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Abstract: In this paper, we examine the maximal delay range for robust consensus by using PID-type
control protocol for linear first-order multi-agent systems subject to time-varying delays. We derive
explicit lower bounds for guaranteed robust consensus of first-order unstable agents collaborated
with each other under PID-type control protocol with time-varying delays, which provide a priori
the range of delay over which the multi-agent system is guaranteed to obtain robustly consensus by
proportional (P) and proportional-derivative (PD) protocols for undirected graphs respectively. The
results show how the agent dynamics and graph connectivity may fundamentally limit the range of
delay tolerable. They also indicate that the derivative control protocol provides an added benefit to
increase the allowable delay range by incorporating the delay variation rate. Finally, the numerical
examples are used to illustrate the effectiveness of the proposed theoretical results.

Keywords: Maximal delay range, robust consensus, time-varying delay, PID-type protocol,
undirected graph.

1. INTRODUCTION

Multi-Agent Systems (MAS) have increasing consideration
in the distributed coordination and optimization in recent
years. Consensus problem, as a central problem in the analy-
sis and design of MAS, has been studied extensively. However,
due to the agents communication to their neighbors via a
communication network with limited bandwidth, the infor-
mation transmission will be inherent delayed. Another delay
comes from the computation and the execution time of the
agents. These delays are often unknown and time-varying. To
account for the potential degrading effect of such time delays,
one must incorporate delays into consensus protocol design.
Meanwhile, from the control design point of view, it is nec-
essary to address the robustness of the consensus protocol.
As such, it is of interest to develop conditions such that the
MAS may achieve consensus robustly despite the presence of
possibly uncertain and time-varying delays, and to provide
estimation on the delay range so that the consensus can be
guaranteed a priori.

Delay robustness of MAS consensus has been addressed
in the recent literature. Notably, upper bounds on homo-
geneous delay are obtained in Olfati-Saber et al. (2004) to
guarantee the consensus robustness of first-order single-
integrator agents. Heterogeneous delays are considered in
Münz et al. (2010), where a frequency-sweeping method was
proposed to estimate the delay range for consensus robust-
ness. The method also gives rise to explicit bounds for single-
integrator agents. For second-order agents, robust consen-
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suability problems were studied in Münz et al. (2010), Yang
et al. (2010) and Wang et al. (2014), which result in conditions
that ensure double-integrator agents to achieve consensus
robustly against delays varying within a range. More gener-
ally, in the presence of time-varying delays, some sufficient
conditions on bounded uniform delays with arbitrarily fast
time-varying are proposed in Chen et al. (2017) by analyzing
the delay-dependent gains. Another maximal admissible up-
per bound on robust consensus of MAS with bounded unifor-
m delays is required to have the eigenvalues on the imaginary
axis (Wang et al. (2014)). In addition, it was shown in Münz
et al. (2011) that with a nonlinear, adaptive control protocol,
consensus can be maintained for arbitrarily long delays. The
majority of the existing results mainly concern with the de-
sign of consensus protocols of varying complexities, ranging
from simple static state feedback to dynamic, nonlinear and
adaptive output feedback. In this paper we consider agents
under a time-honored and the favored control law (Aström
et al. (1995)) PID-type control protocol with uniform time-
varying delays, under undirected network topologies. Previ-
ous results on PID-type consensus protocols can be found
in, e.g., Ma, and Chen (2019), though delay consensus ro-
bustness has been seldom addressed. Our objective is to find
the maximal allowable delay range of first-order MASs, within
which the MAS can achieve and maintain consensus robustly.
On the other hand, motivated by the recent theoretical stud-
ies of PID control for delay systems (e.g., Silva et al. (2002);
Ma, and Chen (2019)), we focus on the restricted structure
and complexity PID-type control protocols, and especial-
ly examine the maximal delay range for robust consensus
achievable by P-type and PD-type control protocols. From
the important discovery that we found, PID-type and PD-
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type protocols achieve the same delay robustness (Chen et al.
(2019); Ma, Chen, Lu, & Chen (2019)), it suffices to consider
PD-type protocols to investigate the delay robustness.

In this paper, we study the robustness ability of the feedback
control protocol to the time-varying delay and obtain the
explicit lower bound for the rate-independent delay in light of
the small-gain theorem. A sufficient and easy-to-check con-
dition for the guaranteed robust consensus range of the MAS
is established. Furthermore, we try to find that the derivative
feedback protocol offers the extra degree of freedom to obtain
an increased delay range by incorporating the delay variation
rate. As expected, the bounds show how the agent dynam-
ics and graph connectivity may fundamentally limit the al-
lowable range of delay under undirected graphs, if the time-
varying delay is variation rate-independent. In addition, the
allowable delay range will be increased by incorporating the
delay variation rate under the PD-type control protocol with
respect to P-type control protocol.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Mathematical Preliminaries

We begin with a brief review of algebraic graph theory. A
graph of order N can be represented as G = (V , E , A), where
V = {1, . . . , N} is the node set with each node representing
an agent, E ⊆ V × V is an edge set of paired nodes, and
A = [a i j ] is an N × N adjacency matrix of the graph G. If
an edge (i , j ) ∈ E , the j th node can obtain information from
the i th node. The node i is called a neighbor of node j . The set
of neighbors of node i is denoted asNi ¬ {j |(j , i ) ∈ E}. The
graph G is said to be undirected if for all u , v ∈ V , (u , v ) ∈ E
implies that (v, u ) ∈ E . A path from node v1 to node vk is a
sequence of nodes v1, . . . , vk such that for each i , 1 ≤ i ≤
k − 1, (vi , vi+1) is an edge. A graph is said to be connected
if there exists a path from any node to any other node, and
complete if every pair of distinct vertices is connected by an
edge. Throughout this paper, we assume that the graph under
consideration is undirected and connected. The adjacency
matrixA = [a i j ] of a graph G satisfies the conditions a i i = 0
and a i j > 0 if (v j , vi ) ∈ E , a i j = 0 if (v j , vi ) /∈ E for all i , j ∈
V . The degree of node i is defined as d i =

∑N
j=1 a i j , i , j ∈ V .

Then for the graph G, the degree matrix of G is defined by
D ¬ diag{d 1, d 2, . . . , d N}, and the Laplacian matrix L =
D − A. Denote by 1N = [1 1 · · · 1]T . For a connected graph,
it is well-known that L has zero row sums, or equivalently,
L has an eigenvalue at the origin with the eigenvector 1N ,
i.e., L1N = 0. Furthermore, the Laplacian matrix L admits
a unitary decomposition L = WΛWH ,W = [w1 w2 · · · wN ]
is a unitary matrix. In particular, for an undirected graph,
Λ is in general symmetric and nonnegative definite, so that
Λ = diag{λ1, λ2, · · · , λN}with 0 = λ1 < λ2 ≤ · · · ≤ λN .

2.2 Consensus and Protocol

Consider a MAS of continuous-time first-order linear agents

ẋ i (t ) = αx i (t ) + u i (t ), i = 1, . . . , N , (1)

where α ≥ 0 represents the unstable dynamics of the agents,
u i (t ) are the control inputs, and x i (t ) are the states of the
agents. Note that for a first-order system, the state coincides
with its output. Since the existing communication delay and

the self-delay, with the network graph represented by its ad-
jacency matrix A, we consider the following consensus pro-
tocol

u i (t ) = −K (s )
N
∑

j=1

a i j [x i (t − τ(t ))− x j (t − τ(t ))], (2)

where K (s ) is a linear time-invariant feedback control, which
in general is a dynamic output feedback control law, τ(t ) is a
time-varying delay, satisfying that

0 ≤ τ(t ) ≤ τM , (3)

0 ≤ |τ̇(t )| ≤ ρ ≤ 1, (4)
where τM is the maximal delay range and ρ is the maximal
variation rate of the delay.

In this paper we are particularly interested in PID-type
control protocols. Specifically, we focus on the subclass of
proportional-derivative (PD-type) control protocols

KPD (s ) = kp + kd s , (5)

and the proportional (P-type) control protocols

KP (s ) = kp . (6)

For any finite initial state x i (0), the MAS (1) achieves consen-
sus over the graph G if and only if

lim
t→+∞

‖x j (t )− x i (t )‖ = 0, ∀i , j = 1, . . . , N . (7)

Furthermore, with the delayed control protocol (2), for some
delay value τ̄ ≥ 0, we say that the MAS (1) achieves ro-
bust consensus over the graph G if for any finite x i (0), i =
1, . . . , N , the condition (7) holds for all τ(t ) ∈ [0, τ̄).

Define δi (t ) = x i (t )− x1(t ), i = 1, · · · , N and write δ(t ) =
[δ1(t ),δ2(t ), ...,δN (t )]T. For the PD-type control protocol (2)
with (5), it follows that

δ̇(t ) = αδ(t )− (L− 1Nβ
T )
�

kpδ(t − τ(t )) + kd δ̇(t − τ(t ))
�

,
(8)

where βT is the first row of L. Evidently, the consensus con-
dition (7) is satisfied if and only if lim

t→+∞
δ(t ) = 0. In addition,

let δ̃(t ) = WTδ(t ) and δ̂(t ) = [δ̃2(t ), · · · , δ̃N (t )]T. It is easy
to see that lim

t→+∞
δ(t ) = 0, i.e., the consensus is achieved if

and only if lim
t→+∞

δ̂(t ) = 0, where by simple algebraic manip-

ulation using the property ofW in the preliminaries, δ̂(t ) is
found as

˙̂δ(t ) = αδ̂(t )− Λ̂
�

kp δ̂(t − τ(t )) + kd
˙̂δ(t − τ(t ))

�

, (9)

with Λ̂ being a diagonal matrix, whose diagonal elements
consist of the eigenvalues λ2, · · · , λN . Hence, for the time-
varying delay τ(t ) ≥ 0, the MAS (1) achieves consensus
under the protocol (2) with (5) if and only if the system (9)
is asymptotically stable. It achieves robust consensus under
the protocol (2) with (5) for all τ(t ) ∈ [0, τ̄) if and only if (9)
is robustly stable for all τ(t ) ∈ [0, τ̄).

It is worth pointing out that the equation (9) defines a neutral
delay system. The stability of this system (Gu et al. (2003)) can
be ensured only if the discrete part of the system

δ̂(t ) + kd Λ̂δ̂(t − τ(t )) = 0 (10)

is stable. Compared with the constant delay case, in the p-
resence of a time-varying delay, the stability of the system
(9), albeit more sophisticated, can be analyzed using a small-
gain criterion. Toward this end, we introduce the linear time-
varying operator

∆δ̂(t ) = δ̂(t − τ(t )).
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The system (9) can be described by the block diagram shown
in Fig. 1. Define Γ = {2, 3, · · · , N} and by employing the
small-gain condition (Zhu et al. (2018)), we assert that the
system (10) is stable provided that

ρ(kd Λ̂) = |kd |max
i∈Γ
|λi | < 1, (11)

where ρ(·) denotes the spectral radius of a matrix. Note that
to achieve robust consensus, it is necessary that the system
achieves consensus for τ(t ) = 0; that is, the system (9) with
τ(t ) = 0 is stable, or equivalently, the polynomials

(1 + λi kd )s + (λi kp − α) = 0, i ∈ Γ (12)

are all stable. It follows that with an undirected graph G, the
system (2) are all stable whenever |kd | < 1/λN and kp >
α/λ2. Hence, the feasible parameter set for (kp , kd ) under the
undirected graph G is found as

Ωu−PD =
�

(kp , kd ) : kp >
α

λ2
, |kd | <

1

λN

�

.

Fig. 1. Diagram of the system (9)

Similarly, the MAS (1) achieves robust consensus by P-type
control protocols (2) with (6) if and only if

˙̂δ(t ) = αδ̂(t )− Λ̂kp δ̂(t − τ(t )), (13)

are all stable.

Evidently, the control parameter set for the P-type control
protocol under undirected graphs is found as

Ωu−P =
�

kp : kp >
α

λ2

�

.

3. DELAY CONSENSUS MARGIN AND LOWER BOUND
ACHIEVED BY P-TYPE AND PD-TYPE CONSENSUS

PROTOCOLS

3.1 Delay Consensus Margin

In this section our primary objective is to determine the max-
imal delay range so that consensus can be achieved robustly.
Firstly, let us revisit the constant but unknown delay (Ma,
Chen, Lu, & Chen (2019)). This amounts to determining the
delay consensus margin (DCM) achieved by PD-type control
protocol (2) with (5)

τC D−PD = sup {µ ≥ 0 : There exists KPD (s ) such that

consensus is achieved for ∀τ ∈ [0,µ).}
and the DCM achieved by the P-type control protocol (2) with
(6)

τC D−P = sup {µ ≥ 0 : There exists KP (s ) such that

consensus is achieved for ∀τ ∈ [0,µ).} .

For conventional single-loop feedback systems, the delay
margin has been well studied with general linear time-
invariant controllers (Qi et al. (2017)) and PID controllers (Sil-
va et al. (2002); Ma, and Chen (2019)). As for the DCMs of first-
order agents (Xu et al. (2013)) and second-order agents (Ma,
Tian, Zulfiqar, Chen, & Chai (2019)) under the proportional
control protocol, the exact expressions have been derived.
However, for the time-varying delay, it is a rather difficult
problem to obtain the exact DCM. It is generally impossible
to obtain necessary and sufficient stability conditions for the
time-varying system. As such, in this section we will derive
the lower bounds on the allowable delay range τT V−P and
τT V−PD , respectively.

Before giving the main results, we consider the general delay
system as follows

ẋ (t ) = Ax (t ) + Bu (t − τ(t ))
y (t ) = C x (t ), (14)

where the time-varying delay τ(t ) satisfies the conditions (3)
and (4). Assume that (A, B ) is controllable and (C , A) is ob-
servable. Let P0(s ) = C (s I − A)−1 B be the transfer function
matrix of the delay-free system. Denote K (s ) to be a LTI out-
put feedback controller, i.e., u (s ) = K (s )y (s ), that stabilizes
P0(s ). Define the complementary sensitivity function of the
delay-free system by

T0(s ) = P0(s )K (s ) (I + P0(s )K (s ))
−1 . (15)

The following lemma (Ma, and Chen (2019); Qi et al. (2017))
is provided to be used in what follows.

Lemma 3.1. Denote by ‖ · ‖∞ theH∞ norm of a stable trans-
fer function. Let K (s ) stabilize P0(s ). Then the system (14) can
be robustly stabilized by K (s ) for all τ(t )
(i) If 0 ≤ τ(t ) ≤ τM and

||τM s T0(s )||∞ < 1. (16)

(ii) If 0 ≤ τ(t ) ≤ τM , 0 ≤ |τ̇(t )| ≤ ρ < 1 and
�

�

�

�

�

�

�

�

τM s

1 + τM s
2

WτM (s )T0(s )

�

�

�

�

�

�

�

�

∞
<

Ç

2− ρ
2

, (17)

where WτM (s ) is some stable and minimum phase rational
function such that

�

�

�

�

�

τ(jω)

1 + τ(jω)
2

WτM (jω)

�

�

�

�

�

≥ φτ(ω), ∀ ω ≥ 0 (18)

with

φτ(ω) =
�

2 sin (τω/2) , |τω| ≤ π,
2, |τω| > π.

3.2 Lower Bounds Achieved by P-Type and PD-Type Control
Protocols

Armed with the small-gain stability conditions given by Lem-
ma 3.1, we now present our main results, which consist of
lower bounds on the DCM of the MAS (1) achieved by P-
type and PD-type control protocols subject to time-varying
delays, respectively. These bounds constitute sufficient con-
ditions for the MAS (1) to achieve robust consensus with re-
spect to time-varying delays subject to the conditions (3) and
(4).

Theorem 3.1. For an undirected graph G, the following state-
ments are true.
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(I)The MAS (1) achieves robust consensus by the control pro-
tocol (2) for all τ(t ) satisfying (3) with KP (s ) = kp and α/λ2 <
kp < 1/(τMλN ). Furthermore,

τT V−P ≥
1

α

�

λ2

λN

�

. (19)

(II) The MAS (1) achieves robust consensus by the control
protocol (2) for all τ(t ) satisfying (3) , (4) with KPD (s ) = kp +
kd s and kp > α/λ2, |kd | < 1/λN , and one of the following
conditions

(i ) τM <
2|kd |

kp
,

2λN |kd |
1 + λN kd

‖WτM (s )‖∞ <
Ç

2− ρ
2

,

(i i ) τM ≥
2|kd |

kp
,

τM kpλN

1 + λN kd
‖WτM (s )‖∞ <

Ç

2− ρ
2

hold. Furthermore,

τT V−PD ≥
�

2
√

2− ρ
2
√

2‖WτM (s )‖∞ −
√

2− ρ

�

1

α

�

λ2

λN

�

, (20)

where WτM (s ) is a certain stable, minimum phase rational
function satisfying the condition (18).

Proof. Under the undirected graph G, the system (9) is fully
decoupled and its stability reduces to the systems
˙̂δi (t ) = αδ̂i (t )−λi

�

kp δ̂i (t − τ(t )) + kd
˙̂δi (t − τ(t ))

�

, i ∈ Γ.
(21)

For each i ∈ Γ, we define

P0i (s ) =
λi

s − α
,

T0i (s ) =
P0i (s )KPD (s )

1 + P0i (s )KPD (s )
,

with
T0(s ) = diag{T2(s ), · · · , TN (s )},
P0(s ) = diag{P2(s ), · · · , PN (s )}.

Consequently, we find that

||τM s T0(s )||∞ = max
i∈Γ
||τM s T0i (s )||∞ ,

and
�

�

�

�

�

�

�

�

τMs

1+ τMs
2

WτM(s )T0(s )

�

�

�

�

�

�

�

�

∞
= max

i∈Γ

�

�

�

�

�

�

�

�

τMs

1+ τMs
2

WτM(s )T0i (s )

�

�

�

�

�

�

�

�

∞
.

With the P-type control protocol (2) with (6), we know that

T0i (s ) =
λi kp

s − α + λi kp
.

TheH∞ norm of τM s T0i (s ) is found as

||τM s T0i (s )||∞ = τMλi kp .

As a result, for the undirected graph G, we have

||τM s T0(s )||∞ = τMλN kp .

According to Lemma 3.1, the systems in (21) will be stable
whenever τMλN kp < 1. This together with the condition
kp > α/λ2 gives the range

α

λ2
< kp <

1

τMλN

that guarantees the stability of the system (21). In what fol-
lows, we try to find a sufficient condition to achieve the con-
sensus. Since

inf
kp>α/λ2

||τM s T0(s )||∞ = τMλN

�

α

λ2

�

,

there will exist a KP (s ) = kp to achieve the consensus provid-
ed that τMλN

α
λ2
< 1. This leads to the condition (19).

In order to establish the bound (20), we follow the idea of Ma,
and Chen (2019) to evaluate that













τM s

1 + τM s
2

T0(s )













∞
= max

i∈Γ













τM s

1 + τM s
2

T0i (s )













∞
,

where now with a PD-type control protocol (2) with (5). T0i (s )
is found to be

T0i (s ) =
λi (kp + kd s )

(1 + λi kd )s + (λi kp − α)
.

For this purpose, we notice that













τM s

1 + τM s
2

T0i (s )













∞
≤












λi (kp + kd s )
1 + τM s

2













∞

·












τM s

(1 + λi kd )s + (λi kp − α)













∞
.

Consequently, we find that












τM s

(1 + λi kd )s + (λi kp − α)













∞
=

τM

1 + λi kd

and













λi (kp + kd s )
1 + τM s

2













∞
= λi







2|kd |
τM

, |kd | >
τM

2
kp ,

kp , |kd | ≤
τM

2
kp .

Hence, we have













τM s

1 + τM s
2

T0i (s )













∞
≤ τMλi

1 + λi kd







2|kd |
τM

, |kd | >
τM

2
kp ,

kp , |kd | ≤
τM

2
kp .

(22)
By the monotonicity of the right hand side of (22) in λi , we
obtain that













τM s

1 + τM s
2

T0(s )













∞
≤ τMλN

1 + λN kd







2|kd |
τM

, |kd | >
τM

2
kp ,

kp , |kd | ≤
τM

2
kp .

(23)
Furthermore, by the monotonicity properties of |kd |/(1 +
λN kd ) and 1/(1 + λN kd )with respect to kd , we know that

inf

�

2|kd |λN

1 + λN kd
: |kd | >

τM

2
kp

�

= inf

�

τM kpλN

1 + λN kd
: |kd | <

τM

2
kp

�

=
τM kpλN

1 + τM

2 kpλN
.

It is then easy to find that the right hand side of the inequality
(23) achieves its minimum as

τMα
λN

λ2

1 + (τM /2)αλN

λ2

at (kp , kd ) = ( αλ2
, ατM

2λ2
).

In conclusion, in view of Lemma 3.1, the MAS (1) achieve
consensus robustly by some KPD (s ) for all τ(t ) satisfying (3)
and (4) if

‖WτM (s )‖∞
τMα

λN

λ2

1 + (τM /2)αλN

λ2

<

Ç

2− ρ
2

.

This gives rise to the lower bound (20), hence complete the
proof. �
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Remark 3.1. In light of Lemma 3.1, it is interesting to see that
the bound in (19) is always less than or equal to that the case
of the constant delay achieved by P-type control protocol in
Xu et al. (2013). This, of course, is expected, since

1

α

�

λ2

λN

�

≤ τT V−P ≤ τC D−P =
1

α









arctan
q

λ2
N

λ2
2
− 1

q

λ2
N

λ2
2
− 1









.

In the limit, however, when λN → λ2, i.e., when the graph
tends to be complete, these bounds coalesce to

τT V−P = τC D−P =
1

α
.

Moreover, the gap between the two cases becomes monoton-
ically decreasing as the ratio λN /λ2 decreases.

Remark 3.2. Similar to its constant-delay counterpart, the
lower bound in (20) indicates that inclusion of derivative con-
trol action can improve the delay consensus margin. This im-
provement is gained by incorporating the extra information
furnished by the delay variation rate. Indeed, when WτM (s ) is
appropriately constructed, specifically when

2
√

2− ρ
2
√

2‖WτM (s )‖∞ −
√

2− ρ
> 1,

the bound in (20) always improves that in (19). The improve-
ment can be significant for a small value of ρ. In the limit
when ρ → 0 and ‖WτM (s )‖∞ ≈ 1, the bound in (20) may
double that in (19).

Remark 3.3. In practice, most of the derivative control is im-
plemented by using a low-pass filter. As such, the PD-type
control protocols can be given in the form of

K
Tf

PD (s ) = kp +
kd s

1 + Tf s
,

where Tf > 0 is the filter constant. Similarly, it is to determine
the DCM by the corresponding PD-type control protocols
with the filter possibly. In general, the DCM is decreasing with
the filter constant increasing.

4. SIMULATION RESULTS

In this section we provide an example to illustrate the main
results.

Example 4.1. Consider six agents coordinated with an undi-
rected communication topology, whose Laplacian matrix is

L =

















3 −1 −1 −1 0 0
−1 2 −1 0 0 0
−1 −1 3 0 0 −1
−1 0 0 2 −1 0
0 0 0 −1 2 −1
0 0 −1 0 −1 2

















.

The matrix L has one eigenvalue at the origin and the re-
maining five eigenvalues are λ2 = 1,λ3 = 1.5858,λ4 =
3,λ5 = 4,λ6 = 4.4142. With this undirected graph, the feasi-
ble design parameter sets under P-type and PD-type control
protocols are found as

Ωu−P =
¦

kp > α/1
©

and
Ωu−PD =

¦

kp > α/1, |kd | < 1/4.4142
©

.

respectively. Let us consider the time-varying delay

τ(t ) = a (1− sin b t ),

which indicates τM = 2a and ρ = ab . Set α = 0.5. We first
examine the lower bound in (19), which is achieved by P-type
control protocols. Based on Theorem 3.1, we know that the
MAS (1) can achieve consensus by P-type control protocols
regardless of the delay variation rate ρ whenever

τM <
1

α
· λ2

λN
= 0.453.

Fig. 2 confirms this assertion: For τM = 0.3 < 0.453, the
consensus can be achieved for

α

λ2
< kp = 0.75 <

1

0.3λN
.

Fig. 2. Consensus achieved at τM = 0.3: differences of state
versus x1(t ).

Next, we consider the PD-type control protocols. In this case,
we choose the following rational functions (Qi et al. (2017)
and Ma, and Chen (2019)) satisfying the condition (18),

W (1)
τ (s ) = 1.216,

W (2)
τ (s ) =

0.1791(τs )2 + 0.7093τs + 1

0.1791(τs )2 + 0.5798τs + 1
,

W (3)
τ (s)=

0.02952(τs)4+0.210172(τs)3+0.70763(τs)2+1.3188τs+1
0.02952(τs)4+0.191784(τs)3+0.64174(τs)2+1.195282τs+1.

By direct computation, we find that ‖W (1)
τ (s )‖∞ = 1.2160,

‖W (2)
τ (s )‖∞ = 1.0908, and ‖W (3)

τ (s )‖∞ = 1.0831, respectively.
For α = 0.5, choose one pair of (ρ, τT V ) = (0.6, 0.5702)
within the consensus region given by the rational function
W (3)
τ (s ). Fig. 3 shows the relationship between τT V and ρ

with different ‖W (i )
τ (s )‖∞. In addition, Fig. 4 indicates that

the consensus region achieved by PD-type control protocols
can be larger possibly than that achieved by P-type control
protocols if the variation rate of the time-varying delay is in
a small value. Select (kp , kd ) = (0.68, 0.14) together with
τM = 0.4 < 0.5702 satisfying the condition (i) of Theorem
3.1. Fig. 5 gives consensus under PD-type control protocols.

5. CONCLUSION

Based on the small-gain theorem we have derived the explicit
lower bounds of delay consensus margin of first-order MAS
under PID-type control protocols with time-varying delays
under the undirected graph. Unlike the upper bounds ob-
tained elsewhere, which can be used to determine the range
of delay where the MAS cannot achieve robustly consensus,
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Fig. 3. Relationship between τT V and ρ

Fig. 4. Consensus region achieved by PD-type control proto-
cols v.s. P-type control protocols.

Fig. 5. Consensus achieved at (ρ,τM ) = (0.6, 0.4): differences
of state versus x1(t ).

the lower bounds obtained herein serve an opposite purpose:
they provide a priori the ranges of delay over which the MAS
is guaranteed to obtain robustly consensus by a PID-type
control protocol. The lower bounds show explicitly the con-
sensus robustness depend on the graph connectivity (λ2/λN )
and the agent dynamics. It is more general to consider the

different time-varying delays between the communication
delay and the self delay. This will be investigated in our future
work.

REFERENCES

Aström, K., and Hagglund, T. (1995). PID Controllers: Theory,
Design, and Tuning, 2nd Ed. ISA.

Chen, J., Ma, D., and Xu, Y. (2019). Exact computation of delay
margin by PID control: It suffices to solve a unimodal prob-
lem! Proceedings of the 38th Chinese Control Conference,
242-249, July 27-30, Guangzhou, China.

Chen, Y., and Shi, Y. (2017). Consensus for linear multiagen-
t systems with time-varying delays: A frequency domain
perspective. IEEE Transactions on Cybernetics, volume 47,
2143-2150.

Gu, K., Chen, J., and Kharitonov, V. L. (2003). Stability of Time-
Delay Systems. Boston, MA, USA: Bitkhauser, 2003.

Ma, D., and Chen, J. (2019). Delay margin of low-order
systems achievable by PID controllers. IEEE Transactions
on Automatic Control, volume 64, 1958-1973.

Ma, D., Chen, J., Lu, R., and Chen, J. (2019). Exact delay
consensus margin of first-order agents under PID protocol.
58th Conference on Decision and Control, 1-1, Dec. 11-13,
Nice, France.

Ma, D., Tian, R., Zulfiqar, A., Chen, J., and Chai, T. (2019).
Bounds on delay consensus margin of second-order mul-
tiagent systems with robust position and velocity feedback
protocol. IEEE Transactions on Automatic Control, volume
64, 3780-3787.

Münz, U., Papachristodoulou, A., and Allgöwer, F. (2010). De-
lay robustness in consensus problems. Automatica, 46(8),
1252-1265.

Münz, U., Papachristodoulou, A., and Allgöwer, F. (2011).
Consensus in multi-agent systems with coupling delays
and switching topology. IEEE Transactions on Automatic
Control, 56(12), 2976-2982.

Olfati-Saber, R., and Murray, R. M. (2004). Consensus prob-
lems in networks of agents with switching topology and
time-delays. IEEE Transactions on Automatic Control,
49(9), 1520-1533.

Qi, T., Zhu, J., and Chen, J. (2017). Fundamental limits on
uncertain delays: When is a delay system stabilizable by
LTI controllers? IEEE Transactions on Automatic Control,
volume 62, 1314-1328.

Silva, G. J., Datta, A., and Bhattacharyya, S. P. (2002). New re-
sults on the synthesis of PID controllers. IEEE Transactions
on Automatic Control, 47(2), 241-252.

Wang, Z., Xu, J., and Zhang, H. (2014). Consensusability
of multi-agent systems with time-varying communication
delay. Systems & Control Letters, volume 65, 37-42.

Xu, J., Xie, L., and Zhang, H. (2013). Input delay margin
for consensusability of multi-agent systems. Automatica,
49(6), 1816-1820.

Yang, B., and Fang, H. (2010). Forced consensus in networks
of double integrator systems with delayed input. Automat-
ica, 46(3), 629-632.

Zhu, J., Qi, T., Ma, D., and Chen, J. (2018). Limits of Stabili-
ty and Stabilization of Time-Delay Systems: A Small-Gain
Approach. Switzerland: Springer.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3115


