainty in the system architecture.

6. CONCLUSION

This paper addresses the problem of scalable design of vector
current control of multi-parallel grid-tied voltage source invert-
ers. The control scheme is based on decentralized multivari-
able PI-based controllers that guarantee stability and track step
current references with zero steady-state errors. The proposed
current control design strategy is scalable and does not rely on
the global model of the whole system. Different case studies of
a distribution grid composed of three inverters illustrate the ef-
fectiveness of the proposed vector current control technique for
multiple grid-connected VSIs. The proposed control approach
is also applicable to systems consisting of multiple VSIs with
mesh topologies.
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