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Abstract: This paper proposes a box expanding method to reduce the economic dispatch (ED)
cost in the box-based robust unit commitment model (BUC). As a non-anticipative robust
unit commitment model for a power system under demand uncertainty, BUC co-optimizes the
commitment schedule and the feasible set of the ED problem to minimize the total operating
cost for the worst-case realization in a set of possible demand scenarios; the feasible set of the
ED problem is modeled as a box to enable the non-anticipative real-time dispatch. Meanwhile,
as BUC considers the worst-case total operating cost, the actual total operating cost may be
unnecessarily high. In this paper, the box feasible set of the ED problem in BUC is expanded to
a larger one via multi-objective optimization with a no-preference method. The expanded box
forms a new feasible set of the ED problem, which increases the chance of reducing the actual
ED cost and thus the actual total operating cost. Simulation results using 5-, 14-, and 30-bus
test systems demonstrate the effectiveness and generality of the proposed method.

Keywords: optimization problems, power systems, stochastic programming, uncertainty, unit
commitment problem.

1. INTRODUCTION

In power system operations, power supply and demand
always have to be balanced. To meet the actual power
demand that may deviate from any predicted value, the
current industry procures reserves of dispatchable gener-
ators (DGs). The minimum reserve requirement is set by
a system operator, e.g., to some percentage of the peak
load or to the capacity of the largest DG (Hirst and Kirby
(1999)). Mathematical scheduling methods for DGs based
on such reliability criteria include the unit commitment
(UC), where their optimal commitment schedule is found.
The UC problem usually incorporates the economic dis-
patch (ED) problem, where the most economical power
output of each DG in operation is obtained for a given
power demand scenario. Meanwhile, the growing penetra-
tion of renewable energy sources has increased uncertainty
in forecasting power demand that has to be supplied by
DGs, or the “net demand,” imposing challenges on UC.

To address the increasing net-demand uncertainty in UC,
various stochastic programming techniques have been ap-
plied; Zheng et al. (2015) present a comprehensive re-
view. Among them, robust optimization is one of the
most frequently used techniques. For instance, Jiang et al.
(2011) and Bertsimas et al. (2013) proposes a “two-stage
robust UC” model to obtain a commitment schedule that
minimizes the total operating cost for worst-case net-
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demand realization in a set of possible net-demand sce-
narios. Based on this two-stage robust UC model, Moreira
et al. (2015) pursue global optimality of the commitment
schedule under correlation of nodal demands; Zhao and
Guan (2013) minimize the weighted sum of the worst-case
and expected costs to further consider more probable net-
demand scenarios; Cho et al. (2019b) minimize exactly one
of the expected or worst-case cost while putting a limit on
the other via a hard constraint so that the upper limit of
the expected or worst-case cost can be easily specified.

However, the two-stage robust UC models ignore the non-
anticipativity constraint in the ED problem. That is, the
ED solution at each timeslot is obtained using a net-
demand scenario over the entire planning horizon as if
it is known at that timeslot. This is not realistic given
that what is known at each timeslot is only the past and
current net-demand realizations. Thus, the feasibility of
a two-stage robust UC model does not necessarily imply
that of the ED problem that is practically solved at each
timeslot.

Some of the robust-optimization-based UC models which
explicitly consider the non-anticipativity constraint in ED,
i.e., which integrate the ED problem that does not require
the future net-demand realization, are studied by Lorca
and Sun (2017); Cobos et al. (2018); Li and Zhai (2019);
Cho et al. (2019a). Lorca and Sun (2017) model the ED
solution at each timeslot as an affine function of the past
and current net-demand realizations so that the worst-
case total operating cost is minimized. Cobos et al. (2018)
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and Li and Zhai (2019) select the power output of each
DG at each timeslot within a predetermined range that
satisfies the non-anticipativity constraint. The range is co-
optimized with the commitment status to minimize the
total operating cost for a base-case net-demand scenario.

From the same point of view, Cho et al. (2019a) develop
the “box-based robust UC” model (BUC) for a power
system including energy storage systems (ESSs). In BUC,
which is based on the two-stage robust UC model, a box
inside the set of feasible dispatch schedules of DGs and
ESSs is found as their new feasible set in the ED problem.
As there is no dynamic constraint in the reformulated ED
problem, the ED solution at each timeslot depends only on
the net demand at that timeslot. Consequently, if such a
box exists that has an ED solution for any net-demand
scenario in a prescribed set over the planning horizon,
then the feasibility of the ED problem at each timeslot
is ensured. The box as a new feasible set is determined
so that the worst-case total operating cost is minimized.
The advantage of BUC over the affine-policy-based non-
anticipative robust UC model proposed by Lorca and Sun
(2017) is that the former can incorporate the n − K
security criterion regarding the DG outage. Furthermore,
BUC generalizes the concept of finding the dispatch ranges
proposed by Cobos et al. (2018) and Li and Zhai (2019)
so that ESSs as well as DGs can be incorporated in UC.

Meanwhile, BUC can be regarded practically as a method
for calculating the reserve requirement of each power
source with its availability ensured, as similarly done by
Makarov et al. (2011); Dvorkin et al. (2014); Nosair and
Bouffard (2015). Makarov et al. (2011) and Dvorkin et al.
(2014) analyze the generation capacity, ramping capa-
bility and ramping duration requirements using a three-
dimensional box that encloses a given percentage of data
points representing deviations of the total demand. Nosair
and Bouffard (2015) generalize this box enclosing the total
demand deviation to a cone, reducing the employment of
unnecessarily costly reserves. The difference of BUC and
the methods studied by Makarov et al. (2011); Dvorkin
et al. (2014); Nosair and Bouffard (2015) is that BUC
employs a single mathematical programming problem to
co-optimize the commitment status and the reserve re-
quirement while explicitly integrating the transmission
capacity constraint of the power system.

Notably, BUC adopts the worst-case analysis, implying
that the actual total operating cost may be unnecessarily
high. In the present paper, BUC is extended to increase
the chance of reducing the actual ED cost. Specifically, the
box obtained by using BUC is expanded inside the original
feasible operation set of power sources. This corresponds
to enlarging a feasible set of an optimization problem.
Thus, solving the ED problem with the expanded box as a
new feasible set ensures that the ED solution found in the
expanded box is never less economical than that found in
the box obtained by BUC for any net-demand scenario.
The proposed box expanding method is first described
as a multi-objective optimization problem, which is then
reformulated as a quadratic programming problem with a
no-preference method.

The remainder of this paper is organized as follows. Section
2 explains BUC and raises the issue regarding ED cost

reduction. Section 3 describes the proposed box expand-
ing method for BUC. Section 4 discusses the simulation
results. Finally, Section 5 concludes the paper.

2. PRELIMINARIES

In this section, BUC and the issue on ED cost reduction
are explained. To this end, a power system including
DGs and ESSs is modeled and the two-stage robust UC
model is described first. The DG outage contingency is
not considered for the sake of simplicity.

2.1 Power System Modeling

A power system consisting of N nodes and multiple
branches is considered, whose indices are denoted by
i and l, respectively. Without loss of generality, it is
assumed that a DG, an ESS, a load and a renewable
energy generator, all with the index i, are connected to
node i. As mentioned earlier, the load and renewable
energy generation levels are dealt with together as the
net demand. Moreover, the DC power flow representation
is used to model the transmission network. The planning
horizon is made up of T timeslots of unit length, whose
index is denoted by t. The net demand at node i and
timeslot t is denoted by dit; d and D represent the vector of
dit, as a net-demand scenario, and the set of possible net-
demand scenarios, respectively. In this study, D is assumed
to be a box, i.e., D = [d,d] where d and d are the vector
of the lower limits of dit and that of the upper limits of
dit, respectively.

To model the operational constraints of the power sources,
let binary variables uit, vit and wit denote the on/off, start-
up and shut-down status, respectively, of DG i at timeslot
t; the vector of uit, vit and wit as the commitment schedule
and its feasible set are denoted by u and U , respectively.
Any commitment schedule u ∈ U satisfies the minimum
up/down times of the DGs. Let also real variables xit, x

i
it

and xoit denote the power output of DG i, the power input
of ESS i and the power output of ESS i, respectively, all
at timeslot t. To simplify the notation, let

zjt :=


xjt if 1 ≤ j ≤ N
xi(j−N)t if N + 1 ≤ j ≤ 2N

xo(j−2N)t if 2N + 1 ≤ j ≤ 3N

and denote the vector of zjt by z ∈ R3NT where R
represents the real number set. Then, the feasible set of
z as a function over U is defined as

Z (u) :=
{
z ∈ R3NT : P iuit ≤ xit ≤ P iuit, ∀i,∀t, (1a)

xit − xi(t−1) ≤ Ru
i

(
1 + ui(t−1) − uit

)
+Rsu

i

(
2− uit − ui(t−1)

)
, ∀i,∀t,

(1b)

xi(t−1) − xit ≤ Rd
i

(
1− ui(t−1) + uit

)
+Rsd

i

(
2− uit − ui(t−1)

)
, ∀i,∀t

(1c)

0 ≤ xiit ≤ P in
i , ∀i,∀t, (1d)

0 ≤ xoit ≤ P out
i , ∀i,∀t, (1e)

0 ≤ S0
i +

t∑
τ=1

(
Ein
i x

i
iτ −

1

Eout
i

xoiτ

)
≤ Si,∀i,∀t

}
(1f)

where P i, P i, R
u
i , Rsu

i , Rd
i , Rsd

i and xi0 are the minimum
and maximum generation levels, ramp-up limit, start-up-
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ramp limit, ramp-down limit, shut-down-ramp limit and
initial power output of DG i, respectively; P in

i , P out
i , S0

i ,
Ein
i , Eout

i , and Si are the maximum input power, maxi-
mum output power, initial stored energy, input efficiency,
output efficiency and storage capacity of ESS i, respec-
tively. The constraints (1a), (1b) and (1c) represent the
feasible power output ranges, ramp-up limits and ramp-
down limits, respectively; (1d), (1e) and (1f) represent
the power input and output limits and storage limits,
respectively. Although the set of feasible ESS operation
schedules does not depend on u, xiit and xoit are treated
with xit in the vector z for brevity.

Subsequently, to model the systemwide constraints de-
pending on the net-demand realization, let W (d) denote
the feasible set of dispatch schedules z in terms of the
systemwide constraints for a net-demand scenario d ∈ D,
defined as

W (d) :=
{
z ∈ R3NT :

− F l ≤
∑
i

Fil
(
xit − xiit + xoit − dit

)
≤ F l, ∀l,∀t, (2a)∑

i

(
xit − xiit + xoit − dit

)
= 0, ∀t

}
(2b)

where F l and Fil are the maximum real power flow
in branch l and DC power transfer distribution factor
between node i and branch l, respectively. The constraint
(2a) and (2b) represent the transmission capacity limits
and the power balance equation, respectively.

2.2 Box-based Robust Unit Commitment Model

According to Bertsimas et al. (2013), the two-stage robust
UC problem is formulated as

min
u∈U

{
cT1 u + max

d∈D
f (Z (u) ,d)

}
(3)

where c1 is the cost coefficient vector associated with u,
including the no-load, start-up and shut-down costs of the
DGs and

f (Z,d) := min
z∈Z∩W(d)

cT2 z (4)

is the total ED cost for the feasible operation set Z ⊂
R3NT of the power sources and net-demand scenario d ∈ D
with c2 denoting the cost coefficient vector associated with
z including the marginal generation costs of the DGs and
the marginal input/outoput costs of the ESSs. In this
paper, the problem (4) is assumed to be feasible for any
Z and d, which can be enforced by introducing penalty
terms regarding the constraint (2). Then, implementing
the solution u′ to the problem (3) ensures that the actual
ED cost is bounded by maxd∈D f (Z (u′) ,d).

However, the non-anticipativity in ED is ignored in the
problem (3). That is, the ED solution at each timeslot de-
pends on the net-demand realization over the entire plan-
ning horizon, which includes unknown future information.
This is because the ED problem (4) incorporated in (3) is
a multi-period problem that have the dynamic constraints
(1b), (1c) and (1f). If there is no dynamic constraints in
(4), the ED solution at each timeslot depends only on the
net demand at that timeslot. Furthermore, if Z is a box,
then (4) has no dynamic constraints. Accordingly, in BUC,
a box Zbox = [z, z] ⊆ Z (u) is obtained simultaneously

with u to meet the non-ancitipativity constraint in ED,
where z and z denote the vectors of the minimum and
maximum allowable values zjt and zjt of zjt, respectively,

to be optimized. The box Zbox then substitutes for Z (u)
in (3) as follows:

f
(
Zbox,d

)
= min

z∈W(d)
cT2 z s.t. z ≤ z ≤ z.

This makes the ED problems at different timeslots tem-
porally uncorrelated and ensures the non-anticipativity.
Consequently, the BUC problem is written as

min
u∈U,Zbox⊆Z(u)

{
cT1 u + max

d∈D
f
(
Zbox,d

)}
. (5)

The problem (5) can be rewritten as an MILP problem and
be solved via a cutting-plane algorithm (see, e.g., Zeng and
Zhao (2013)). Let u∗ and Zbox∗ denote the solution to (5).

2.3 Issue on the Actual ED Cost

While bounded by maxd∈D f
(
Zbox∗,d

)
, the actual ED

cost in BUC may be unnecessarily high. This is because,
regarding any net-demand scenario other than the worst-
case ones, only the feasibility of the ED problem is ensured
without the optimality of the associated solution evalu-
ated. However, evaluating it explicitly when determining
Zbox through a single optimization problem may increase
the worst-case total operating cost. One possible way to
increase the chance of reducing the actual ED cost with
the worst-case total operating cost still minimized is to
adopt as a feasible set in the ED problem (4) a larger
box Zexp ⊆ Z (u∗) containing Zbox∗. This corresponds to
enlarging a feasible set of an optimization problem, whose
mathematical description is given in the following section.

3. BOX EXPANDING METHOD

3.1 Box Expanding Problem

The optimal value of a constrained minimization problem
may be reduced when its feasible set is expanded. Based
on this idea, the proposed method increases the chance
of reducing the actual ED cost assumed in BUC by
obtaining another box Zexp = [zexp, zexp] including Zbox∗

and adopting it as a feasible set of the ED problem
instead of Zbox∗; zexp and zexp denote the vectors of the
revised minimum and maximum allowable values zexpjt and

zexpjt of zjt, respectively, to be optimized. The following
proposition summarizes how this box expanding method
contributes to the ED cost reduction.

Proposition 1. For any u ∈ U , consider the problem (4)
and a box Zexp such that Zbox∗ ⊆ Zexp ⊆ Z (u). Then, it
holds that

f (Zexp,d) ≤ f
(
Zbox∗,d

)
, ∀d ∈ D.

In the meantime, the ED cost reduction for any d ∈ D,
i.e., f (Zexp,d)−f

(
Zbox∗,d

)
, is likely to increase with the

size of the interval [zexpjt , z
exp
jt ] for any j and t. Thus, the

problem to optimize Zexp can be formulated as a multi-
objective optimization problem

max
zexp,zexp

zexp − zexp (6a)

s.t. Zbox∗ ⊆ Zexp ⊆ Z (u∗) (6b)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13433



: Z (u∗)

: Zbox∗

: Z id

Fig. 1. Inclusion relation of Z (u∗), Zbox∗, and Z id.

where the objective function (6a) indicates the vector of
the widths of allowable dispatch ranges and the constraint
(6b) ensure that the worst-case ED cost is minimized.
Since it is impossible to maximize simultaneously all the
entries in (6a) unless Z (u∗) is a box, the box expanding
problem belongs to multi-objective optimization.

As usual in many multi-objective optimization problems,
there exist multiple approaches of different criteria to the
problem (6). In this paper, it is assumed that decision
makers do not show any preference information and (6)
is solved via a no-preference method (Miettinen (1998)).
Specifically, (6) is converted to the single-objective opti-
mization problem

min
zexp,zexp

δ
(
Z id,Zexp

)
s.t. Zbox∗ ⊆ Zexp ⊆ Z (u∗) (7)

where δ (A,B) is the distance of two K-dimensional boxes

A =
∏K
k=1[ak, ak] and B =

∏K
k=1[bk, bk] for an arbitrary

natural number K, defined in this paper as

δ (A,B) :=

K∑
k=1

{(
ak − bk

)2
+ (ak − bk)

2
}
.

Also, Z id = [zid, zid] represents the box as the ideal
maximizer of (6) where zid and zid are the vectors of zidjt
and zidjt that are associated with the entries zexpjt and zexpjt

of zexpjt and zexpjt in (6). That is, for each pair of j and

t, zidjt and zidjt are obtained by solving the single-objective
optimization problem

max
zexp,zexp

zexpjt − z
exp
jt s.t. Zbox∗ ⊆ Zexp ⊆ Z (u∗) .

The inclusion relation of the sets Z (u), Zbox∗ and Z id

is illustrated in Fig. 1. Let Zexp∗ denote the solution of
the problem (7). According to Proposition 1, the actual
ED cost can be reduced by solving the ED problem over
Zexp∗ instead of Zbox∗.

3.2 Solution Method

The problem (7) is a typical quadratic programming
problem since all the constraints can be expressed as linear
inequalities. Specifically, suppose that

Z (u∗) =
{
z ∈ R3NT : Az ≤ B

}
where A and B are a given matrix and a given vector,
respectively. Then, the constraint Zexp ⊆ Z (u∗) in (7)
can be represented as

Azexp +A+ (zexp − zexp) ≤ B,
where A+ is the matrix any element of which is equal to
the corresponding element of A, if the latter is positive, or
zero, otherwise (Bemporad et al. (2004)). Therefore, (7)
can be solved with any quadratic programming algorithm.

In summary, the proposed method is used to expand Zbox∗

to Zexp∗, which corresponds to solving (7), after BUC is
used to obtain u∗ and Zbox∗, which corresponds to solving
(5). The performance of the proposed method is discussed
in the following section.

Remark. The net-demand scenarios whose associated
ED cost can be reduced by the proposed method are
unknown a priori. However, the proposed method is still
necessary for increasing the chance of reducing the actual
ED cost even when another box optimization method
targeting a particular scenario set, e.g., a specific quantile
in a given probability distribution, is applied. This is
because the number of net-demand scenarios modeled in
the ED problem has to be limited to make it practically
solvable, i.e., it is difficult to consider each and every
net-demand scenario in a continuous set. The actual ED
cost for the rest of the net-demand scenarios that are not
explicitly modeled in the ED problem can be reduced by
the proposed method. Thus, the proposed method can be
regarded as an essential technique for refining any box as
a feasible set of the ED problem under the net-demand
uncertainty.

4. NUMERICAL SIMULATIONS

In this section, the effectiveness of the proposed method is
demonstrated via 30 numerical simulation sets from S1 to
S30, where modified versions of the MATPOWER 5-bus
test system (S1-S10), IEEE 14-bus test system (S11-S20),
IEEE 30-bus test system (S21-S30) are used (Zimmerman
et al. (2011)). The 5-bus test system has three loads,
five DGs from G1 to G5 and ESS E1. The 14-bus test
system has 11 loads and five DGs from G6 to G10 and
ESS E2, where the transmission line capacities are set
to 100 MW. The 30-bus test system has 16 loads and
six DGs from G11 to G16 and ESS E3. The operational
parameters of the DGs and ESSs are listed in TABLE 1
and TABLE 2, respectively, with the node indices omitted.
In TABLE 1, SU , SD and C represent the start-up, shut-
down and marginal generation costs, respectively. Any DG
is initially turned off. In TABLE 2, C in and Cout represent
the marginal power input and output costs, respectively.

In each simulation set, to construct the net-demand sce-
nario set, nominal load values are randomly generated over
the planning horizon of 24 timeslots at intervals of an hour.
Subsequently, the maximum and minimum values of each
load at each timeslot are set to (1± α) times the nomi-
nal values, which form the net-demand scenario set. For
this scenario set, the feasible set Zbox∗ is obtained using
BUC, which is then expanded to the feasible set Zexp∗

by solving (7). Subsequently, the ED cost over Zbox∗ and
that over Zexp∗ are calculated for 100 randomly generated
load scenarios, whose differences are the cost reductions
achieved by the proposed method. In the first five out of
the 10 simulations for each test system, different nominal
load scenarios are used with α set commonly to 0.2. In the
remaining five, a single nominal load scenario is used with
different values of α = 0, 1, 0.15, . . . , 0.3.

TABLE 3 shows the average ED cost reduction and the
average ED cost reduction ratio achieved by applying the
proposed method in each simulation set. The proposed
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method is implemented, i.e., the problem (7) is solved,
in less than a second for any case. From TABLE 3, it
is observed that the average ED costs are reduced in all
the simulation sets. This is because the feasible sets Zexp∗

of the ED problem contain more economical dispatch
schedules than Zbox∗. For example, in simulation S4 using
the 5-bus test system, the power outputs of G2 with
marginal cost of 15 decreases averagely, while those of G5

with marginal cost of 10 increases averagely after their
feasible sets are expanded, thus reducing the ED cost
(Fig. 2). The operations of the other power sources do
not change remarkably in simulation S4.

In the meantime, no clear relationship is observed between
the ED cost reduction and the net-demand scenario set
parameters. For instance, the ED cost reduction and the
total nominal load value are not positively nor negatively
related in any case. The ED cost reduction and the
maximum relative prediction error α are related positively
only in simulations S16-S20 using the 14-bus test system,
which is hardly generalized. This implies that the “shape”
of the box obtained in BUC is highly arbitrary and thus the
efficiency of the proposed method depends on the system
parameters and the net-demand scenario set. Nonetheless,
the proposed method is still necessary for reducing the
actual ED cost otherwise incurred by BUC as it is difficult
to consider the ED costs for all the net-demand scenarios
in a continuous set simultaneously in BUC.

5. CONCLUSION

While BUC ensures power system reliability under the net-
demand uncertainty with the worst-case total operating
cost minimized, the actual ED cost may be unnecessarily
high. By using the proposed box expanding method based
on multi-objective optimization, the actual ED cost can
be reduced. The proposed method is applicable to any box

Table 1. Dispatchable generator parameters.

DG
SU

SD
P P Rd, Rsd Ru, Rsu C

(×103) (MW) (MW) (MW/h) (MW/h) (/MWh)

G1 14 12.6 4 40 23.4 23.4 14
G2 15 13.5 17 170 99.45 99.45 15
G3 30 27 52 520 304.2 304.2 30
G4 40 36 20 200 117 117 40
G5 10 9 60 600 351 351 10
G6 20 18 33.24 332.4 194.45 194.45 20
G7 20 18 14 140 81.9 81.9 20
G8 40 36 10 100 58.5 58.5 40
G9 40 36 10 100 58.5 58.5 40
G10 40 36 10 100 58.5 58.5 40
G11 2 1.8 0 80 64 64 2
G12 1.75 1.6 0 80 64 64 1.75
G13 1 0.9 0 50 40 40 1
G14 3.25 2.9 0 55 44 44 3.25
G15 3 2.7 0 30 24 24 3
G16 3 2.7 0 40 32 32 3

Table 2. Energy storage system parameters.

ESS
P in, P out

Ein, Eout S0 S Cin Cout

(MW) (MWh) (MWh) (/MWh) (/MWh)

E1 6 0.8 0 60 4 4.8
E2 3.324 0.8 0 33.24 4 4.8
E3 0.8 0.8 0 8 0.325 0.39

as an ED feasible set that is determined to minimize the
ED cost for a set of net-demand scenarios. The numeri-
cal simulation results demonstrated the effectiveness and
generality of the proposed method. In this paper, the no-
preference method was used as a multi-objective optimiza-
tion technique. To improve the proposed method, various
preference-based multi-objective optimization techniques
will be tested in future research, e.g., considering the size
of net-demand uncertainty at each node and timeslot.
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Table 3. Average economic dispatch cost reduction achieved by the proposed method.

Simulation (5 bus) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Total nominal load (× 104 MW) 1.7538 1.8972 1.8522 1.9008 1.8978 1.9903 1.9903 1.9903 1.9903 1.9903
α 0.2 0.2 0.2 0.2 0.2 0.1 0.15 0.2 0.25 0.3

Avg. cost (Zbox∗) (× 105) 2.3893 2.6599 2.5764 2.8971 2.6897 2.8291 2.8118 2.8713 2.9472 3.0192
Avg. cost (Zexp∗) (× 105) 2.3739 2.6407 2.5218 2.8348 2.6722 2.7828 2.8019 2.8517 2.9409 3.0001
Avg. cost reduction (× 103) 1.4653 1.9204 5.4587 6.2276 1.7579 4.6314 0.9898 1.9572 0.6356 1.9130
Avg. reduction ratio (%) 0.6195 0.7227 2.1192 2.1509 0.6548 1.6371 0.3521 0.6826 0.2160 0.6345

Simulation (14 bus) S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Total nominal load (× 103 MW) 5.6319 5.6091 5.5257 5.6195 5.5340 7.0455 7.0455 7.0455 7.0455 7.0455
α 0.2 0.2 0.2 0.2 0.2 0.1 0.15 0.2 0.25 0.3

Avg. cost (Zbox∗) (× 105) 1.1532 1.1518 1.1374 1.1608 1.1324 1.5343 1.5675 1.5888 1.6099 1.6791
Avg. cost (Zexp∗) (× 105) 1.1482 1.1411 1.1277 1.1459 1.1263 1.4837 1.4985 1.5239 1.5376 1.5508
Avg. cost reduction (× 103) 0.4969 1.0701 0.9718 1.4979 0.6112 5.0606 6.9052 6.4937 7.2254 12.8276
Avg. reduction ratio (%) 0.4310 0.9293 0.8545 1.2905 0.5397 3.2991 4.4067 4.0886 4.4900 7.6446

Simulation (30 bus) S21 S22 S23 S24 S25 S26 S27 S28 S29 S30

Total nominal load (× 103 MW) 2.4182 2.8960 2.9096 2.9018 2.8965 2.3891 2.3891 2.3891 2.3891 2.3891
α 0.2 0.2 0.2 0.2 0.2 0.1 0.15 0.2 0.25 0.3

Avg. cost (Zbox∗) (× 103) 3.3590 4.2059 4.2363 4.2271 4.2273 3.2906 3.3024 3.2966 3.2958 3.2845
Avg. cost (Zexp∗) (× 103) 3.3446 4.2048 4.2342 4.2236 4.2090 3.2852 3.2841 3.2828 3.2809 3.2824

Avg. cost reduction 14.3557 1.1140 2.1922 3.5302 18.3650 5.4196 18.2689 13.7883 14.9056 2.1756
Avg. reduction ratio (%) 0.4274 0.0265 0.0517 0.0836 0.4345 0.1647 0.5534 0.4182 0.4524 0.0662

Fig. 2. The feasible sets Zbox∗ and Zexp∗ of power outputs, and the actual power outputs as ED solution for the 100
randomly generated net-demand scenarios. (a) Zbox∗ of G2. (b) The power outputs (grey lines) of G2 in Zbox∗. (c)
Zexp∗ of G2. (d) The power outputs (blue lines) of G2 in Zexp∗. (e) The overlap of (b) and (d). (f) Zbox∗ of G5.
(g) The power outputs (grey lines) of G5 in Zbox∗. (h) Zexp∗ of G5. (i) The power outputs (blue lines) of G5 in
Zexp∗. (j) The overlap of (g) and (i). As can be seen from (e) and (j), the feasible operation set is expanded by the
proposed method and the more economical dispatch schedules are selected.
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