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Abstract: In general, the industrial processes are semi-automatic, and are controlled by the
operators. Since the operation principles of the industrial processes are complicated, it is difficult
to label observations. The disturbances may be contained in the observations. Therefore, the
unsupervised anomaly detection method is promising for research in the industrial processes.
In the paper, a multivariate anomaly detection method is proposed, which is unsupervised
and online. The priori probability of anomaly occurrence is necessary, and a hazard function
selection method is defined at first. Secondly, Bayesian-based method is adopted for anomaly
detection. In final, the Dempster-Shafer theory is introduced for fusing the univariate anomaly
detection results. The numerical simulation is used for illustrating the anomaly detection power
of the proposed method, and the TE process is implemented for testing the fault detection
effectiveness. A real data set collected from a bathyscaphe is applied for demonstrating the
power of leakage detection.
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1. INTRODUCTION

In the industrial processes, the operating principles are
more and more complicated, and there are many uncon-
trollable factors (Zhou et al. (2018)). With the develop-
ment of distributed control system, a large amount of un-
labeled observations are collected. The labels contain nor-
mal data, various fault types data. Labeling the observa-
tions requires abundant expert knowledge, which is time-
consuming and expensive (Ge et al. (2013)). Moreover,
the industrial processes are semi-automatic in general.
The guidance from experts and operators are various. The
normal condition observations may contain some distur-
bances, which will lead to poor anomaly detection results
based on these observations. Therefore, it is promising
for research the unsupervised anomaly detection methods.
The unsupervised methods could ignore the influences
of the operator habits, and only detect the changes of
observation distributions.

The anomaly detection is widely researched in decades
(Pan et al. (2018), An et al. (2015)). A novel distribut-
ed process monitoring framework for quality-related fault
detection based on distributed modified principal com-
ponent regression was proposed by Rong et al. (Rong
et al. (2019)). Wang et al. proposed a novel three-stage
intelligent fault diagnosis approach for practical industri-

* This work was supported by the National Key Research and
Development Project (Grant No. 2018 YFF0214704).

Copyright lies with the authors

al process monitoring (Wang et al. (2019)). Chen et al.
proposed an unsupervised change point detection based
on the graph method (Chen et al. (2015)). An et al.
proposed a weight graph-based change point detection
method for fault detection in a blast furnace process (An
et al. (2019)). Jove et al. proposed a method including a
visual tool for the detection of faults, and its final aim is
to optimize system performance and consequently obtain
increased economic savings, in terms of energy, material,
and maintenance (Jove et al. (2019)).

Recently, the Bayesian change point detection method
was proposed by Adams et al., which is an online and
unsupervised method (Adams et al. (2007)). The change
point detection methods are widely used in process control,
river flow analysis and DNA sequence prediction (Rosen-
baum (2005)). Aminilhanghahi et al. reviewed many of the
methods that have been proposed to detect change points
in time series (Aminikhanghahi et al. (2017)). Most of the
change point detection methods are off-line (Eriksson et al.
(2019)), and some online change point detection methods
have been researched (Aminikhanghahi et al. (2019),Wil-
son et al. (2010)).

Compared with the above methods, the Bayesian online
change point detection method calculates the posterior
distribution of the current run length since the last change
point occurs, and a recursive message-passing method is
used for computing the joint distribution. As far as the
authors know, the Bayesian online change point detection
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method is barely used for anomaly detection in the indus-
trial processes. The online Bayesian change point detection
method needs to calculate the predictive distribution, and
it requires the distributions of observations belong to the
exponential family. The bernoulli, the gamma and the
univariate Gaussian are some members of a broader class
of distributions known as the exponential family (Murphy
(2012)).

In the paper, a multivariate anomaly detection method
based on Bayesian is proposed. The prior probability of
the anomaly occurrence is defined based on the false alar-
m rate. The graph-based off-line change point detection
method is used for obtaining some observations with the
same distributions at first (Chen et al. (2015)). Half of the
observations are used as a training matrix constructing the
PCA model, and the others are used as a testing matrix to
calculate the false alarm rate. The false alarm rate is de-
fined as a prior probability Punomaty- The online Bayesian
change point detection method is applied for detecting
anomaly event. The posterior probability of run length is
calculated by the observed data. Since the TE process and
the bathyscaphe operation in the paper could be regarded
as the Gaussian processes approximately, the conjugate
prior of the univariate Gaussian is used for calculating the
predictive distribution. The Dempster-Shafer (D-S) theory
will be adopted for fusing the anomaly detection results of
single variable.

The organization of this paper is described as follows.
Section 2 is the problem formation. The Bayesian online
change point detection method is introduced in Section 3.
The steps for anomaly detection are summarized in Section
4. Section 5 is the simulations. Finally, a conclusion is
presented in Section 6.

2. PROBLEM FORMULATION

Suppose that the observations z;,7 = 1,2, ... are collected
by some sensors. The purpose of the proposed method
in this paper is to detect whether an anomaly occurs in
the observations. The null hypothesis Hy is formulated as
follows.

H() Zl’iNFo,’L': 1,2,... (1)
where Fj is the distribution of observations.

The alternative hypothesis H; is

. Foi=1,2,..t
Hl'xiN{Fl,i:t—kl,t—kQ,... (2)

where ¢ is the time of anomaly occurrence. Fy and F; are
two different distributions of observations. The different
distribution of observations indicates a change in the time
series, and the anomaly occurs. In this part, only the
situation that one change point occurs is listed. The online
Bayesian method can also handle the multi-change points
with different data distributions Fy, Fi, Fo, ....

3. BAYESIAN ONLINE CHANGE POINT
DETECTION

The unsupervised Bayesian online change point detection
method needs to calculate the predictive distribution,
which requires the observation distributions belong to
the exponential family. In the section, the univariate

univariate observations
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Fig. 1. This is a simple example to illustrate the Bayesian
online change point detection method. There are two
change points included in the univariate Gaussian
observations. The run length adds to 1 if there is no
change point, and otherwise, the run length drops to
0. The goal is to calculate the posterior distribution of
the run length based on the observations, P(r¢|z1.¢).

Gaussian data is used for introducing the principal of the
method. The observations z;,i = 1,2,...,t are used for
estimating the operation condition at current sampling
point ¢. Some symbols are defined at first. x,.; indicates the
observations between sampling point a and b. r; represents
the run length since the last change point occurs, and the
observations collected in this period are defined as x?’.
The discrete a priori probability of anomaly occurrence is
Panomaiy- Initially, the r1 = 0, and there is only x; in the

:EY). The purpose of the Bayesian change point detection
method is to calculate the posterior distribution P(rs|xy.¢).
The above introductions is illustrated in Fig.1.

According to the Bayesian inference, the posterior distri-
bution can be calculated as follows.
P (Tt,xlzt)

P(ri|zye) = P(x1.4)

(3)
where
P(rt,xl:t) = Z P(rt;rt—lafl:t)

Tt—1
= Z P(ry, xe|re—1, x1:0—1) P(re—1, T1:4—1) (4)
Tt—1
= ZP(Tt‘rt—lﬂj(xth't—lvIET))P(Tt—lvxl:t—l)

Tt—1

The joint distribution P(r, z1.¢) shown in the formula (4)
is solved by a recursive algorithm. The conditional prior
P(r¢|r¢—1) is calculated by a hazard function. The hazard
function is a conditional probability that a process will
occur fault during the time ¢ and dt under the condition
that the process is normal until time ¢. In the paper, the
proposed method is used for detecting the faults in the
TE process and the leakage detection in the bathyscaphe.
Since these two processes are memoryless, the hazard func-
tion is set to be a constant in the paper, and is calculated
on basis of the probability of anomaly occurrence. The

P(xt|rt_1,xgr)) is a predictive distribution as a new ob-
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servation arrives, and is calculated by the conjugate prior
of the exponential family likelihoods.

4. ANOMALY DETECTION BASED ON THE
BAYESIAN METHOD

The Bayesian online change point detection method needs
to calculate a predictive distribution, and the distribution
of the exponential family is the only one with finite-sized
sufficient statistics. For realizing the online change point
detection, the observations should follow the distributions
of the exponential family. Since the TE process and the
bathyscaphe operation could be regarded as the Gaus-
sian processes approximately, the conjugate prior of the
univariate Gaussian is used for calculating the predic-
tive distribution. The D-S theory is used for fusing the
change point detection results of single variable (Dempster
(1967)). For convenience, an observation with m variables
is presented for anomaly detection based on the proposed
method in the section. If there are n testing observations,
repeat the following steps for n times to get the anomaly
detection result at each sampling point. x;,i = 1,2, ... is
the univariate observations, and y;,7 = 1,2,...,m is the
anomaly detection results of m variables. The Bayesian
method is used for detecting the change points for each
variable at first, and then the D-S theory fuses the de-
tection results. Since the D-S theory is a common fusion
method, the theory is ignored in the paper. The steps for
anomaly detection are described.

Step 1: Parameter initialization

For convenience, the testing observations start with a
change point, and the run length is zero, that is P(r; =
0) = 1. The hyperparameters v, x are used for calculating

P(x¢|re-q, xl(f)), and are set based on the actual data
characteristics, i.e. mean and variance. The prior distribu-
tion Pypnomaty of the anomaly occurrence is selected based
on the false alarm rate. Firstly, the graph-based off-line
change point detection method is used for obtaining some
observations with the same distributions. Half of the obser-
vations are regarded as a training matrix constructing the
PCA model, and the others are used as a testing matrix
for calculating the false alarm rate. The false alarm rate is
defined as a prior distribution Ppyomaly-

P(’/‘l = O) =1

Vfl) = Vprior (5)
(1) _ ,

Xl - Xprzor

Step 2: Predictive probability calculation

To realize the online anomaly detection, the distribution of
the testing observations should belong to the exponential
family. Exponential family likelihoods have the following

form
P(z|n) = h(z)exp(n"U(x) — A(n)) (6)
where

A(n) = log / dnh(x)exp(nTU (x)) (7)

The predictive distribution P(x¢|rs_1, xir)) denoted as 7r§r)
is described as follows. The conjugate-exponential repre-
sents that the prior takes the same form with posterior of
an exponential-family distribution over 7.

m” = Py ") )
P(nlx,v) = h(n)exp(n” x — vA(n) — A(x,v))
where x, v are two hyperparameters.
Step 3: Growth probability calculation
On basis of the formula (4), the growth probability of
normal condition can be calculated as follows.
P(Tt =T+ 17 xl:t) = P(’rtflyxl:tfl)’frgr)(]- - Panomaly)
(9)
Step 4: Change point occurrence probability calculation

On basis of the formula (4), the change point occurrence
probability can be calculated as follows.

P(Tt = 07x1:t) = Z P(Tt—lvxl:t—l)ﬂ'y)Panomaly (10)

Tt—1

Step 5: Run length distribution calculation

The run length distribution at current sampling point is

calculated.
P(Tu $1:t)

P(xlzt)

P(l’l:t) = ZP(Tt,ilJl:t)~

P(ri|zye) = (11)

where

(12)

Step 6: Parameters update

The iterative algorithm is used for calculating the joint
distribution, and the parameters should update as follows.

v =y
t+1 = Vprior

Xi41 = Xprior 13

Vt(i—&l-l) _ Vér) +1 ( )
(r+1) _ _(r)

Xi+1 =Xt + u(xt)

where u(z;) derives from the sufficient statistics of the
exponential family likelihoods.

Step 7: Repeat

Return to Step 1 for m times, and m is the number of
the variables. The run length distributions of variables are
collected in y;,7 =1,2,...,m.

Step 8: Result fusion

The run length distributions of variables are fused based
on the D-S theory, and a integrated run length distribution
for m variables is calculated. The run length probability
distribution of two variables are fused at first, and then is
fused with the other variable by the D-S theory.

5. SIMULATIONS

In the section, a simple Gaussian data is used for illus-
trating the power of the proposed method at first. More-
over, the method is adopted for fault detection in the TE
process, and the goal is to test the process monitoring
effectiveness. In final, the proposed method is implemented
for leakage detection in a bathyscaphe.

5.1 Numerical simulation

In the section, a simple Gaussian example is applied for
illustrating the power of the proposed anomaly detection
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2. This is a two simulated variables Gaussian exam-
ple to illustrate the power of the proposed anomaly
detection method. There are three change points at
11st, 21st, 31st sampling point, and the observations
are constructed with different means. Based on the
variable 1, variable 2 and fused variables, the anomaly
could be detected exactly.

Fig.

method. The testing data consist of 40 observations, and
follow the distributions Ny ~ (0,0.5%I3), No ~ (5,0.5x13),
N3 ~ (0,0.5 % I3) and Ny ~ (3,0.5 * I3) respectively. I
is a identity matrix with 2 dimensions. There are three
change points in 40 observations at 11st sampling point,
21st sampling point and 31st sampling point. The prior
probability of the anomaly occurrence in the Gaussian
observations is Pypomaly = 0.05, and it is chosen according
to the confidence 1 — o = 0.95. The simulation result is
shown in Fig.2.

From Fig.2, it can be concluded that the proposed method
is powerful for detecting the anomaly. The selection of
prior probability is appropriate and the D-S theory is
suitable for fusing the detection results.

5.2 TFE process

The TE process is constructed by the Tenessee Eastman
company, and it aims at evaluating the process monitoring
methods. The TE process is derived from a real industrial
process, and the process flow diagram is presented as Fig.3.
The TE process includes 41 measured variables and 12
manipulated variables. There are 21 faults designed by
Downs et al. in the TE process. More details of the TE
process could found in the literature (Chiang et al. (2001)).
In the part, three typical faults are used for illustrating the
fault detection power of the proposed method. The three
faults are a step of the D feed temperature (Fault 3), C
header pressure loss-reduced availability (Fault 7) and an
unknown fault (Fault 18). Most of the traditional fault
detection methods exhibit a poor effectiveness for fault
3 and fault 18, and are powerful for fault 7 (Pan et al.
(2018)).

Among 53 variables, reactor agitator speed stays constant,
which is ignored for constructing models. Based on the
experience and expert knowledge, the variable 18 is used
for detecting the fault 3. The variable 45 is used for
detecting the fault 7. The variables 18, 19 are used for
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Fig. 3. This is the process flow diagram of the TE process.
There are five main units and eight components.
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4. This is the simulation results of fault 3 in the
TE process. The fault is introduced at 61st sampling
point, and is detected at 75th sampling point. Al-
though there are 14 sampling points delay, the fault
can be detected. The PCA method can not detect the
fault 3.

detecting the fault 18, and the D-S theory is used for
fusing the fault detection results for two variables of the
fault 18. The sampling time is 3 minutes, and each ma-
trix includes 100 observations. The faults are introduced
after 3 hours corresponding to 61st sampling point. The
means and variances of variables are unknown, and the
standard conjugate prior of a normal-inverse-gamma is
used for calculating the predictive distribution. Although
the means and variances of variables are unknown, the
parameters could be set based on the first observation
and experience. The unsupervised online fault detection
methods for the TE process are barely researched. In the
part, the traditional method PCA is applied for comparing
with the proposed anomaly detection method. The fault
detection results are presented in Fig.4-Fig.7. The prior
probability of fault occurrence is 0.028 in the part. The
parameters in the PCA method are omitted in the part,
which are easy to find in the literature (Chiang et al.
(2001)).

The PCA method can not detect the fault 3 and fault
18, and it can detect the fault 7 exactly. Fault 3 is a
step fault, and it is difficult to detect the fault 3 based
on traditional methods. The related variable is chosen,

Fig.
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Fig. 5. This is the simulation result of fault 7 in the
TE process. The fault is introduced at 61st sampling
point, and is detected at 61st sampling point exactly.
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Fig. 6. This is the simulation result of fault 18 in the
TE process. The fault is introduced at 61st sampling
point. It is detected at 64th sampling point based on
variable 18, and is detected at 62nd sampling point
based on variable 19.

and the Bayesian-based method is used for detecting it.
The Bayesian-based method is unsupervised, and it only
uses the current observations to obtain the probability of
fault occurrence as a new observation arrives. Although
there are 14 sampling points delay, it can detect the fault
without any training observations. The unsupervised fault
detection is necessary in the industrial processes. Fault 7 is
used for testing the power of the Bayesian-based method.
Fault 7 is easy to detect by traditional methods, and it also
can be detected exactly based on the proposed method.
Fault 18 is an unknown fault, and the PCA method ex-
hibits a poor fault detection result. The proposed method
could detect the fault based on two variables. The D-S
theory is used for fusing the fault detection results, and
it can detect the fault at 62nd sampling point. From the
run length distribution, it can be concluded that compared
with the single variable, the fusion result gives a greater
probability value, and it obtains a more powerful evidence
for confirming the fault occurrence. In real production
processes, it may be unreasonable to know the fault-related
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Fig. 7. This is the simulation result of fault 18 in the TE
process. There are two related variables for fault 18,
and the D-S theory is used for fusing the simulation
results. The fault is introduced at 61st sampling point.
It is detected at 62nd sampling point based on two
variables. The PCA method can not detect the fault
18.

variables. Therefore, the D-S theory fusing the fault detec-
tion results of variables is necessary.

5.8 Leakage detection for a bathyscaphe

In the section, the power for leakage detection based on
the proposed method is tested in a bathyscaphe equip-
ment. The data is collected on July, 29, 2011, and there
is a leakage event occurrence. There are five variables
related to the occurrence of leakage including stem trim
level detection mercury level detection, stern trim level
detection mercury level detection, tank temperature, cabin
humidity and ocean temperature. In normal condition, the
value of the underwater acoustic communication appara-
tus leakage detection fluctuating around 9. The less value
corresponds to the serious leakage condition. The testing
matrix contains 100 observations, and the leakage occurs
at 51lst sampling point. The prior probability of leakage
occurrence is 0.004. The sampling time is 1s. Two PCs
are retained based on the PCA method. The control limit
of the T? statistic is 3.45, and the control limit of the
SPE statistic is 3.55. In the section, the leakage detection
results based on two variables are presented in Fig.8. Five
variables are used for fusing the simulation results, which
is shown in Fig.9.

The effectiveness of the proposed method for leakage
detection is proved in a bathyscaphe. There is a four
sampling points delay based on the ocean temperature
variable. The reason may be the ocean temperature is
not a standard Gaussian variable. The stern trim level
detection mercury level detection variable could detect the
leakage exactly. The D-S theory is powerful for fusing the
simulation results, and the leakage can be detected at 51st
sampling point exactly.

6. CONCLUSION

In the paper, a multivariate Bayesian change point de-
tection method is proposed for anomaly detection in the
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8. This is the leakage detection for a bathyscaphe
based on two variables: stern trim level detection
mercury level detection (v2) and ocean temperature
(v5). The leakage occurs at 51st sampling point, and
it can be detected exactly based on stern trim level
detection mercury level detection variable. The detect
time is at 55th sampling time based on the ocean
temperature variable.

Fig.
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9. This is the leakage detection for a bathyscaphe
based on five variables and the D-S theory is used.
The leakage occurs at 51st sampling point, and it can
be detected at 51st sampling point. The PCA method
can not detect the leakage fault.

Fig.

industrial process. A prior probability of change point
occurrence is defined, and the D-S theory is used for
fusing the simulation results. This is the first attempt for
anomaly detection in the industrial processes based on
Bayesian change point detection method. The proposed
method requires the distributions of observations derived
from the exponential family. However, in most cases, it
is difficult to satisfy the condition. In the future, some
related works should be researched to relax the restriction,
i.e. independent principal component analysis solving the
non-Gaussian issue.
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