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Abstract: Most visual odometry (VO) and visual simultaneous localization and mapping
(VSLAM) systems rely heavily on robust keypoint detection and matching. With regards to
images taken in the underwater environment, phenomena like shallow water caustics and/or
dynamic objects like fishes can lead to the detection and matching of unreliable (unsuitable)
keypoints within the visual motion estimation pipeline. We propose a plug-and-play keypoint
rejection system that rejects keypoints unsuitable for tracking in order to obtain a robust visual
ego-motion estimation. A convolutional neural network is trained in a supervised manner, with
image patches having a detected keypoint in its center as input and the probability of such
a keypoint suitable for tracking and mapping as output. We provide experimental evidence
that the system prevents to track unsuitable keypoints in a state-of-the-art VSLAM system. In
addition we evaluated several strategies aimed at increasing the inference speed of the network
for real-time operations.

Keywords: keypoints, monocular SLAM, VSLAM, Visual Odometry, VO, underwater
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1. INTRODUCTION

Visual odometry and VSLAM have been successfully ap-
plied in the underwater domain, as for example for ship-
hull inspection Kim and Eustice (2013), Kim and Eustice
(2009) or autonomous underwater navigation Bonin-Font
et al. (2015). Other previous work relies mainly on inertial
navigation system (INS) measurements Krys and Najjaran
(2007), while a very modern work proposes feature based
visual odometry Ferrera et al. (2019). The interest in
this topics is continuously growing and lately a dataset
dedicated to real-time visual underwater localization has
been published by Ferrera et al. (2018). In addition, many
SLAM systems for dynamic non-underwater environments
have been presented by Bescos et al. (2018), Cui and Wen
(2019), and Tan et al. (2013). Unfortunately most of these
systems are very sensitive to moving objects in the scene.
Therefore, our system aims to prevent keypoints detected
at moving objects or dynamic textures, which in a state-
of-the-art approach might have been considered for ego- Fig. 1. Keypoints labeled with our system: Keypoints

motion estimation and mapping. Keypoints are prevented classified as suitable are circled in green, keypoints
by using the prior learned by a neural network, so that, classified as unsuitable are circled in red. Top left:
depending on the VO/VSLAM system, the tracking is not sandy seabed, top right: caustics, bottom left: seabed
affected by the presence of moving objects or dynamic with vegetation, bottom right: a school of fishes.

textures in the scene.
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Fig. 2. Example of unsuitable (left) and suitable (right) keypoint image patches. Unsuitable image patches can contain
fishes, a crab, seaweed, caustics, clean water with high gradient zones, and the effect called marine snow (first row,
third image to the right). Suitable image patches can contain for example man-made objects and different sea bed

types.

We extract patches centered around each detected key-
point as input for a convolutional neural network (CNN)
and train it to distinguish if the keypoint is suitable for
tracking or not. We define keypoints as suitable which
are detected at (static) surfaces, that are not supposed to
move (e.g. rocks), and exclude those keypoints - defined
as unsuitable - which are detected at moving objects, tex-
tures or dynamic physical phenomena (eg. fish, caustics,
etc.; see Fig. 1). Thereby, keypoint neighborhood image
scene information serves as context for the CNN, which
is trained to distinguish if the detected keypoint belongs
to a moving surface or not. This prior knowledge based
selection makes it possible to forward only keypoints to
a motion estimation pipeline that are exploitable for a
reliable ego-motion estimation.

The two main contributions presented in this paper are:

e A fast supervised way to generate a dataset for
keypoint classification

e A novel method for reliable keypoint selection for
underwater visual ego-motion estimation

1.1 Related Work

In Wangsiripitak and Murray (2009) a parallel implemen-
tation of monoSLAM was presented, that incorporates a
3D object tracker into the SLAM system. Moving features
are thereby not included into the map and features that
are known to be occluded by objects are deleted, but as
this work does not detect moving objects, non-stationary
features apart from the ones laying on the tracked moving
object will still corrupt the SLAM estimation. In a similar
way, Riazuelo et al. (2017) implemented an object tracker
dedicated to people tracking. These methods would detect
those a priori dynamic objects, but fail to react on move-
ments of a priori static objects.

In Tan et al. (2013) the authors compare features between
keyframes and the current frame for 3D structure vali-
dation. This method fails when a priori dynamic objects
remain static (like e. g. lifeless marine fauna).

Recently, an ORB-SLAM Mur-Artal et al. (2015) based
approach was presented that operates reasonable well in
dynamic environments Cui and Wen (2019). While ORB-
SLAM is already implicitly robust to small changes in the
scene, the authors improve the robustness of the algorithm
by comparing image patches around the re-projected 3D
point between the current frame and the reference frame.
However, while the system is reported to increase the
tracking performance in dynamic environments, it’s not
able to cope with scenes where many dynamic objects
with a coherent motion pattern are present (e.g. a school
of fishes). The authors suggest the use of object recogni-
tion techniques to improve the robustness, since dynamic
scenes can generate a valid apparent ego-motion.

Similar to the work presented in this paper DynaSLAM
Bescos et al. (2018), and ORB-SLAM2 Mur-Artal and
Tardds (2017), a monocular approach uses Mask R-CNN
He et al. (2017) which is state-of-the-art for object instance
segmentation. The deep network architecture is designed
to classify and to reject keypoints associated with regards
to a list of dynamic object labels (i.e. person, bicycle,
car, etc.). Unfortunately, DynaSLAM doesn’t work in real-
time, as Mask R-CNN alone runs at around 195 ms per
image on a Nvidia Tesla M40 GPU He et al. (2017). Only
a few underwater labeled datasets are available, while to
the best of our knowledge no datasets exist with respect
to semantic segmentation OByrne et al. (2018).

Very recently, an underwater VO and feature-based SLAM
approach Ferrera et al. (2019) was published not taking
into account the dynamics of underwater environments,
exposing the system to be highly sensible to fishes, shallow
water caustics and other dynamic objects present, includ-
ing seaweed transported by current.

Our method falls into the category where keypoints laying
on a priori dynamic objects will always be removed, even
if the objects are most likely going to remain static for
the time they are going to be observed (e.g. lifeless marine
fauna). We argue that the a priori dynamic objects are
extremely unlikely to remain static in the underwater
environment, and that these objects should never be used
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for Visual SLAM as they could be only momentarily static
(e.g. a fish resting on the seabed).

SOFTMAX

CONNECTED

Fig. 3. Representation of the network architecture: the
first three layers are a stack of CONV-POOL-RELU
layers, extracting features for the fully connected
layer. The output layer is a softmax layer.

Compared to methods that use deep neural networks
for object-instance segmentation, our approach does not
need to create masks for the training procedure, and the
overall execution time is also positively affected, thanks
also to the highly-parallelizable nature of the problem.
Patch creation and analysis is not directly tied to image
resolution, making a network trained in this way more
future-proof.

2. DATABASE CREATION

We composed our dataset of underwater images from the
following datasets: the Tasmania Coral Point Count, the
Scott Reef 25 and the Tasmania O’Hara 7 from the Aus-
tralian Centre for Field Robotics for Field Robotics (2009),
the An Underwater Observation Dataset of Fish Eickholt
(2018) and images from the Herkules wreck site coming
from several field surveys the authors conducted Leonardi
et al. (2017). For our tests 110 images out of this dataset
were selected and in total 13158 patches were extracted
(see Fig. 1), where 60% were used for the training set,
20% for the validation and 20% for the test set. Possible
underwater dynamic image scenes are presented, including
various fish species, crabs, algae, floating particles, as well
as illumination changes and effects and man-made floating
objects.

The dataset is created utilizing a manual labelling proce-
dure. For each image, up to 1000 keypoints are extracted
using the Oriented FAST and Rotated BRIEF (ORB)
Rublee et al. (2011) feature detector by setting the FAST
threshold to 20, which is a commonly used value.

Images are proportionally scaled, keeping the aspect-ratio,
considering the first image as reference; this process aims
to consistently scale context information in the patches
centered in the keypoints.

We implemented a software interface to ease the process
of differentiation between suitable keypoints (laying on a
priori static objects) and unsuitable keypoints (laying on a
priori dynamic objects), see Fig. 4. Our software visualizes
the image and shows the ORB extracted keypoints as dots.
In the interface the user can draw multiple independent
polygons as successions of segments. Keypoints inside the
polygons are marked unsuitable, while keypoints outside
the polygons are marked as suitable. Image patches of
257x257 pixels (cf. Fig. 2) are extracted around each

keypoint. The size of the patches has been selected in
a process of trial and error, with the goal of jointly
maximizing the contextual information and the inference
time performance of the resulting network. All patches
corresponding to suitable keypoints are stored separately
from those corresponding to unsuitable keypoints.

3. NETWORK ARCHITECTURE

In this section we describe the details of the network
architecture as illustrated in Fig. 3. In our implementation
the keypoint patches have been resized to 65x65 pixels.
This choice was based on empirical tests, since the patches
where originally 257257 pixels to preserve context in-
formation. For a higher resolution (129x129 and 97x97
pixels) of the patch the network did not gain in precision,
instead decreasing its performance in both memory and
speed. We recommend, that the size of the extracted
rectangular patches should be around 2/10 of the image
width, considering a maximum aspect ratio of 16:9. The
idea is that it should be possible for a human operator to
visually analyze and discriminate successfully the patches.
The proposed network is a convolutional neural network,
counting three convolutional (CONV) layers, one fully-
connected (FC) layer and a soft-max layer.

The first layer is a CONV layer, consisting of 16 filters with
a kernel size of 3x 3, stride of 1 in each direction, zero filling
padding strategy, followed by a 2x2 maz-pooling (POOL)
and a rectified linear unit (RELU) layer for adding non-
linearity. The second and third layer are identical to the
first one. It follows a flatten layer which is needed to
format the input for the following FC RELU layer. The FC
layer (128x128) is followed by a soft-max RELU layer with
two outputs, representing the suitable /unsuitable posterior
class probabilities, given the input and the network config-
uration. The neural network architecture is inspired by the
original LeNet-5 LeCun et al. (1998) network, with a dif-
ferent amount of layers and a different layer dimensioning
due to the more complex discrimination problem. Different
network topologies and configurations have been tried, the
one we just presented is the network that provided us with
the best ratio between the amount of network weights and
classification performance.

8.1 Training procedure

The training of the network was performed over the
dataset described in section 2, with the patches resized to
65x 65 pixels. The batch size was set to 64 and the network
is trained for 1000 epochs. The set of weights which is re-
tained is the one that performs best in terms of validation
loss. The optimizer used is adaptive moment estimation
(ADAM) Kingma and Ba (2014), with a learning rate of
0.001 and € = le — 10. The loss function used in both
training and validation is the mean square error (MSE).
The target follows the one hot encoding. In this way the
inference output of the network approximates posterior
probabilities Richard and Lippmann (1991). We obtained
an accuracy of 96.7% on the test set. In Table 1 the final
confusion matrix is presented.
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Fig. 4. Software interface procedure for the selection of wunsuitable keypoints. During this procedure, not all of the
unsuitable keypoints are selected by drawing only one polygon. As soon as the first polygon is selected, the procedure
asks to eventually draw another polygon. In the picture on the left, first a polygon is drawn to enclose the keypoints
on the fishes in the top-right quadrant, then in the picture on the right a second polygon is drawn to select the

keypoints laying on the remaining fish.

Fig. 5. Example of ego-motion estimation through a fish swarm present in the LAKSIT sequence 1, generated by
monocular ORB-SLAM with a tuned initialization procedure as described in this paper. On the left the current
image with the tracked keypoints and on the right the 3D map with the camera poses (in blue) with the
covisibility links (in green). Initialization, mapping and tracking operations that follow rely entirely on keypoint
correspondences that are laying on moving objects. To be noted that keypoints highlighted in green on the left part
of the image are the keypoints currently tracked by ORB-SLAM, here they are not indicating suitable keypoints

found by our neural network.

l Patches: 2631 [ Pred. Suitable [ Pred. Unsuitable ]

Suitable 1532 - TP 19 - FN
Unsuitable 68 - FP 1012 - TN

Table 1. Confusion matrix calculated over the
test set (cf. section 2): True positive (TP),
True negative (TN), False positive (FP), False
negative (FN). Percentages: FP 2.6%, FN 0.7%

4. RESULTS

In this section we present results in terms of perfor-
mance in drift reduction and in terms of inference speed,
with different execution configurations and different net-
work floating point precision. During all the tests no

pre-processing, like histogram manipulations or brightness
augmentation, is performed. For analyzing the capabilities
of drift reduction, we analyzed several footages recorded
by a static camera inside a fish cage, used at a fish farming
site (LAKSIT project Fgre, M., Frank, K., Svendsen, E.,
Schellewald, C., Sunde, .M., Alfredsen, J.A. and Stahl, A.
(2017), to this date the dataset is not publicly available,
but it may be released in the future). From the LAKSIT
dataset, we selected 3 image sequences composed of 3120
images each with a resolution of 1280 x 1024 pixels. We
compare our system also with DynaSLAM Bescos et al.
(2018), which is based on ORB-SLAM. The monocular
ORB-SLAM is not always able to initialize on such se-
quences, because the apparent relative motion is not al-
ways consistent or the image is too blurred. Therefore, in
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order to obtain a higher initialization rate and in order
to demonstrate that 3D map-points are generated from
keypoints which belong to fishes, we decreased the amount
of keypoints required for the initialization step to 25. Since
ORB-SLAM enters the relocalization mode only after the
tracking is lost (and a minimum of 5 keyframes have
been generated), several different sub-sequences have been
chosen from the sequences, in order to find the longest drift
accumulated in each sequence (see Fig. 5). The results are
presented in Table 2.

With this keypoint rejection system, the ORB-SLAM
system does not have to (re-)initialize, and drift does not
accumulate over time, as most of the features detected at
the moving objects would not be considered for mapping
and tracking.

Approaches aiming to perform keypoint rejection for visual
ego-motion estimation (like the one presented in this
paper) using only a priori knowledge, may also reject
suitable keypoints. Examples of this behaviour are shown
in Fig. 6. We assume that in the underwater natural
environment it is unlikely that a priori dynamic objects
will remain static, and for this reason our approach is
negligible impaired by this effect.

DynaSLAM provides two different rejection systems for
the keypoints: a geometric test and a deep learning based
method. While the geometric test is ineffective when
elements in the scene are moving in a coherent way, the
deep learning based method, which masks regions that
should belong to moving objects, is effective in reducing
the drift, even if the network is not trained for underwater
scenarios.

Our system was also tested using the RT MVO dataset
Ferrera et al. (2019) without benchmarking (unavailability
of open source support). DynaSLAM as well as ORB-SIAM
were tested with our proposed keypoint rejection system
on the RT MVO data set and a similar performance for
both systems with respect to the estimated trajectories
were obtained. This is because the RT MVO sequences
does show a very clear sea bed and the moving objects
present in the sequences are only very small fishes, not
showing for example any schooling behaviour.

] Seq. ORB-SLAM DynaSLAM DynaSLAM-M  Ours ‘
1 29.13m 45.57m 7.75m Om
2 11.24m Om Om Om
3 14.68m 22.32m 3.09m Om

Table 2. Absolute translation error (ATE) ac-
cumulated by ORB-SLAM with respect to
three sequences out of the LAKSIT dataset,
without and with the keypoint rejection sys-
tem described in this paper (norm of the trans-
lation vector between the two initialization
frames set to 1). ATE of Om means that no
initialization did occur.

The next experiments show the result of the different exe-
cution configurations with respect to floating point preci-
sion, parallel instances of the network and batch inference
(we refer to Table 3). Note, due to the incompatibility
to the Tensorflow frozen model with a multi-thread ses-

sion creation procedure, no test has been performed with
a parallel implementation running half precision floating
point models.

Table 3 shows the results of our network with respect to
execution speed using a desktop PC featuring 64Gb of
RAM, a Nvidia GeForce RTX 2080 Ti and an Intel Core i9-
9900K 8 Core @ 3.6Ghz, using a Python 3 implementation.
The results are evaluated over a set of 5426 patches
extracted from 10 test images. The various configurations
evaluated differ by the type of processing unit utilized
(CPU or GPU), the floating-point precision of the model,
the number of threads launched (each executing a different
instance of the graph; each instance elaborates an equal
amount of patches), and whether we pre-loaded all the
test patches in a single feeding dictionary. Regarding the
floating-point precision, we tested the standard model
created by Tensorflow, which uses 32 bit floating-point
values both for constants and variables in the graph
against an optimized version using 16 bit floating-points
generated using the Nvidia TensorRT library. The values
of mean and standard deviation in the table are computed
over the entire images, averaging 543 keypoints (thus
patches) each.

In Table 4 we compare the inference speed of DynaSLAM
(Mask R-CNN) and the network used in this paper. The
mean inference time has been obtained averaging over the
time that took DynaSLAM to generate 100 masks from
underwater images. Our approach is eight times faster on
CPU and almost four times faster on GPU.

Our experiments showed that, given our network archi-
tecture and hardware, it is possible to achieve the high-
est inference speed with FP32 operations and 32 parallel
network inferences on the GPU, performing at around 16
FPS.

5. CONCLUSION AND FURTHER WORK

In this paper a keypoint classification system is used to
improve the robustness of visual ego-motion estimation
in underwater environments. The procedure involved uses
a deep convolutional neural network in order to classify
each keypoint exploiting the surrounding image patch
information. Only the keypoints which are classified as
suitable for tracking will be retained for motion estimation.

The approach has been verified by comparing the drift
accumulated by ORB-SLAM with a static camera record-
ing a dynamic image scene of fishes showing a schooling
behaviour with and without the keypoint rejection system
described in this paper. The approach has been verified
and benchmarked also against DynaSLAM, a state-of-the-
art monocular visual SLAM system which accounts for
dynamic environments.

We also discussed the inference performance for real-time
operation by using state-of-the-art optimization frame-
works for deep neural networks and parallel inference on
CPU and GPU. The results show that the best perfor-
mance can be achieved with a GPU acceleration, a floating
point 32 network with 32 parallel sessions, even if the
performance flattens out already under 16 parallel sessions.
The method proposed in this paper enables feature-based
underwater visual ego-motion estimation systems to oper-
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Fig. 6. This image shows the intrinsic risk of using the keypoint/area labeling algorithm: suitable keypoints/areas can
be labeled as unsuitable, lowering the overall robustness of the visual motion estimation. Two different frames,
coming from Sequence 1 of the RT MVO dataset are shown. On the left, circled in red, keypoints wrongly labeled
as unsuitable from the network described in this paper are shown. On the right a masked area which did contain
suitable seabed keypoints from DynaSLAM (Mask R-CNN) are shown.

Pro&isiiing Mean Std. Dev. FP Precision Threads Batch
Graphic 0.134s 0.065s 32 1 X
Graphic 0.080s 0.041s 32 4 X
Graphic 0.067s 0.034s 32 16 X
Graphic 0.062s 0.031s 32 32 X
Graphic 0.066s 0.032s 32 64 X
Graphic 1.139s 0.568s 32 1
Graphic 1.139s 0.314s 16 1
Central 0.377s 0.199s 32 1 X
Central 0.413s 0.213s 16 1 X
Central 0.213s 0.110s 32 8 X
Central 0.201s 0.097s 32 16 X
Central 3.401s 1.941s 32 1
Central 3.359s 1.667s 16 1

Table 3. Results of different network configurations for an inference speed analysis. Batch denotes
that the inference is performed on all the patches in a single session.

Algorithm Processing unit ‘ Mean ‘ Std. Dev.
Mask R-CNN Central 1.665s 0.147s

This paper Central 0.201s 0.167s
Mask R-CNN Graphic 0.230s 0.284s

This paper Graphic 0.062s 0.188s

Table 4. Inference speed of Mask R-CNN (the
network present in DynaSLAM, which per-
forms state-of-the-art object instance segmen-
tation) versus the network present in this pa-
per. The reported mean inference time corre-
sponds to the best performing parallel imple-
mentation for both networks.

ate at close distance from regions of interest for underwater
robotic applications, such as shipwreck or barrier reef
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monitoring, which are rich in marine life (causing dynamic
image scenes). The proposed approach can be improved
by using more training data representing unknown fish
species, rock types, or other objects our CNN was not
trained on. Data augmentation techniques, such as rota-
tion, contrast manipulation and noise injection are likely
to improve the generalization capabilities of the network.
Therefore, it is advisable to train the network in such
a manner that the false negative rate (i.e. the suitable
keypoints that get classified as wunsuitable keypoints) is
as low as possible. Future work can also include opti-
mizing the network for inference speed on more robotics-
oriented computing platforms like the Nvidia Jetson AGX
Xavier Nvidia (2019a) or even the Nvidia Jetson Nano
Nvidia (2019b). Furthermore, the problem can be approx-
imated by grouping neighbor keypoints and so reducing
the amount of patches to be evaluated for each frame.
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