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Abstract: Maintaining healthy blood glucose (BG) levels is vital in ensuring the health of intensive care 

unit patients. In present work, there exists model-based glycemic control protocols that capture insulin-

glucose dynamics that can provide patient-specific treatments. The Stochastic Targeted Glycemic Control 

(STAR) protocol is a model-based glycemic control protocol that utilizes stochastic modelling together 

with the Intensive Control Insulin Glycemic Control (ICING) model. STAR has shown its effectiveness in 

Christchurch and Hungary. However, it is currently less effective in Malaysia. A study is conducted to 

compare the stochastic model between the STAR original and Malaysian cohort to identify if the difference 
in effectiveness is due to a difference in stochastic insulin sensitivity (SI) models between cohorts. Results 

from this study show that there could be a difference of up to 49.4% in predictive ability of the stochastic 

models from the two cohorts, suggesting that it could play a role in being the cause for its lack in 

effectiveness. With further patient data collection, this hypothesis could be proven or otherwise eliminated 

from the possible causes for the lack of effectiveness of the STAR protocol in Malaysia. 
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1. INTRODUCTION 

Hyperglycemia is a medical condition that describes an 

abnormally increased blood glucose (BG) level, which can 

greatly threaten the lives of intensive care unit (ICU) patients. 

Stress-induced hyperglycemia can occur to ICU patients with 

no medical history of diabetes (McCowen et al., 2001). Some 

complications of hyperglycemia include a weakened immune 
system, neuropathy, retinopathy and more. (Turina et al., 2005; 

Malone, 2016; Engerman and Kern, 1986). Hyperglycemia has 

been associated with higher mortality rates in ICU patients 

(Ousman, 2002). On the other extreme is hypoglycemia, which 

describes an abnormally low BG level. While most 

occurrences of hypoglycemia are treatment related, it poses 

just as much a threat as hyperglycemia or even more. In a 

landmark study by Van den Berghe et al. (2001), good 

regulation of BG levels has shown to decrease mortality rates 

by up to 45%. 

The current standard used for BG level regulation in Malaysian 

hospitals are known as the Insulin Infusion Protocol and the 

Enteral and Parenteral Nutrition Protocol (Cawangan Kualiti 

Penjagaan Kesihatan Bahagian Perkembangan Perubatan 

Kementerian Kesihatan Malaysia et al., 2012). These protocols 
are sliding scale approaches and do not employ model theory 

of any kind. This along with unpredictable metabolic changes 

may produce highly variable BG levels, which makes it 

difficult to maintain glycemic control. Computational 

physiological models can help overcome this by using patient 

specific data to create personalized solutions to highly variable 

ICU patients (Chase et al., 2018). 

The Stochastic Targeted Glycemic Control (STAR) protocol is 

a model-based protocol that recommends specific insulin and 

nutrition input values to individual patients. This protocol 

utilizes both the Intensive Control Insulin Glycemic Control 

(ICING) model along with stochastic modelling to predict 

insulin sensitivity (SI) and subsequently help generate BG 

outcomes for potential nutrition and insulin combinations. In 
pilot trials by Fisk et al. (2012), STAR managed to keep the 

percentage time spent of patient BG levels within the 4.4 

mmol/L – 8.0 mmol/L range at 89.4%. STAR has also 

undergone pilot trials in University Hospital of Liège, Beligum 

showing similar results of up to 78% in the target band 

(Uyttendaele et al., 2018).  

In virtual trials of the STAR protocol carried out in Hospital 

Tunku Ampuan Afzan (HTAA), Kuantan, Malaysia by 

Jamaludin et al. (2016), where percentage time spent of BG 

levels within the 4.4 mmol/L – 10.0mmol/L range at 82% for 

non-diabetics and 70.6% for diabetics, compared to the 76.3% 

and 59.6% from the current standard sliding scale protocol. 

Further virtual trials (Ahamad et al., 2016) and pilot patient 

trials (Abu-Samah et al., 2018) further validated previous 

works with 79.25% and 71.96% in the 4.4 mmol/L – 
10.0mmol/L range. However, percentage time spent within the 

tighter BG range of 4.4 mmol/L – 8.0mmol/L was only 51.95% 

and 43.93%. The reason for this stark difference as compared 

to the Christchurch trials is currently still being investigated. 

Hence, this paper aims to specifically investigate the possible 

stochastic SI model differences between the Malaysian and the 

STAR original cohort. An initial stochastic SI model of a 

Malaysian cohort is created in order to compare it with the 

model currently used in the STAR protocol in hopes to 
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determine if the lack of effectiveness of the STAR protocol in 

Malaysia is truly due to a SI difference between cohorts.   

2. METHODOLOGY 

2.1  STAR Protocol 

The STAR protocol (Fisk et al., 2012) is a glycemic control 

tool for use in intensive care units. STAR controls both insulin 
and nutrition input to the patient, making it different from most 

standard protocols. STAR functions by predicting patient 

insulin sensitivities and its future variability. This is combined 

with the ICING model to accurately capture the physiological 

model of the glucose-insulin regulatory dynamic system in the 

human body. The starting criteria for STAR is two consecutive 

BG readings of above 8.0 mmol/L. The clinical target range is 

4.4 mmol/L to 8.0 mmol/L. STAR has been implemented into 

an application that can be used through a tablet or smart device 

to provide a comfortable user interface. When at least two 

consecutive BG levels have been obtained, integral-based 

parameter identification is used to identify the SI from the 
ICING model. Since SI varies hourly and changes between 

patients, stochastic-based forecasting is then used in 

conjunction with the ICING model to predict likely BG levels 

for given insulin and nutrition inputs. At every intervention, 

STAR provides the user with a free choice of measurement of 

either 1, 2, or 3 hourly intervals based on personal clinical 

judgement. Nutrition and insulin combinations that best 

overlaps the resulting BG range with the target clinical band is 

then provided to the user. 

2.2  Intensive Control Insulin Nutrition Glucose (ICING) 

The Intensive Control Insulin Nutrition Glucose (ICING) 

model is a set of differential equations is the glucose-insulin 

regulatory model used in the STAR protocol. The equations of 

the ICING model have been studied along with each of its 

parameters. Some parameters are determined through various 

literatures (Fisk et al., 2012; Lin et al., 2011; Kovács et al., 

2011; Pistikopoulos and Knovel, 2018) while some others are 

obtained from bedside data of patients. The only unknown 

time-varying patient specific model is SI. The model equations 

are presented below:   

�̇� =  −𝑝𝐺𝐺(𝑡) −  𝑆𝐼𝐺(𝑡)
𝑄(𝑡)

1+ 𝛼𝐺𝑄(𝑡)
+

𝑃(𝑡)+𝐸𝐺𝑃𝑏−𝐶𝑁𝑆

𝑉𝐺
  (1) 

�̇� =  𝑛𝐼(𝐼(𝑡) −  𝑄(𝑡)) − 𝑛𝑐
𝑄(𝑡)

1+ 𝛼𝐺𝑄(𝑡)
  (2) 

𝐼̇ = −𝑛𝐾𝐼(𝑡) −
𝑛𝐿𝐼(𝑡)

1+ 𝛼𝐼𝐼(𝑡)
 −  𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) +

𝑢𝑒𝑥(𝑡)

𝑉𝐼
+

(1 − 𝑥𝐿)
𝑢𝑒𝑛(𝐺)

𝑉𝐼
  

(3) 

𝑃1̇ = −𝑑1𝑃1 + 𝐷(𝑡)  
(4) 

𝑃2̇ = − min(𝑑2𝑃2 , 𝑃𝑚𝑎𝑥) + 𝑑1𝑃1  
(5) 

𝑃(𝑡) = min(−𝑑2𝑃2 , 𝑃𝑚𝑎𝑥) + 𝑃𝑁(𝑡)  
(6) 

𝑢𝑒𝑛 = min(𝑚𝑎𝑥(16.67, 𝑘1𝐺(𝑡) +  𝑘2), 266.67) 
(7) 

The symbol G [mmol/L] represents the total plasma BG in the 

body. The interstitial insulin and plasma insulin are 

represented by the parameters Q [mU/L] and I [mU/L] 

respectively. 𝑆𝐼 [L/mU/min] represents insulin sensitivity. The 

parameters uex [mU/min] and uen [mU/min] are the exogenous 

insulin input and endogenous insulin production respectively. 

The parameter P [mmol] represents the total external nutrition, 

where P1 [mmol] represents the glucose in the stomach and P2 

represents the glucose in the gut. The exogenous parenteral 
dextrose input is expressed by PN [mmol]. The parameter D 

[mmol/min] represents the amount of dextrose provided from 

external feeding.  

The ICING model requires three main steps for application in 

the STAR protocol. The first step is parameter fitting, which is 

obtaining all the known parameters. All parameter constants 

are known (Table 1) and the initial values for G, I, Q, P1 and 

P2 are computed using patient bedside data. Second is to 

identify the last unknown variable, SI integral-based parameter 

identification. Finally, forward simulation can be performed to 

predict future BG values and therefore provide different 

treatment recommendations. 

Table 1: Constants used in ICING model 

Model 

variable 
Description 

Numerical 

value 

pg 
Patient endogenous glucose 

removal 
0.006 min-1 

EGPb 
Basal endogenous glucose 

production 

1.16 

mmol/min 

CNS 
Central nervous system glucose 

uptake 

0.3 

mmol/min 

VG Glucose distribution volume 13.3 L 

VI Insulin distribution volume 4.0 L 

αG 
Saturation of insulin stimulated 

glucose removal 
1/65 L/mU 

αI 
Saturation of plasma insulin 

disappearance 
0.0017 
L/mU 

nI 

Transfer rate between plasma 

and interstitial insulin 

compartments 

0.0075 min-1 

nC 
Cellular insulin clearance rate 

from interstitium 
0.0075 min-1 

nK 
Kidney clearance rate of 

insulin from plasma 
0.0542 min-1 

nL 
Liver clearance rate of insulin 

from plasma 
0.1578 min-1 

xL 
Fraction of first pass hepatic 

extraction 
0.67 

Pmax 
Maximum disposal rate from 

gut 

6.11 

mmol/min 

d1 
Transport rate between 

stomach and gut 
0.0347 

d2 
Transport rate between gut and 

bloodstream 
0.0069 

k1 
Pancreatic insulin secretion 

glucose sensitivity 
14.9 

k2 
Pancreatic insulin secretion 

offset 
-49.9 
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2.3  Extraction and Processing of Patient Data 

From International Islamic University Hospital, Kuantan, 

Malaysia, patient data of 2,585 collective hours from 61 ICU 

patients were analysed in this study. Written informed consent 

was obtained for all patients, and approval (IREC 657) was 

granted for this study by the International Islamic University 

Malaysia Medical Centre (IIUMMC) Research Ethics 

Committee and National Institutes of Health Malaysia (NIH).  

Integral-based parameter identification (Hann et al., 2005) 

using the ICING model is then used to gain 2,584 pairs of 

hourly SI data. 

The probability distribution of possible future SI at time n+1 

depends on the SI values at time n, and hence can be treated as 

a Markov chain. The Markov property states that the future 

state of a process depends only on its current state . Hence, the 

conditional probability of SI can be written as P(SI n+1|SI n). 

Additionally, according to Bayes’ Theorem, conditional 

probability has the statistical property as follows: 

 

𝑃(𝐴|𝐵) =  
𝑃(𝐴, 𝐵)

𝑃(𝐵)
 (8) 

 

Hence, P(SI n+1|SI n) can be written as 

 

𝑃(𝑆𝐼 𝑛+1|𝑆𝐼 𝑛) =  
𝑃(𝑆𝐼 𝑛 , 𝑆𝐼 𝑛+1)

𝑃(𝑆𝐼 𝑛)
 (9) 

 

P(SI n) and P(SI n+1, SI n) are obtained using univariate and 

multivariate kernel density estimation respectively. P(SI n+1|SI 

n) is then plotted and will be presented as a 3-D stochastic SI 

model. The 5th, 25th, 50th, 75th and 95th percentiles are then 

plotted. These lines represent the probability interval for 

potential SI n+1 values, one hour after having identified the 

current hour SI n value. Then, it is converted into a cumulative 

distribution function curve (CDF). 

The stochastic SI model from the STAR original cohort model 

is also extracted from the STAR protocol application (Lin et 

al., 2008). The 5th, 25th, 50th, 75th and 95th percentile lines for 

SI n against SI n+1 is obtained and similarly, a cumulative 

distribution density curve is generated in order to compare the 

Malaysian against the STAR original cohort. 

2.4  Comparison Between Cohorts 

In order to compare the predictive ability of the stochastic SI 

models of the two cohorts, the mean percentage difference 

between each percentile is calculated using Eq. (10). 

𝑀𝑒𝑎𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

 ∑ |
𝑀𝑖−𝑆𝑖
𝑀𝑖+𝑆𝑖

2

|

𝑁

𝑖=1

× 100  

 

(10) 

Where N is the total number of data points along the SI n axis. 

3. RESULTS 

The mean hourly SI values for each patient was calculated and 

the median of the mean hourly patient SI value for the entire 

cohort was found to be 0.00028 L/mU/min with a median of 

mean standard deviation of 0.00018. The interquartile range 

(IQR) for mean hourly patient SI value was 0.00020-0.00044 

[L/mU/min] while the interquartile range for the standard 

deviation was 0.00013-0.00028. 

A graph of SI at hour n (SI n) against SI at hour n+1 (SI n+1) as 

shown in Fig 1. A conditional density plot of P(SI n+1 | SI n) is 

constructed using the hourly SI data as shown in Fig 2. Each 

slice of the surface along the SI n+1 axis has an area under the 

curve summing to 1. Note that Fig 2 is generated from Eq. (9).  

The 5th, 25th, 50th, 75th and 95th percentile range is then plotted, 

which is shown in both Fig 2 and Fig 3 (left). These lines 

represent the probability interval for potential SI n+1 values, one 

hour after having identified the current hour SI n value. The 

probability density curve is then converted to a cumulative 

distribution density curve as shown in Fig 4. Similar data for 

the STAR original cohort is plotted in Fig 3 and Fig 4. 

In a similar manner, the CDF graphs of both cohorts will be 

compared by obtaining the absolute percentage difference of 

the two CDFs. This allows us to see at what range of SI values 

do the predictive abilities of the stochastic models differ.  

With reference to Fig 3, each percentile line from 5th to 95th is 

compared in terms of mean percentage difference and is shown  

in Table 2. The gap between 5th and 95th percentile lines 

represent the 0.90 probability interval. The largest difference 

in percentage difference comes from the 5th percentile line with 

79.15%.  

Table 2: Mean percentage difference for each percentile 

between Malaysian and STAR original cohorts 

Percentile Mean Percentage difference between 

Malaysian and STAR original Cohort (%) 

5th 79.15 

25th 40.50 

50th 19.66 

75th 11.30 

95th 18.34 

 

Fig 5 shows the percentage absolute difference between the 

cumulative distribution density curves between the Malaysian 

in and STAR original cohort. A maximum difference of up to 
49.4% can be found between the Malaysian and STAR original 

cohort conditional probability for SI. 

4. DISCUSSION 

From the results, the median SI value for the entire cohort is 

2.8×10-4 L/mU/min with an IQR of 2.0×10-4 to 4.4×10-4 

L/mU/min. This verifies that the ICING model is performing 

well at identifying the hourly SI values as the range of SI 

matches those found from various literatures which 

approximately ranges from 2×10-5 to 2.26×10-3 L/mU/min
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Fig 3. Percentile lines for Malaysian (left) and STAR original cohort (right) 

 

 

Fig 4. Cumulative distribution density with percentile lines superimposed for Malaysian cohort (left) and for STAR original 

cohort (right) 

 

 

Fig 1. Fitted hourly SI data on 65 Malaysian ICU patients Fig 2. Stochastic SI model with percentiles plotted and raw SI 

data points for Malaysian cohort 
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Fig 5. Absolute percentage difference for cumulative distribution density Curves between Malaysian and Christchurch cohort. 

(Left) An isometric view of graph, (Right) A top view of the graph 

 

(Bergman et al., 1987; McDonald et al., 2000). These values 

also matches the values found from a Malaysian cohort in a 

study by Ahamad et al. (2016) in which the interquartile range 

for SI values was 1.19×10-4 to 2.28×10-4 L/mU/min.  

In Fig 3, the wide gap between the 5th and 95th percentile line 

for the Malaysian cohort could imply that the SI values of the 

Malaysian cohort may vary more widely within the span on an 

hour. However, this could also be caused by the relatively low 

amount of patient data in the Malaysian cohort which can be 

seen in Fig 1, especially in the 2×10-3 to 3×10-3 L/mU/min 

range. The largest differences between percentile lines comes 

from the 5th and 25th percentile, as shown in Table 2. These two 

percentiles for the Malaysian cohort are lower. However, the 

50th, 75th and 95th percentiles do not show very high 

differences. This could possibly indicate that while the 
Malaysian stochastic model predicts similar SI values with the 

original cohort. The only difference would be that the 

Malaysian stochastic model overestimates the possible range 

of the 𝑆𝐼  at the next hour, especially to lower values. 

From Fig 5, most of the graph have low values, implying that 

both stochastic SI models have similar predictive capabilities. 

However, on the three zones highlighted by dotted lines in Fig 

5, the differences between the cohorts shoot up to 49.4%, 

especially at Zones 1, 2 and 3 of the graph. This indicates that 

at these SI values within these zones, the stochastic models of 

the two cohorts predict SI values at the n+1 hour that differ 

quite a bit. For example, at the SI n value of 0.75×10-3
 

L/mU/min, the stochastic model of the Malaysian cohort 

would predict an SI n+1 range that could be up to 40% than what 

the STAR original stochastic model would have predicted. 

The higher variability in SI values could suggest that a 

different target range would be recommended for the 

Malaysian cohort. Having a target range too tight can be hard 
to achieve and may lead to less time spent within the target BG 

range. As such, the STAR protocol achieves a decent 

percentage time in the BG range of 4.4 to 10.0 mmol/L in a 

Malaysian cohort in works done by Abu-Samah et al. (2018).  

It is noted that there are were various limitations in this study. 

One major limitation was the relatively low number of 

Malaysian data as compared to the STAR original cohort. 

Moreover, raw patient data of the original STAR cohort from 

Christchurch were at this time not available. Hence, the CDF 

graph for the original STAR cohort were fitted with sigmoid 

curves which is the cause for the lack of fit with the percentile 

lines as shown in Fig 4. 

Future works include further validating the Malaysian 

stochastic model by generating BG probability intervals with 

the ICING model, which can then be compared with other 

Malaysian BG data to check how much percent of the time the 

real measurements lay within the probability intervals 

generated. Furthermore, collecting more patient data to make 

a more accurate stochastic model for the Malaysian cohort so 
that a better comparison can be made. If the stochastic SI 

models between STAR original and Malaysian cohorts are in 

fact significantly different, the next step would be to build a 

full stochastic model for SI which can be used in conjunction 

with the STAR protocol, making it more effective for a 

Malaysian cohort. However, if there are no significant 

differences between the two cohorts, it can at least be 

eliminated as a potential cause of difference in effectiveness in 

a Malaysian cohort. Investigation into other potential reasons 

for difference of effectiveness of the STAR protocol in 

Malaysia can also be done, such as compliance analysis of the 

staff or even a cohort study to investigate other potential cohort 
differences. These can include medical differences, diabetic 

status of the patients or even different target feed practices, 

which all could potentially bring different explanations for the 

problem at hand.  

5. CONCLUSIONS 

A stochastic model of insulin sensitivity for a Malaysian 

cohort has been successfully modelled. The interquartile range 

for 𝑆𝐼 values for this cohort ranged from 1.3×10-4 to 2.8×10-4 

L/mU/min which is relatively low. The results from comparing 

this stochastic model with the STAR original cohort show 

3 

2 

1 
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differences of up to 49.4% in conditional probability which 

could be a possible reason for differences in effectiveness of 

the STAR protocol between Malaysia and Christchurch. To 

obtain more conclusive evidence that there is a significant 

difference in SI between the STAR original and Malaysian 

cohort, the created stochastic SI model for the Malaysian can 

be further validated and more Malaysian patient data should 

be obtained to create a more accurate stochastic model to 

enable a better comparison against the STAR original cohort.  
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