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Abstract: This work proposes a guidance strategy of multiple robots to converge and circulate
a curve while avoiding collisions by using a distributed model predictive control. To build
the model predictive control framework, systems guided by control laws with parameters are
considered, which laws are embedded in the optimization problem. After that, the same problem
is distributed using the Alternating Direction Method of Multipliers and nonlinear optimization.
To solve the task of convergence and circulation of a closed path, a vector field based control
law is embedded in the predictive control scheme. The control law results from the sum
of two components, a convergence term and a circulation term, whereas each term has one
proportional parameter associated. Numerical results present an application example, and the
strategy effectiveness is discussed.

Keywords: Vector fields, distributed model predictive control, alternating direction method of
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1. INTRODUCTION

The control of multi-robot systems has been widely studied
in the past decades, due to the increased ability to execute
certain tasks that could not be accomplished by single
agents. Some interesting tasks require convergence and cir-
culation of a desired curve, such as perimeter surveillance
(Pimenta et al., 2013), tracking a moving target (Briñón-
Arranz et al., 2019), and environmental monitoring (De-
Vries and Paley, 2012). To converge to limit cycles, vector
field-based control strategies have been used (Jung et al.,
2016; Frew and Lawrence, 2017; Gonçalves et al., 2010b).
The main advantages of that type of strategy are the
stability guarantees and the intrinsic robustness of vector
field approaches.

Regarding multi-robot systems, the ability to optimize
the system’s trajectories distributively attracts the atten-
tion of researchers to distributed model predictive control
(DMPC) approaches. The major advantage of optimal con-
trol strategies is the capability of minimizing (or maximiz-
ing) a cost functional, taking into account the constraints.
By considering a receding horizon, MPC provides feedback
to the system, which increases the robustness in front of
external disturbances and parametric uncertainties (Rawl-
ings and Mayne, 2009). In complex and large systems, to
employ a centralized controller might be infeasible, as high
computational burden is involved. Consequently, it is gen-
erally beneficial to implement decentralized or distributed
strategies (Maestre and Negenborn, 2014). Furthermore,
computing the control signals in a distributed manner
increases robustness in front of system failure, since the

optimization does not depend on a unique central process-
ing unit.

To alleviate the computation of optimal control problems,
parametrization of trajectories and control laws has been
proposed. In Droge and Egerstedt (2013), e.g., a DMPC
scheme is set considering parameterized control laws that
are embedded in the optimal control problem, in which
the parameters are chosen optimally. The global cost is
optimized using the dual-decomposition method imple-
mented via gradients. A parametrization of trajectories
considering splines is developed in Van Parys and Pipeleers
(2017). In that work, the agents’ dynamics are considered
to be diferentially flat, which allows enforcing formation
and input constraints. To distribute the optimization, the
authors apply one iteration of the Alternating Direction
Method of Multipliers per MPC cycle, which lowers the
computational cost.

In this work, we proposed a multi-robot control system
based on a distributed predictive control strategy consid-
ering parameterized control laws, i.e. a control law with
tunable parameters. As the distributed predictive control
needs to predict and agree on the trajectories of the neigh-
boring agents, the use of parameterized control laws is
convenient assuming that the trajectory may be predicted
with the initial state, the control law parameters, and
the agent dynamics. Furthermore, the strategy allows to
employ well-established control laws for certain a system.

To solve the optimization problem, we adopt the Alter-
nating Direction Method of Multipliers (ADMM). In this
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technique, each agent has a version of the variables of
the neighboring agents. To aim equality between these
variables, the technique uses Lagrange multipliers and a
penalty term that provides more robustness to the dis-
tributed optimization. As described previously, this tech-
nique has been implemented in multi-robot distributed
MPC in Van Parys and Pipeleers (2017), but instead
of spline-based trajectories, we use parameterized control
laws as in Droge and Egerstedt (2013). The ADMM has
also been implemented in Rey et al. (2018) and Ferranti
et al. (2018) to solve optimal control problems regarding
unmanned vehicle navigation with collision avoidance con-
straints.

The control laws considered in this work are based on
the vector fields provided by Gonçalves et al. (2010a);
Gonçalves et al. (2010b), with slight modifications. These
control laws provide convergence and circulation to closed
curves described by implicit functions in 2-dimensional
spaces. In the parameterized MPC context, two param-
eters are considered: one that provides attraction to the
aimed curve and one that impels the circulation of the
curve. A similar parametrization without any optimal con-
trol policy has been implemented in Pimenta et al. (2013),
in which priority-based modulation functions (Hsieh et al.,
2008) were used to tune the convergence and circulation
terms to avoid collisions.

This work presents an extension of the vector field navi-
gation framework by regarding the problem of modulating
the convergence and circulation fields as an optimization
problem, which allows us to pursue collision avoidance
through distributed optimal control. Besides that, a pa-
rameterized distributed optimization scheme using the al-
ternating direction method of multipliers is proposed.

2. PROBLEM STATEMENT

In this work we address the problem of convergence and
circulation of a curve by a group of robots while avoid-
ing collisions among them. This problem is approached
with the vector field navigation framework provided by
Gonçalves et al. (2010a) and Gonçalves et al. (2010b), the
parameterized DMPC (Droge and Egerstedt, 2013), and
ADMM (Boyd et al., 2011; Wang et al., 2019).

Consider a set Ω that contains N robots ωi, in which
i = 1, ..., N . The robots are considered to move in the 2-
dimensional space, and its states are described as xi(t) =
[x1 x2] at the time instant t. From the vector field frame-
work, the robots are assumed to be single integrators

ẋi = ui. (1)

Each robot ωi has a communication range δ. The set of
agents within the perceived sphere of ωi is given by

Ξi , {ωj ∈ Ω | ||xi − xj || ≤ δ, j 6= i}, (2)

and consequently, if ωi is in the perception range of ωj , ωj
is in the perception range of ωi, that is

ωi ∈ Ξj ⇔ ωj ∈ Ξi. (3)

To accomplish the task, the group of robots must converge
and circulate a curve implicitly defined by the function
φ(x1, x2) = 0. Further assumptions on the choice of
φ(x1, x2) are made in Section 5. The problem to be solved
may be summarized as following.

Problem Statement 1. Given a group of robots ωi ∈ Ω
for i = 1, ..., N with dynamics (1) and communication
range δ, design a control strategy capable of providing
convergence and circulation of a curve φ(x1, x2) = 0 while
avoiding collisions among robots.

3. OPTIMAL CONTROL PROBLEM

In order to solve the problem described in Section 2, we
propose a parameterized MPC scheme distributed by the
ADMM. The MPC strategy consists basically in comput-
ing the optimal control sequence that minimizes a cost
functional in a prediction horizon ∆, then applying the
first control signal and restarting the cycle (Rawlings and
Mayne, 2009). In parameterized MPC (Droge and Egerst-
edt, 2013), parameterized control laws are embedded in
the optimal control problem such that the parameters are
decision variables.

Based on the vector field framework and assuming the
agents as simple integrators, the closed loop dynamics,
considering parameterized control laws ui = κi(xi,θi),
are given by

ẋi = κi(xi,θi), (4)

in which xi ∈ R2 is the state vector, and θi ∈ Rp is the
parameter vector with p parameters.

By implementing parameterized control laws, the number
of decision variables in the optimal control problem is
reduced from a control sequence to a small set of pa-
rameters. Besides that, since the problem is solved with a
lesser degree of freedom, less ability to minimize the cost is
expected. Regarding distributed multi-robot systems, the
parameterized predictive control strategy is convenient,
since it allows the computation of agents’ trajectories by
the neighboring agents with limited amount of data: the
initial state, the control law parameters and the dynamics
of the agents. In this case, it is not necessary to compute
and to communicate the entire control sequence (Droge
and Egerstedt, 2013).

With regard to the problem previously stated, an optimal
control problem is set. Considering the entire set Ω, the
global optimization problem is given by

min
x̄,θ̄

∫ tf

t0

Lg(x̄, θ̄)dt

subject to ˙̄x = κ̄(x̄, θ̄),

(5)

in which x̄ is the generalized state vector containing all
agents states, θ̄ is the generalized parameters vector and κ̄
is the generalized control law. The term Lg(x̄, θ̄) refers to
the global stage cost, that must be designed regarding the
accomplishment of the task, that is, driving the solution of
the optimization problem to obtain convergence, circula-
tion and collision avoidance by the agents. Also, note that
parameterized MPC is not limited to the task proposed in
this work, but suits for every multi-robot task that can be
modeled as a global optimal control problem. Concerning
predictive control, the final time is set to be tf = t0 + ∆.

To solve the problem (5) in a distributed manner, the
global cost must be split among agents. Considering the
split of (5) regarding the communication ranges, one can
obtain
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min
x̄,θ̄

N∑
i=1

∫ tf

t0

Li(x̄i, θ̄i)dt

subject to ˙̄xi = κ̄i(x̄i, θ̄i), ∀i ∈ {1, ..., N},
θ̄ij = θ̄jj , ∀ωj ∈ Ξi,

(6)

in which the generalized vectors x̄i and θ̄i contain the
positions and parameters of the j-th agents such that j ∈
Ξi ∪ {i} as computed by the i-th agent. Furthermore, θ̄ij
is the parameter vector of the j-th agent as computed by
the i-th agent. We emphasize that the i-th agent computes
its own variables and the variables of the agents in the
perception set Ξi.

To split the global cost considering the communication
range, the global cost, and, consequently, the individual
costs must be varying. At each MPC cycle, the sets of
agents inside the communication range Ξi ∀i may change.
Indeed, if the i-th agent does not communicate with an
agent j, there must be no coupling between these agents
in the optimal control problem.

The following sections describe the distributed optimiza-
tion scheme used to solve the problem (6) and the vector
field control laws.

4. ADMM BASED PARAMETERIZED DISTRIBUTED
PREDICTIVE CONTROL

In multi-agent systems, a distributed optimal control
scheme renders more robustness, since the decision is no
longer associated with a central processing unit, but with
a set of local negotiations between agents. Among the
classical distributed optimization methods, the ADMM
is the one that provides better robustness and generally
converges faster (Boyd et al., 2011).

In distributed optimization, a global cost f(x) is split
among N processing units. If all the processing units
decide about the same decision variable, that is, the same
decision variable is present at all the local cost functionals,
a case of global consensus is set. Therefore, to ensure that
the solution of each local optimization problem reaches
the same global solution the equality constraint must be
satisfied, as follows

min
∀xi

∑N
i=1 fi (xi)

subject to xi − z = 0, i = 1, . . . , N,
(7)

in which xi is the local decision variable and z is the global
decision variable.

In ADMM the coupling constraints are relaxed by adding
Lagrange multipliers and an additional penalty term that
provides more robustness to the distributed optimization
(Boyd et al., 2011). The augmented cost functional is given
by

Lρ (x, z, y) =

N∑
i=1

(
fi (xi) + yTi (xi − z) +

ρ

2
‖xi − z‖22

)
,

(8)
in which yi is the Lagrange multiplier associated to the
i-th processing unit, and ρ > 0 is a penalty constant to be
chosen.

The set of iterations for the global consensus problem using
ADMM is defined as following (Boyd et al., 2011)

Fig. 1. Communication range example.

xk+1
i = argmin

xi

(
fi (xi) + (yki )T

(
xi − zk

)
+
ρ

2

∥∥xi − zk∥∥2

2

)
(9)

zk+1 =
1

N

N∑
i=1

(
xk+1
i + (1/ρ)yki

)
, (10)

yk+1
i = yki + ρ

(
xk+1
i − zk+1

)
. (11)

From the iteration set (9 – 11), one can observe that
ADMM requires two communication phases at each cy-
cle. First, each agent computes the x-minimization step,
obtaining xk+1

i . After that, the computed value is trans-
mitted to a central collector (also named fusion unit) that
gathers all the information and computes zk+1. Thereafter,
the zk+1 value is transmitted by the centralizer unit to all
the agents, which compute the Lagrange multipliers yk+1

i .

In this work, an agent can only communicate with agents
in a certain range. Therefore, there is no global consensus,
instead a set of local consensus problems in which the i-th
agent is the fusion center of the θi variable. This problem
is named as general consensus (Boyd et al., 2011) and
the solution is similar to the one previously presented.
Indeed, the decision variables of the i-th agent are deter-
mined by the agent network defined by the communication
range. In these conditions, each local consensus problem
is equivalent to a global one, considering only the shared
decision variables and the agents in the communication
range. Fig. 1 illustrates the optimization scheme with a
four agents example, in which the agents and their com-
munication ranges are drawn. Agent ω1 connects only with
ω2, therefore, only ω1 and ω2 influence the choice of θ1.
As ω2 connects to ω1 and ω3, the three agents negotiate
to achieve consensus on θ2 value. Similarly, as ω4 does not
connect to any agent, there is no influence of other agents.

As shown in Section 3, the optimal control problem is
given by (6). One may note that this global problem can
be split by the ADMM technique previously described.
Therefore, the cost from the problem (6) is augmented as
in the ADMM distributed optimization, yielding

Lρ,i(x̄i(t), θ̄i, ȳi, z̄i) =

∫ tf

t0

Li(x̄i(t), θ̄i)dt

+
∑

j∈Ξi∪{i}

(
ȳTij(θ̄ij − z̄ij) +

ρ

2

∥∥θ̄ij − z̄ij∥∥2

2

)
, (12)

in which z̄i is the generalized vector that contains z̄ij = zj
∀j ∈ Ξi∪{i}. Remember that if an agent knows the initial
position, the dynamics, and the parameters of a neighbor
agent, the state trajectory can be computed, and therefore
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the consensus on the trajectories of the states is achieved
via parameters.

Algorithm 1 aims to compute the control laws’ parameters.
In that algorithm, an external loop is responsible for
incrementing the MPC horizon, while an internal loop is
responsible for finding the optimal problem solution in a
distributed manner. One can note that in the internal loop
the sets of agents in range Ξi are taken into account. As in
Van Parys and Pipeleers (2017) and Ferranti et al. (2018),
the number of ADMM iterations per MPC cycle nite is
limited, aiming to reduce the communication exchange
and the computational burden. In addition, after the first
ADMM iteration in each MPC cycle, the optimization
problems are warm started with the previous computed
solutions.

Algorithm 1 Distributed Parameterized Model Predic-
tive Control
1: repeat
2: t := t+ dt;
3: t0 := t;
4: tf := t0 + ∆;
5: nite := 0;
6: Each agent communicates θ̄ii and xii(t0) to the

agents in range.
7: repeat
8: In parallel, each agent solves an optimization

problem
θ̄k+1
i = argmin

θ̄i

Lρ,i(x̄i(t), θ̄i, ȳ
k
i , z̄

k
i )

subject to ˙̄xi(t) = κ̄i(x̄i(t), θ̄i),−θmax...
−θmax

 ≤ θ̄i ≤
θmax...
θmax

.

9: Each agent communicates θ̄ii, θ̄ij and ȳij .

10: In parallel, the i-th agent computes zk+1
i

zk+1
i := 1

|Ξi|+1

∑
j∈Ξi∪{i}

(
θ̄k+1
ji + (1/ρ)ȳkji

)
.

11: Each i-th agent transmits the zk+1
i value.

12: In parallel, each agent computes the Lagrange
multipliers
ȳk+1
i := ȳki + ρ

(
θ̄k+1
i − z̄k+1

i

)
.

13: nite = nite + 1
14: until nite == nmax
15: Apply the first control signal computed.
16: until reaches the final time

Convergence of the ADMM regarding convex problems is
a well established result (Boyd et al., 2011).

5. VECTOR FIELD NAVIGATION

The strategy used to guide the agents to converge and
circulate a curve is based on those presented in Gonçalves
et al. (2010a) and Gonçalves et al. (2010b), with some
slight modifications. In this work, we focus on closed pla-
nar curves that can be described by a function φ(x1, x2) :
R2 → R as the constraint φ(x1, x2) = 0, in which x1 and
x2 are coordinates in a Cartesian system x ∈ R2 such
that x = [x1 x2]T . To produce the desired behavior, the
function φ(x1, x2) must be positive when evaluated outside
of the desired curve, and negative inside.

The task of convergence and circulation can be solved
separately. After that, the solutions are joined, generating
a vector field in the form

v(x1, x2) = N(x1, x2) + T (x1, x2), (13)

in which N(x1, x2) is a field component normal to the
contour curve at (x1, x2), and T (x1, x2) is a field compo-
nent tangent to the same contour curve. The first term is
responsible for providing convergence to the aimed curve,
while the second is responsible for driving the circulation
of the curve.

As proposed in Gonçalves et al. (2010a), a vector field-
based control law κi(xi) := v(x1, x2) in the form of (13)
can be defined as

κi(xi) = G(φ)∇φ+H(φ)∇Hφ, (14)

for an agent i, in which φ is evaluated in xi. The function
G(φ) is defined such that G(φ) > 0 for φ < 0, G(φ) < 0
for φ > 0, and G(0) = 0, ∇φ is the gradient of φ,
H(φ) is a function that defines the circulation sense, and

∇Hφ =
[
− ∂φ
∂x2

∂φ
∂x1

]T
is the vector orthogonal to the

gradient, denominated Hamiltonian vector field. Note that
the first term guarantees convergence and the second term
circulation.

Similarly to Pimenta et al. (2013), we desire to avoid
collisions among robots by modulating the parameters
of the vector field. In this work, a parameter vector
θi ∈ R2 is considered, in which the first is multiplied
by the convergence term and the second is multiplied by
the circulation term. With the introduced parameters, the
control law is given by

κi(xi) = θ1G(φ)∇φ+ θ2H(φ)∇Hφ. (15)

As one can observe in (15), the vector field magnitude in
each point (x1, x2) depends on the choice of the function
φ. This characteristic can generate huge control signals
through optimal control solved discretely, and therefore
cause large displacements between two samples when as-
suming unbounded velocities, making collision detection
difficult. In front of this, we limit the parameters between
±θmax, and the vector field components are normalized

κi(xi,θi) = θ1G(φ)
∇φ
||∇φ||

+ θ2H(φ)
∇Hφ
||∇Hφ||

. (16)

As the gradient is zero only on the center of the curve,
there are no divisions by zero if the agents’ initial position
is considered to be different from that point, since the
center of the curve is repulsive. To illustrate the influence
of tuning θ1 and θ2 on the vector field, Fig. 2 shows
three tuning situations for a given vector field. As ex-
pected, when the convergence parameter dominates the
vector field, the vectors point almost directly to the curve.
Conversely, when the circulation parameter dominates, the
vectors are disposed almost tangentially to the curve.

To aim at convergence to the curve while avoiding colli-
sions, the i-th agent stage cost might be chosen as

Li(x̄i(t), θ̄i) = η1(θ̄ii,1 − θd1)2 + η2(θ̄ii,2 − θd2)2

+ η3

∑
j∈Ξi

exp
(
−ζ
(

(x̄ii(t)− x̄ij(t))T (x̄ii(t)− x̄ij(t))

−εe)) , (17)
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Fig. 2. Example of vector field modulation by the control law parameters.

in which η1, η2 and η3 are weighting parameters, ζ > 0 is
a constant, εe is a safety distance, and θ̄ii = [θ̄ii,1 θ̄ii,2]T is
the parameter vector of the i-th agent computed by itself.
The terms (θ̄ii,1−θd1)2 and (θ̄ii,2−θd2)2 penalize the cost
based on the desired convergence and circulation param-
eters, θd1 and θd2, respectively. The sum of exponential
functions provides repulsion between agents.

As the elements of the parameter vectors are limited
between ±θmax, the three terms in (17) are bounded.
Therefore, collision avoidance can be aimed by choosing
η1, η2, η3, ζ and θmax properly.

6. RESULTS

In order to observe the complete system operation, a sim-
ulation with eight agents is proposed. As target, consider
the quartic plane curve described implicitly by the function

φ1 (x1, x2) = ax4
1 + bx2

1x
2
2 + cx4

2 − 1 = 0, (18)

in which a = 1/16, b = −2/5 and c = 1. This curve is the
same presented previously in Fig. 2.

The agents are guided by the control law presented in (16)
in the form

κi(xi,θi) = θ1 tanh(−φ)
∇φ
||∇φ||

+ θ2
∇Hφ
||∇Hφ||

, (19)

in which the parameters θ1 and θ2 are chosen optimally
according to the cost functional described in (17). The
control laws’ parameters are bounded by −1 ≤ θ1 ≤
1 and − 1 ≤ θ2 ≤ 1, and the optimization weights and
variables are chosen as ρ = 4, η1 = 1, η2 = 5, η3 = 5,
ζ = 10, and θd1 = θd2 = 0.5. Also, the robot has radius
r = 0.3m and ε = 4r2. As discussed in Gonçalves et al.
(2010a), convergence and circulation of the curve happen
if θd1 and θd2 are greater than zero. From Equation (19),
one can note that the maximum velocity occurs when
|θ1| = |θ2| = θmax, and therefore, θmax has the role of
limiting the maximum velocity, and θd1 and θd2 are defined
regarding desired velocities.

The total simulation time is set 60 s with step size dt =
0.1 s and prediction horizon ∆ = 1 s. Besides that, each
agent has a perception range δ = 1m, and the maximum
number of ADMM iterations is set nmax = 5. The opti-
mization problems are implemented in CasADi (Andersson
et al., 2019) and solved with the Ipopt package (Wächter
and Biegler, 2006).

Initially, the agents are disposed in line, as presented in
Fig. 3, in which each agent is represented by a colored

-4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

Fig. 3. Agents’ trajectories.

square surrounded by a safety distance circle. In the same
figure, one can observe the initial position of agents and the
convergence of trajectories to the desired curve. In the final
time, the agents are spread over the curve, in which the
distance between agents depends on the communication
range and the weight parameters.

The computed control laws’ parameters are presented
in Fig. 4, in which the convergence parameters are the
continuous lines and circulation parameters are the dashed
lines. One can observe that most of the variations occur in
the first 30 s. Indeed, at the beginning of the simulation,
the agents are next to each other, requiring modulation of
the control laws to increase distance among agents. Once in
the curve, small fluctuation occurs when different agents
appear in the perception range of an agent. In average,
each local optimization problem took 0.018 s to be solved
and the worst case was solved in 0.1175 s.

Variations of the cost functional weights are also tested. In
one simulation, the weights are set as η1 = 1, η2 = 1, η3 =
10 and η4 = 10, in which collision avoidance is prioritized
over convergence and circulation. Numerical results show
that in this case, the set of robots stuck over the curve. In
another simulation, the weights are set as η1 = 1, η2 = 5,
η3 = 1 and η4 = 5, in which circulation is prioritized. As
a very low weight is attributed to the collision avoidance
cost, a collision happens. All the simulation videos can be
watched in https://youtu.be/1_TQ6XRnJj8.
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7. CONCLUSION

This work proposed a strategy to drive a convoy of agents
to converge and circulate a curve while avoiding colli-
sions. The strategy is based on embedding a control law
with parameters in a predictive optimal control problem.
Hence, the agent dynamics are restricted to the control
law behavior, in which the control law parameters are
the decision variables. The optimal control problem is
solved in a distributed way using the ADMM method and
considering a communication structure that varies at each
control cycle.

Numerical results show that collision avoidance is obtained
by including repulsive terms in the cost functional with
a careful selection of weighting parameters. Future works
aim to demonstrate stability of the proposed DMPC,
besides experimental results.
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