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Abstract: Interference in wireless communication is generally considered as an undesired
phenomenon which needs to be combatted. Unlike traditional approaches, this paper investigates
the possibility of exploiting interference for the cooperative solution of a linear algebraic
equation, of which each agent knows only a portion. The presented communication system,
together with the designed iterative algorithm, guarantees that agents converge exponentially
to a global solution (unique or non-unique) of the algebraic linear equation, notwithstanding
the presence of the unknown fading wireless channel. Guaranteeing privacy is one of the benefits
of this approach: the unknown fading channel prohibits the access to neighboring agents’
local equations. Such a feature is extremely useful in case local equations contain sensitive
information. Randomized simulations reinforce our theoretical results.
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1. INTRODUCTION

Starting from Mou and Morse (2013), there has been con-
siderable interest in networks of cooperative autonomous
agents solving linear algebraic equations, i.e.,

Ax = b

in a distributed way, see, e.g., Mou et al. (2015), Shi et al.
(2016), and Mou et al. (2016). Each agent can access only a
distinct partition of the equation (i.e., a subset of rows of A
and b) and aims at reaching the global solution by cooper-
ating with the rest of the network. Mou and Morse (2013)
consider a simple setting in whichA is a nonsingular square
matrix and the underlying network topology is fixed; their
approach guarantees exponentially fast convergence to the
global solution. Later on, many contributions extended
this first result, e.g., Liu et al. (2017) considers non-
square A, nonunique solutions, jointly-connected time-
varying network topologies, and asynchronous communi-
cation. As shown in Mou et al. (2016), this result involves
many possible applications, e.g., solving least square or
network localization problems. Also, by Anderson et al.
(2016), the cooperative solution of linear equations finds
an important application in clustered computation in-
volving sensitive data, such as business financial records,
personally identifiable health information, etc.

In most applications, agents communicate over wireless
networks, in which signal interference is an inherent phe-
nomenon, see, e.g., Utschick (2016). It has been tradi-
tionally combatted by letting agents access the channel
separately. In fact, all standard wireless communication
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protocols, e.g., TDMA (Time Division Multiple Access),
are based on this principle. According to Goldenbaum
et al. (2013), though standard, combatting interference
leads to a waste of wireless resources. Following this idea,
recently, an increasing number of contributions have con-
sidered cooperative multiagent systems exploiting inter-
ference, see, e.g., Goldenbaum and Stanczak (2013) and
Liu and Zang (2019). Concerning consensus problems (see
Ren et al. (2007) for an introduction to the topic), Molinari
et al. (2018a) analyze the impact that the exploitation of
channel interference has on convergence. Results show a
multitude of benefits using this approach. For instance,
Molinari et al. (2018b) prove that exploiting interference
for a max-consensus problem saves wireless resources and
leads to faster convergence. Similar results apply also for
consensus-based formation control problems exploiting in-
terference, see, e.g., Molinari and Raisch (2019).

For distributively solving linear algebraic equations, most
literature has been focusing on improving the convergence
rate and on relaxing conditions on neighbor graphs, see
(Liu et al., 2017, Table I). To the best of our knowledge, the
impact of the communication medium has not been taken
into account. For this reason, the focus of this work is on
the exploitation of interference for distributively solving
linear algebraic equations in cooperative networks. We
argue that this has a collection of additional benefits:

a) Privacy. Sets of neighbors and arc weights are un-
known to agents, see, e.g., Molinari et al. (2018a).
Therefore, it is impossible to use the received signals
to have access to neighboring agents’ local equations.
This is a useful feature when different agents are not
in the same domain of trust and each local equation
may contain sensitive information, see, e.g., Anderson
et al. (2016) and Wang et al. (2012).

b) Saving resources. Exploiting interference instead of
getting rid of it allows for saving wireless resources,
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see, Goldenbaum et al. (2013) for a theoretical expla-
nation. Section 6.2 will show similar results also for
the case at hand.

The paper is organized as follows: Section 2 introduces
the problem and its conditions. Sections 3 and 4 present,
respectively, the communication system and the iterative
algorithm. A proof of convergence to the global solution
is derived in Section 5, both for cases of unique and
nonunique solutions. Numerical simulations are shown in
Section 6, and final remarks are stated in Section 7.

1.1 Notation

Throughout this paper, N0, respectively N, denotes the set
of nonnegative, respectively positive, integers. The sets of
real numbers, nonnegative real numbers, and positive real
numbers are, respectively, denoted R, R≥0, and R>0. Given
a matrix A of dimension n×m, the entry in position (i, j)
is [A]ij . Given a matrix A, its kernel is ker(A), its image is
image(A), its rank is denoted by rank(A), and the nullity
of A (i.e., the dimension of its kernel) is nullity(A). A−1

is the inverse of A (if it exists) and A′ its transpose. The
Kronecker product of matrices A and B is denoted A⊗B.
By blockdiag (A1, . . . , An) we represent a block-diagonal
matrix with blocks A1, . . . , An on the diagonal. The n-
dimensional column of zeros is 0n.

A directed graph G is a pair (N ,A), where N = {1 . . . n}
is the set of nodes and A ⊆ N × N is the set of arcs.
(i, j) ∈ A if and only if an arc goes from node i ∈ N to
node j ∈ N . Given a sequence of graphs constructed on
the same set of nodes, i.e. {G(k)}k∈N0 , the set

Ni(k) := {j ∈ N | (j, i) ∈ A(k)}
contains the (in-)neighbors of agent i in the graph G(k).
A path from node i to node j in graph G(k) is a sequence
of arcs

(l0, l1), (l1, l2), . . . , (lp−1, lp)

with p ≥ 1, l0 = i, lp = j, and (li, li+1) ∈ A(k),
∀i = 0 . . . p − 1. Graph G(k) is strongly connected if,
∀i, j ∈ N , there exists a path from node i to node j. Graph
G(k) is fully connected if, ∀i, j ∈ N , there is an arc from i
to j, i 6= j. A sequence of directed graphs is denoted by

G := (N ,A(k))k∈N0
.

2. PROBLEM DESCRIPTION

A group of ν ∈ N autonomous agents, grouped in the
set N := {1 . . . ν}, need to cooperate to solve the linear
algebraic equation

Ax = b, (1)

where A ∈ Rn×m has full row-rank, b ∈ Rn, x ∈ Rm, and
ν ≤ n ≤ m. Each agent i ∈ N has access only to a distinct
subset of ni ∈ N rows of (1), i.e., it can locally solve

Aixi = bi, (2)

where Ai ∈ Rni×m, bi ∈ Rni , and xi ∈ Rm. Clearly,∑
i∈N ni = n. Agents communicate over the wireless

channel and exploit its interference property in a way
already proposed in literature, see, e.g., Kortke et al.
(2014); Molinari et al. (2018a); Liu and Zang (2019).

In what follows, we present both a communication protocol
and an iterative algorithm allowing agents to distributively

solve (1). The infinite sequence of graphs modeling the
network topology, namely G, is assumed to be a sequence
of fully-connected graphs.

3. COMMUNICATION SYSTEM

The wireless channel is a shared broadcast medium; when
multiple users simultaneously access the same channel fre-
quency spectrum, there is interference, see (Utschick, 2016,
pg. 100). Physically, this means that the electromagnetic
waves broadcast by a set of transmitters in the same
frequency band superimpose at the receiver.

3.1 Wireless Multiple Access Channel

A set of transmitting agents, say M = {1, . . . , µ}, broad-
cast real-valued signals ωi ∈ R, i ∈ M. Then, a sim-
ple model known as Wireless Multiple Access Channel
(WMAC), see e.g. (Utschick, 2016, Definition 5.2.1), allows
to model the value at a receiver.

Definition 1. (WMAC). The WMAC between transmit-
ters in M and a receiver is a map W : R|M| 7→ R such
that

y =W(ω1, . . . , ωµ) :=
∑
j∈M

ξjωj + η, (3)

where, ∀j ∈ M, ξj ∈ R is the (unknown) channel fading
coefficient between a transmitter j and the destination,
and η is the receiver noise, see Utschick (2016).

In most literature, see, e.g., Goldenbaum et al. (2013) and
Utschick (2016), an ideal WMAC, i.e.,

∀j ∈M, ξj = 1 and η = 0,

has been considered. Molinari et al. (2018a) consider a
noiseless WMAC with power modulation, i.e.,

∀j ∈M, ξj ∈ R>0 and η = 0, (4)

which will be assumed also throughout this paper.

3.2 Communication System Design

Based on the WMAC model (3)-(4), the communication
protocol is suggested. At every iteration k ∈ N0, each agent
j ∈ N simultaneously broadcasts two pieces of information

τ aj (k) := xi(k), (5a)

τ bj (k) := 1. (5b)

(5a) and (5b) are broadcast orthogonally, i.e., indepen-
dent from each other (e.g., on a different frequency). For
the synchronous broadcast of these two signals, at every
algorithm iteration, agents needs m+ 1 orthogonal trans-
missions (namely, m + 1 wireless resources are used per
every iteration), since τ aj (k) ∈ Rm and τ bj (k) ∈ R. By
(3)-(4), each agent i ∈ N receives

ϑai (k) =

ν∑
j=1

ξij(k)τaj (k) =

ν∑
j=1

ξij(k)xj(k), (6a)

ϑbi (k) =

ν∑
j=1

ξij(k)τ bj (k) =

ν∑
j=1

ξij(k), (6b)

where ξij(k) ∈ R>0 is the (unknown) channel fading
coefficient between transmitter j and receiver i at iteration
k ∈ N0. Fading coefficients are unknown to agents. This
explains the privacy benefit introduced in Section 2.
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4. ALGORITHM

Each agent i ∈ N , at every iteration k ∈ N0, obtains ϑai (k)
and ϑbi (k), which may be used for updating xi(k). ϑai (k)
represents a linear combination of the local estimates xj(k)
of all agents that can transmit information to agent i.
ϑbi (k) is the sum of the corresponding channel coefficients.
The proposed algorithm is executed ∀i ∈ N and ∀k ∈ N0

and is as follows:

xi(k + 1) = xi(k)−
1

ϑbi (k)
Pi
(
ϑbi (k)xi(k)− ϑai (k)

)
, (7)

where Pi ∈ Rm×m is the orthogonal projection matrix onto
the kernel of Ai. ∀i ∈ N , the orthogonal projection matrix
Pi is computed as follows, see (Spence et al., 2000, Ch.
7.3):

Pi := κi(κ
′
iκi)

−1κ′i,
where κi ∈ Rm×ρ, ρ = nullity(Ai), and its columns form a
basis for the kernel of Ai.

Remark 1. ∀v ∈ Rm, Piv ∈ ker(A)i.

Remark 2. ∀v ∈ Rm, AiPiv = 0ni .

Proposition 1. If xi(k) solves (2) and xi(k) is updated
according to (7), then xi(k + 1) solves (2).

Proof. xi(k+1) solves (2) iff Aixi(k+1) = bi, i.e., by (7),

Ai

(
xi(k)−

1

ϑbi (k)
Pi
(
ϑbi (k)xi(k)− ϑai (k)

))
= bi.

By Remark 2, the latter becomes

Aixi(k)−
1

ϑbi (k)
AiPi

(
ϑbi (k)xi(k)− ϑai (k)

)
= Aixi(k),

which is, by hypothesis of the proposition, equal to bi. This
concludes the proof.

Convergence to a global solution can be formalized as
follows.

Theorem 1. A set N of communicating agents update
their estimates according to (7). If G is a sequence of
fully connected graphs, then all xi(k) converge to the same
global solution of (1) notwithstanding the unknown fading
channel.

Remark 3. The same result can be proven for G being a
sequence of repeatedly jointly D-connected graphs, whose
meaning is thoroughly analyzed in (Liu et al., 2017, Sec.
3). In this work, we assume a sequence of fully-connected
network topologies, since this is a valid assumption in the
context of analog transmissions.

5. PROOF OF THEOREM 1

The proof of Theorem 1 is inspired by Liu et al. (2017) and
extends the proofs of Mou and Morse (2013) to the case
of communication interference. We first deal with the case
of (1) having a unique solution (i.e. m = n); after that, we
extend the proof to the more general case (i.e. m ≥ n).

5.1 Unique solution

Let x∗ ∈ Rm×1 be the unique solution of (1). Let’s define
error variables, i.e.,

∀i ∈ N , ∀k ∈ N0, ei(k) := xi(k)− x∗. (8)

Clearly, all agents have the global solution if and only
if, ∀i ∈ N , ei(k) = 0m. As in Molinari and Raisch

(2019), we define normalized channel coefficients hij(k),
i.e., ∀k ∈ N0, ∀i, j ∈ N ,

hij(k) :=
ξij(k)∑ν
j=1 ξij(k)

(9)

Remark 4. Normalized channel coefficients sum up to 1,
i.e., ∀i ∈ N , ∀k ∈ N0,

ν∑
j=1

hij(k) = 1. (10)

Inserting (9) into (7) results in, ∀k ∈ N0, ∀i ∈ N ,

xi(k + 1) = xi(k)− Pi

xi(k)−
ν∑
j=1

hij(k)xj(k)

 . (11)

Note that the individual coefficients hij(k) in (11) are
unknown. The only available information is that they sum
up to 1. In order to bring (11) to a compact form, let
x(k) ∈ Rνm be the column vector stacking local solutions,
i.e.,

∀k ∈ N0, x(k) := [x1(k)′, . . . ,xν(k)′]′.

Similarly, let x∗ ∈ Rνm×1 be the column stacking ν
vectors x∗, i.e. x∗ = [x∗

′
, . . . , x∗

′
]′. Moreover, let P ∈

Rνm×νm be the blockdiagonal matrix composed of the ν
orthogonal projection matrices Pi, i.e.,

P := blockdiag (P1, . . . , Pν) .

Define the matrix H(k) ∈ Rν×ν ,

∀k ∈ N0, ∀i ∈ N , ∀j ∈ N , [H(k)]ij = hij(k).

Clearly, because of (10), H(k) is row-stochastic, ∀k ∈ N0.
Iteration (11) can now be rewritten as, ∀k ∈ N0,

x(k + 1) = x(k)− P (x(k)− (H(k)⊗ Im)x(k)) , (12)

where H(k)⊗ Im denotes the Kronecker product of H(k)
and Im. Let, ∀k ∈ N0, e(k) ∈ Rνm stack all ei(k), i.e.

e(k) := [e1(k)′, . . . , eν(k)′]′. (13)

Lemma 1. ∀k ∈ N0, (H(k)⊗ Im)x∗ = x∗.

Proof.

(H(k)⊗ Im)x∗ =



ν∑
j=1

h1j(k)x∗

...
ν∑
j=1

hνj(k)x∗


= x∗,

where the second equality is a consequence of (10).

Lemma 2. ∀k ∈ N0, Pe(k) = e(k).

Proof. Since xi(k) is a local solution of (1), Aiei(k) =
Ai(xi(k) − x∗) = bi − bi = 0. Therefore, ei(k) ∈ ker(Ai).
∀i ∈ N , Pi is the orthogonal projection onto the kernel of
Ai, therefore, since ei(k) is already in ker(Ai),

Piei(k) = ei(k).

This is valid ∀i ∈ N , thus the proof is concluded.

By Lemma 1 and by subtracting x∗ from both sides of
(12), one gets

e(k + 1) = e(k)− P (e(k)− (H(k)⊗ Im)e(k)) .

By Lemma 2, the latter becomes, ∀k ∈ N0,

e(k + 1) = Q(k)e(k), (14)
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where Q(k) := P (H(k)⊗ Im). If the matrix sequence
{Q(k)}k∈N0

converges exponentially, Theorem 1 is proven.
Similarly to Liu et al. (2017), we are going to employ a
mixed norm for proving this.

Next, we discuss the mixed l2/l∞ vector norm and its
induced matrix norm. In literature, the concept of mixed
matrix norm is closely related to the subject of norm
compression of block-partitioned matrices, see, e.g., Aude-
naert (2007), and it has been employed in the context of
compressed sensing, see Eldar et al. (2010).

Assume v ∈ Rdm, d,m ∈ N, Partition v as v =
[ṽ′1, . . . , ṽ

′
m]′, where [ṽi]j := [v](i−1)d+j , i = 1, . . . ,m, j =

1, . . . , d. Define w ∈ Rm≥0 by [w]i = ‖ṽi‖2, i = 1, . . . ,m.

Then the mixed l2/l∞ norm of v corresponding to the
integer d is defined as

‖v‖2,∞ := ‖w‖∞ . (15)

Assume A ∈ Rdm×dm, d,m ∈ N. Partition A as

A =

 Ã11 . . . Ã1m

. . . . . . . . .

Ãm1 . . . Ãmm

 ,
where Ãij ∈ Rd×d is given by [Ãij ]kl := [A](i−1)d+k,(j−1)d+l,

i, j = 1, . . . ,m and k, l = 1, . . . , d. Define B ∈ Rm×m≥0

by [B]ij =
∥∥∥Ãij∥∥∥

2
where the latter is the matrix norm

induced by the l2 vector norm. Then the mixed l2/l∞ norm
of matrix A corresponding to the integer d is defined as

|||A|||2,∞ := ‖B‖∞ ,

where ‖B‖∞ is the norm of matrix B induced by the l∞
vector norm. It is straightforward to show that ‖·‖2,∞ and

|||·|||2,∞ indeed satisfy all norm axioms. In Appendix A,

we show that |||·|||2,∞ is the matrix norm induced by the

vector norm ‖·‖2,∞, i.e.

|||A|||2,∞ = sup
v 6=0

‖Av‖2,∞
‖v‖2,∞

.

Furthermore, (Liu et al., 2017, Lemma 3) have shown
that |||·|||2,∞ is submultiplicative, i.e., |||A1A2|||2,∞ ≤
|||A1|||2,∞ |||A2|||2,∞.

Lemma 3. ((Mou et al., 2015, Lemma 2)). For any non-
empty set of m × m real orthogonal projection matrices
{T1, . . . , T`},

‖T`T`−1 · · · · · T1‖2 ≤ 1. (16)

In particular,

‖T`T`−1 · · · · · T1‖2 < 1 (17)

if and only if

dim

(⋂̀
i=1

image(Ti)

)
= 0. (18)

Proof. See Mou et al. (2015).

Corollary 1. Given the projection matrices employed in (7),

‖P`1 · · · · · P`ν‖2 < 1, (19)

for {`1 . . . `ν} = {1 . . . ν}.

Proof. In case (1) has a unique solution, rank(A) =
n = m, thus dim (ker(A)) = 0. The latter implies that

dim (
⋂ν
i=1 ker(Ai)) = 0. Since, ∀i ∈ N , Pi is the orthog-

onal projection matrix onto the kernel of Ai, ker(Ai) =
image(Pi), then

dim

(
ν⋂
i=1

image(Pi)

)
= 0,

which, by Lemma 3, implies (19). This concludes the proof.

Lemma 4. ∃γ ∈ (0, 1):

∀k ∈ N0, ‖e(k + ν)‖2,∞ ≤ γ ‖e(k)‖2,∞ . (20)

Proof. By (14),

e(k + ν) = Q(k + ν − 1) · · · · ·Q(k)e(k),

= P (H(k + ν − 1)⊗ Im) · · · · · P (H(k)⊗ Im)︸ ︷︷ ︸
:=Qν

k

e(k).

Matrix Qνk ∈ Rνm×νm can be seen as a block-matrix
composed of m×m blocks of dimension ν× ν. Each block
i, j (i, j ∈ {1 . . . ν}) is denoted by Qνk[i, j] and is explicitly
written as

Qνk[i, j] =
m∑
`1=1

· · ·
m∑

`ν−1=1

Pihi`1(k + ν − 1)P`1h`1`2(k + ν − 2) · . . .

. . . · P`ν−2h`ν−2`ν−1(k + 1)P`ν−1h`ν−1j(k).

By the triangle inequality for norms,

‖Qνk[i, j]‖2 ≤
m∑
`1=1

· · ·
m∑

`ν−1=1

∥∥Pi · · · · · P`ν−1

∥∥
2
· . . .

. . . · hi`1(k + ν − 1) · · · · · h`ν−1j(k). (21)

In general, by Lemma 3,

∀{i, `1, . . . , `ν−1},
∥∥PiP`1 · · · · · P`ν−1

∥∥
2
≤ 1. (22)

Among all considered ν-dimensional sets {i, `1, . . . , `ν−1}
in (22), there is also set {1 . . . ν}. For this set, by Corol-
lary 1, ∥∥PiP`1 · · · · · P`ν−1

∥∥
2
< 1. (23)

The corresponding product of channel coefficients is always
positive, i.e.,

hi`1(k + ν − 1)h`1`2(k + ν − 2) · · · · · h`ν−1j(k) > 0. (24)

Inserting (23) and (24) into (21) yields

‖Qνk[i, j]‖2 <
m∑
`1=1

· · ·
m∑

`ν−1=1

hi`1(k + ν − 1) · · · · · h`ν−1j(k). (25)

To prove the Lemma, we need to show that

∀k ∈ N0, |||Qνk|||2,∞ ≤ γ < 1.

By definition of l2/l∞ mixed matrix norm,

|||Qνk|||2,∞ = max
i=1...m

 m∑
j=1

‖Qνk[i, j]‖2

 . (26)

By Remark 4, the rows of H(k) sum up to 1, ∀k ∈ N0,
therefore, ∀k ∈ N0, ∀i ∈ N ,

m∑
j=1

m∑
`1=1

· · ·
m∑

`ν−1=1

hi`1(k + ν − 1) · · · · · h`ν−1j(k) =

=

 m∑
`1=1

hi`1(k + ν − 1) · · · · ·

 m∑
j=1

h`ν−1j(k)

 · · ·
 = 1.
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Hence, using (25),

∀k ∈ N0, ∀i ∈ N ,
m∑
j=1

‖Qνk[i, j]‖2 < 1,

thus, by (26),

∀k ∈ N0, |||Qνk|||2,∞ < 1. (27)

Note that set {Qνk}k∈N0
is finite. This is a realistic assump-

tion if we consider the presence of a quantization effect on
the fading channel, which implies that set {H(k)}k∈N0

is
finite. By definition of Qνk, if {H(k)}k∈N0

is finite, then
also {Qνk}k∈N0

is finite. By this consideration and (27),

γ := sup
k∈N0

|||Qνk|||2,∞ < 1. (28)

By definition of the induced vector norm,

∀k ∈ N0, ‖e(k + ν)‖2,∞ ≤ |||Q
ν
k|||2,∞ ‖e(k)‖2,∞ ,

which, by (28), yields (20) thus concluding the proof of
Lemma 4.

The proof for Theorem 1 follows right from Lemma 4. In
fact, by (20),

lim
k→∞

‖e(kν)‖2,∞ ≤ γ
k ‖e(0)‖2,∞ . (29)

Since ‖·‖2,∞ is a norm (29) yields that the error ap-
proaches 0 exponentially, therefore the local estimates
xi(k) approach x∗ exponentially (independently of the
unknown and time-varying normalized channel coefficients
hij(k)).

5.2 Multiple solutions

For proving convergence in case of multiple solutions, we
make use of the same tools employed by (Liu et al., 2017,
Sec. 4.2). This is possible because, in the previous section,
we have reduced (7) to a form similar to what presented
in Liu et al. (2017). For this scenario, in fact, Corollary 1
cannot be used since having more than one solution implies
that dim (

⋂ν
i=1 ker(Ai)) 6= 0.

Define the subspace P as

P :=

ν⋂
i=1

image(Pi) =

ν⋂
i=1

ker(Ai),

and m̃ = m− dim(P).

Definition 2. Let the columns of the m× m̃ matrix L′ be
an orthonormal basis for the orthogonal complement of P.

We define the following m̃× m̃ matrix, ∀i ∈ N ,

P̄i := LPiL
′.

Lemma 5. ((Mou et al., 2015, Lemma 1)). The following
statements are true

(1) ∀i ∈ N , P̄i is an orthogonal projection matrix;
(2) ∀i ∈ N , LPi = P̄iL
(3) ∀i ∈ N , PiL

′ = L′P̄i;
(4)

⋂ν
i=1 image(P̄i) = 0.

Proof. See (Mou et al., 2015, Lemma 1).

Corollary 2. ∀i, j ∈ N , LPiPj = P̄iP̄jL.

Proof. The proof follows directly from point (2) of
Lemma 5.

In what follows, we consider two different sets of trans-
formed error variables, i.e.,

∀i ∈ N , ēi(k) : = Lei(k) ∈ Rm̃ (30)

and

∀i ∈ N , ẽi(k) : = ei(k)− L′ēi(k) ∈ Rm. (31)

Lemma 6. ∀i ∈ N , P̄iēi(k) = ēi(k).

Proof. By (30), P̄iēi(k) = P̄iLei(k). By property (2)
of Lemma 5, P̄iLei(k) = LPiei(k), which, by Lemma 2,
yields

P̄iēi(k) = LPiei(k) = Lei(k) = ēi(k),

thus concluding the proof.

Lemma 7. ∀i, j ∈ N , Pj ẽi(k) = ẽi(k).

Proof. Note that

Lẽi(k) = Lei(k)− LL′ēi(k) = Lei(k)− ēi(k) = 0,

since the columns of L are orthonormal. This implies
ẽi(k) ∈ ker(L), which yields ẽi(k) ∈

⋂ν
j=1 image(Pj), then,

∀i, j ∈ N , Pj ẽi(k) = ẽi(k). This concludes the proof.

Lemma 8. If, ∀i ∈ N ,

lim
k→∞

ēi(k) = 0m̃

and
lim
k→∞

ẽi(k) = ε∗,

with ε∗ ∈ Rm, then, ∀i ∈ N ,

lim
k→∞

xi(k) = ε∗ + x∗.

Proof. By merging (8) and (31), one obtains

xi(k) = ẽi(k) + L′ēi(k) + x∗.

The hypotheses of the Lemma yield

lim
k→∞

xi(k) = lim
k→∞

ẽi(k) + L′ēi(k) + x∗ = ε∗ + x∗,

which concludes the proof.

If the hypotheses of Lemma 8 are proven to hold for the
problem at hand, then the local solution of each agent will
converge to the same value. This can be done as follows.

By (11), (30), and Corollary 2, ∀k ∈ N0,

ēi(k + 1) = P̄i

m∑
j=1

hij(k)ēj(k), (32)

which in compact form becomes, ∀k ∈ N0,

ē(k + 1) = Q̄(k)ē(k), (33)

where Q̄(k) := blockdiag
(
P̄1, . . . , P̄ν

)
(H(k)⊗ Im). Equa-

tions (33) and (14) are the same, apart from having P̄i
instead of Pi. By Lemma 5, P̄i is also an orthogonal
projection matrix, i = 1 . . . ν, and

⋂ν
i=1 image(P̄i) = 0.

We can therefore repeat the argument from Section 5.1
to show that the mixed l2/l∞ norm of the product
Q̄(k + ν − 1) . . . Q̄(k) is strictly smaller than 1. Therefore,
ē(k) converges exponentially to 0νm̃, i.e., ∀i ∈ N ,

lim
k→∞

ēi(k) = 0m̃. (34)

Concerning ẽi(k), by its definition,

ẽi(k + 1) = ei(k + 1)− L′ēi(k + 1)

= Pi

m∑
j=1

hij(k)ej(k)− L′P̄i
m∑
j=1

hij(k)ēj(k),
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which, by property (3) in Lemma 5, becomes

= Pi

m∑
j=1

hij(k)ej(k)− PiL′
m∑
j=1

hij(k)ēj(k),

= Pi

m∑
j=1

hij(k)ẽj(k).

The latter, by Lemma 7, yields, ∀i ∈ N , ∀k ∈ N0,

ẽi(k + 1) =

m∑
j=1

hij(k)ẽj(k). (35)

By (Molinari et al., 2018a, Sec. 3.2), being the underlying
network topology fully connected, the system in (35)
achieves consensus, namely, ∀i ∈ N ,

lim
k→∞

ẽi(k) = ε∗, (36)

with ε∗ unique and bounded. Under the hypotheses of
the Theorem, equations (34) and (36) hold. These are
the hypotheses of Lemma 8, which, in turn, implies that
all xi(k) converge to the same solution. This shows that
Theorem 1 is proven also in case of (1) having multiple
solutions.

6. SIMULATIONS

In what follows, we simulate a set of agents trying to
solve (1) by running algorithm (7) together with the
communication protocol (6), under different conditions.
Also channel coefficients ξij(k) of each fully connected
graph G(k) are drawn out of an uniform distribution 1 ,
i.e., ∀i, j ∈ N , ∀k ∈ N0, ξij(k) ∼ U(0, µ], where µ ∈ R>0.
In all simulations, ν = m, thus, ∀i ∈ N , ni = 1. The
matrices of equation (1) are in Appendix B.

6.1 Unique Solution

We first analyze the case of (1) having a unique solution,
namely n = m and A full-row rank. Fig. 1 represents
the evolution of xi(k), i = 1 . . . ν, through iterations.
The evolution of ‖e(k)‖2,∞ through iterations can be
seen in Fig. 2. In the same figure, we have plotted also
log(‖e(k)‖2,∞), thus showing the exponential convergence
to a solution.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Fig. 1. Convergence to the solution for (1) having an
unique solution.

1 They are independent and identically distributed.
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Fig. 2. ‖e(k)‖2,∞ and log(‖e(k)‖2,∞) through iterations.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Fig. 3. xi(k) through iterations, with an ideal channel.

6.2 Ideal Channel

The impact of the unknown fading channel can be ad-
dressed by looking at Fig. 3, where uncertainty and fading
are removed, namely, ∀i, j ∈ N , ∀k ∈ N0, ξij(k) = 1.
Note that this can only be done using standard orthogonal
channel access methods, i.e., at every iteration step, all
agents would have to transmit the current estimations
independently. Hence, if this is done, e.g., by TDMA
(Time-division multiple access), we would need νm orthog-
onal transmissions per iteration. The comparison of Fig. 1
and Fig. 3 illustrates that the presence of an unknown and
fading channel does not have a noticeable impact.

Comparing Fig. 1 with Fig. 3 helps quantifying the savings
of wireless resources in case interference is exploited. In
fact, although Fig. 1 and Fig. 3 exhibit the same conver-
gence rate, the traditional communication approach (in
which agents access the channel separately) requires at
least mν independent channel accesses per every iteration.
In fact, each agent (1 . . . ν) separately communicates to
neighbors each entry (1 . . .m) of its information state. By
Section 3.2, our designed communication system requires
only m + 1, but guarantees the same convergence rate in
terms of iterations as the traditional approach. Exploiting
interference, therefore, significantly reduces the consump-
tion of wireless resources.

6.3 Multiple Solution

In case (1) has multiple solutions, e.g., n = m − 1 (see
Appendix B for the matrices), the convergence of xi(k),
i = 1 . . . ν, to the solution is depicted by Fig. 4.

6.4 Noisy Fading Channel

We try now to relax assumption (4) and consider a noisy
fading channel, in which η 6= 0. This case is only considered
in simulation here. A theoretical investigation is the topic
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Agent 1

Agent 2

Agent 3

Agent 4

Fig. 4. xi(k) through iterations for the case of multiple
solutions.

of ongoing work. Let additive noise be white Gaussian and
affect both ϑai (k) and ϑbi (k), such that SNR (signal to noise
ratio) equals 1e− 3. The evolution of xi(k) in this case is
depicted in Fig. 5. The analysis of log(‖e(k)‖2,∞) in Fig. 6
shows that the error converges until up to a point from
where the presence of noise is prohibiting the exponential
convergence.

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Fig. 5. xi(k) through iterations in presence of additive
white Gaussian noise.

0 500 1000 1500 2000

0

0.5

1

1.5

2

2.5

3

-6

-4

-2

0

2

Fig. 6. ‖e(k)‖2,∞ and log(‖e(k)‖2,∞) through iterations,
with a noisy fading channel.

7. CONCLUSION

This paper has investigated a way to exploit wireless
interference for the distributed solution of linear algebraic
equations. Combining the designed communication system
together with the designed iterative algorithm yields a
method which guarantees exponential convergence to a
solution notwithstanding the presence of unknown fading
channel coefficients. Simulations have confirmed the theo-
retical analysis.

In ongoing work, we aim at extending the strategy to
the case of a noisy fading channel. Moreover, we aim at
developing a real-life demonstrator to prove all benefits
of employing interference for the distributed solution of
linear algebraic equations.
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Appendix A. MIXED NORMS

A.1 Induced mixed norms

The two defined matrix and vector norms are compatible if

‖Av‖2,∞ ≤ |||A|||2,∞ ‖v‖2,∞ , (A.1)

for any matrix A ∈ Rdm×dm and any vector v ∈ Rdm.
In fact, by the definition of ‖·‖2,∞ and by the triangular

inequality for ‖·‖2,

‖Av‖2,∞ = max
i=1...m

(∥∥∥∥∥
m∑
`=1

Ãi`ṽ`

∥∥∥∥∥
2

)

≤ max
i=1...m

(
m∑
`=1

∥∥∥Ãi`∥∥∥
2
‖ṽ`‖2

)

≤ max
i=1...m

(
m∑
`=1

∥∥∥Ãi`∥∥∥
2

)
max
`=1...m

(‖ṽ`‖2)

= |||A|||2,∞ ‖v‖2,∞ .

This proves that the presented mixed-matrix and mixed-
vector norms are compatible. Moreover, we aim at showing
that |||·|||2,∞ is induced by ‖·‖2,∞. By (Horn and Johnson,

2012, Def. 5.6.1), this is the case if

|||A|||2,∞ = sup
‖v‖2,∞ 6=0

‖Av‖2,∞
‖v‖2,∞

. (A.2)

Since (A.1) is true, condition (A.2) is proven if ∃v for
which we get

|||A|||2,∞ =
‖Av‖2,∞
‖v‖2,∞

. (A.3)

To verify this, let’s expand the mixed-matrix norm, so that

|||A|||2,∞ = max
i=1...m

(
m∑
`=1

∥∥∥Ãi`∥∥∥
2

)
. (A.4)

Since the spectral norm for matrix is induced by the l2
vector norm,

max
i=1...m

(
m∑
`=1

∥∥∥Ãi`∥∥∥
2

)
= max
i=1...m

(
m∑
`=1

∥∥∥Ãi`w̃`∥∥∥
2

)
, (A.5)

for some w`, ` = 1 . . .m, such that ‖w̃`‖2 = 1, ∀` =
1 . . .m. By the triangular inequality applied to (A.5),

max
i=1...m

(
m∑
`=1

∥∥∥Ãi`w̃`∥∥∥
2

)
≥ max
i=1...m

(∥∥∥∥∥
m∑
`=1

Ãi`w̃`

∥∥∥∥∥
2

)
,

(A.6)
where the right-hand side equals ‖Aw‖2,∞. Also, by defi-

nition of l2/l∞ vector norm,

‖w‖2,∞ = max
`=1...m

(‖w̃`‖2) = 1,

since ‖w̃`‖2 = 1, ∀` = 1 . . .m.

By merging all these considerations, one obtains

|||A|||2,∞ ≥
‖Aw‖2,∞
‖w‖2,∞

. (A.7)

By the latter and (A.1), equation (A.3) is verified.

Appendix B. SIMULATION DATA

B.1 Unique Solution

A =


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1
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8

25

81

100

8

25

19

25

87

100

8

25

22

25

18

25

53

100

13

100

41

100

59

100

57

100

3

25



, B =


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18

25
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50
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100
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B.2 Multiple Solutions

A =


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8

25

27

50

3
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8
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8
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8

25

22
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25

53

100


, B =


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100
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50
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Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3068


