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Abstract: This paper proposes an energy-efficient predictive cruise control (PCC) system to
cope with range anxiety of automated electric vehicles. The proposed approach is formulated
as an optimal control problem to realize better energy efficiency and ensure safe inter-vehicle
distance. To improve computational efficiency, a fast algorithm combining Gauss pseudospectral
method (GPM) and moving horizon control (MHC) is introduced to solve this nonlinear optimal
problem. The comparative simulation results reveal that the energy economy of the PCC system
is improved about 4.1%, and its computation time is reduced compared with the Euler method
while ensuing the same accuracy.
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1. INTRODUCTION

In recent years, the greenhouse gas emission and glob-
al warming are becoming increasingly serious problems.
There have been a number of approaches to reduce fuel
consumption and carbon dioxide emission for saving glob-
al environment Barkenbus (2010). With the remarkable
development in eco-driving, the energy efficient control of
electric vehicles is becoming a hot research field.

However, the limited cruising range presents the major
customer and market concern impeding trends towards
electric mobility. To improve energy efficiency of electric
vehicles, the vehicle connectivity and driving automation
are becoming the important solutions in the field of range
extension in EVs. Several studies have shown that the eco-
driving can be beneficial for reducing energy consumption
of vehicles (Vahidi and Sciarretta (2018) Martinez et al.
(2016)). In the paper Dib et al. (2014), the analytical
energy-optimal speed trajectory is obtained based on the
constraints from the road speed limit and surrounding
traffic information. Eco-driving techniques are discussed
and formulated as an optimal control problem in order to
improve energy efficiency over a time and distance horizon.
The authors in Bertoni et al. (2017) proposed an energy-
saving cooperative adaptive cruise control (eco-CACC)
that consists of the minimization of the autonomous elec-
tric vehicles consumption over a time horizon. With an ob-
jective of reducing computation time, a novel method using
linear MPC for computationally efficient velocity control
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for EVs is formulated (Morlock et al. (2019)). With the
same purpose, the paper Hamednia et al. (2018) presented
an approach for computation of energy-efficient velocity
of vehicles driving in a hilly terrain using the information
about upcoming topography over a long horizon.

Due to the challenging problem of high computational
effort with long-horizon traffic information usage, the tra-
ditional optimization algorithm such as dynamic program-
ming (DP) (Bertsekas et al. (1995)) is difficult to meet
the real-time implementation. The work (Schwickart et al.
(2016)) proposed a real-time capable model-predictive
cruise controller for EVs aiming at reducing charge con-
sumption while tracking the given reference speed. A fast
algorithm combining the Gauss pseudospectral method
and model predictive control is proposed to hybrid electric
vehicles (HEVs) energy management problem (Guo et al.
(2017)). The same computational accuracy can be ensured
using fewer discrete points.

In this paper, for the automated EVs car-following prob-
lem, a predictive cruise control is presented to find optimal
motor torque and brake force while ensuring safety and
energy economy, as shown in Fig. 1. Furthermore, to re-
duce computational burden, a fast algorithm is proposed
combing Gauss pseudospectral method and model hori-
zon control strategy, which aiming at finding the optimal
solution while taking into account the preceding vehicle
constraints.

The reminder of this paper is organized as follows. In
Section 2, a system model and problem formulation is
developed. Section 3 describes the computationally effec-
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Fig. 1. Structure of the proposed energy-efficient PCC for
EV.

tive algorithm based on the Gauss pseudospectral method
and model horizon control for finding optimal solution. In
Section 4, the effectiveness of the energy-efficient PCC is
evaluated through the comparative simulations. Finally,
conclusion and future work are given in Section 5.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

This section describes the formulation of the predictive
cruise control problem. The car motion used in this paper
is given by an EV model with a single speed transmission
described below in detail.

2.1 Vehicle Model

According to the Newton’s second law, the longitudinal
dynamic motion of a vehicle can be given as

ds

dt
= v

Mveh
dv

dt
= Tm

igηt
rw

− Fb − Fr − Faero,
(1)

here s is the traveling distance, ig is the gear ratio, v is
the longitudinal vehicle speed, Tm is the motor torque, Fb

is brake force, ηt is the drive train total efficiency, Mveh

is the total mass of the vehicle. The rolling resistance and
the gradient resistance, Fr is determined by the road slope
α, can be described as

Fr = Mveh(gf cos(α) + g sin(α)), (2)

where g is the gravitational constant, f is the rolling
resistance coefficient. The aerodynamic drag resistance,
Faero, which is the other resistance at high velocities

Faero =
1

2
ρcdAfv

2, (3)

where ρ is the air density, cd is the drag coefficient, Af is
the frontal area of the vehicle.

2.2 Charge Consumption Model

For analytical formulation of the optimal control problem,
a simplified approach is introduced to model the total
demanding power. The power is modeled as a function

of the motor torque Tm, the motor speed nm, and the
machine efficiency ηm of the motor, given by

Pm(t) = Tm(t)nm(t)ηm(Tm, nm)−sign(Tm(t)), (4)

where Tm(t)nm(t) denotes the mechanical power, the
machine efficiency ηm of the motor is a function of both Tm

and nm, as shown in Fig. 2. For online implementation, the
approximate closed-form expressions are used instead of
equation (4). In this paper, a two-dimensional polynomial
expression is adopted, as

Pm = a1nm + a2nmTm + a3Tm + a4n
2
m + a5nmT 2

m, (5)

where ai, i = 1, 2, · · · , 5 are the fitting coefficients, and
the values are {−2.892 × 10−5, 1.044 × 10−4, 2.059 ×
10−3, 1.315 × 10−8, 8.437 × 10−8}. The motor speed nm

(r/min) is determined by the gear ratio ig and the vehicle
speed v

nm =
30igv

πrw
. (6)

It follows that the power can be formulated as the Tm and
the v as follows

Pm = b1v + b2vTm + b3Tm + b4v
2 + b5vT

2
m, (7)

where bi, i = 1, 2, · · · , 5 are determined by ai, i = 1, 2, · · · , 5
and the equation (6).

The battery dynamics in the electric vehicle are formulated
through an internal resistance model. According to the
Ohm’s law, the battery current I can be calculated as

I =
Voc

2Rb
−

√
(
Voc

2Rb
)
2

− Pm

Rb
, (8)

here Voc is the open circuit voltage, Rb is the internal
resistance, Pm is the motor power. Then, the state of
charge SOC is determined by

dSOC

dt
= − I

Qbat
, (9)

where Qbat is the battery nominal capacity. In this paper,
the efficiency of the battery ηb is assumed equal to 1.

2.3 Problem Formulation

The objective of predictive cruise control system is to
minimize the energy consumption as much as possible
while maintaining a safe inter-vehicle distance. Therefore,
the energy consumption over the prediction horizon with
a terminal penalty is the cost function, as

J =
N∑

k=1

C(x(k), u(k))∆t+ φ(v(N + 1)− vf )
2
. (10)

Here C(x(k), u(k)) is defined as

C(x(k), u(k)) = wfPm(k), (11)

where state variable x := {s, v}, control input u :=
{Tm, Fb}, wf is the weight coefficient. The terminal penal-
ty is used to guarantee the safe inter-vehicle distance in
the car-following scenario.
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Fig. 2. The motor efficiency ηm and the equivalent energy consumption rate Pm, The blue lines of the right figure are
experimental data and the red lines represent the results based on the dimensional polynomial by fitting, with
correlation coefficient R2 = 99.91%.

In the time domain, a safe spacing policy with constant
time headway is performed by determining a final speed
ṽf in the terminal prediction horizon (Chen et al. (2018))

ṽfTr + s(Np + 1) ≤ sp(Np + 1) + sp0, (12)

where sp0 is the current inter-vehicle distance, sp(Np +1)
is running distance of preceding vehicle in the prediction
horizon, s(Np + 1) is the running distance of host vehicle
in the prediction horizon, Tr is the safe time headway.
We assume that the host vehicle approximately accelerates
linearly from the current speed v(1) = vh1 to the terminal
speed ṽf . Therefore, the s(Np + 1) is calculated by

s(Np + 1) =
(vh1 + ṽf)

2
tf . (13)

To predict the preceding vehicle speed accurately, the
acceleration of the preceding vehicle is described by a
tuning parameter (Chen et al. (2018) Kamal et al. (2012))

ap = ap,0κ(vp), (14)

where ap,0 is the current acceleration of the preceding
vehicle, vp is the speed. The κ(vp) is defined as

κ(vp) =


1

1 + e−β1(vp−γ1)
, if ap,0 ≤ 0

1

1 + eβ2(vp−γ2)
, else

, (15)

where β1 > 0, β2 > 0 are the sharpness of function, γ1, γ2
define the range of the function. Then, we can obtain the
speed of preceding vehicle in the prediction horizon. The
above function is shown in Fig. 3.

According to the above analysis, the sp(Np + 1) can be
obtained. By substituting (13) into (12), the expression of
vf is deduced:

ṽf ≤
sp(Np + 1) + sp0 − vh1 tf/2

Tr + tf/2
. (16)

Besides, the other constraints in the energy-efficient PCC
system can be formulated as

Tm,min(nm(k)) ≤ Tm(k) ≤ Tm,max(nm(k)),
nm,min ≤ nm(k) ≤ nm,max,
Fb(k) ≤ Fb,max.

(17)

3. GAUSS PSEUDOSPECTRAL METHOD

3.1 Preliminaries

In this section, we introduce a general nonlinear model
predictive control problem in time domain. A nonlinear
control system is developed by the following state equation

ẋ(t) = f(x(t), u(t), p(t)), (18)

where x(t), u(t), p(t) are the states, the input variables and
the system parameters, respectively. The control inputs
at each time t are determined to minimize the following
function:

min J = φ(x(t0), x(tf)) +

tf∫
t0

L(x(t), u(t), t)dt, (19)

where the prediction horizon is t ∈ [t0, tf ], φ(x(t0), x(tf))
is the terminal penalty, L(x(t), u(t), t) is the cost function.
The system constraints are summarized as

h(x(t), u(t), p(t), t) ≤ 0
Φ(x(t0), x(tf))= 0.

(20)

Without considering the loss of generality, the nonlinear
model predictive control problem can be reformulated as
follows:

J = φ(x(−1), x(1)) +
tf − t0

2

1∫
−1

L(x(τ), u(τ), τ) dτ , (21)

with constraints as

ẋ(τ) =
tf − t0

2
f(x(τ), u(τ), p(τ)),

h(x(τ), u(τ), p(τ)) ≤ 0,
Φ(x(−1), x(1)) = 0,

(22)

where the time interval is transformed from [t0, tf ] to the
time interval [−1, 1] via the affine transformation

t =
tf − t0

2
τ +

tf + t0
2

, τ ∈ [−1, 1] . (23)
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Fig. 3. The κ(vp) in the prediction function (15).

3.2 Gauss Pseudospectral Discretization

Taking into consideration of the collocation at the N
Legendre-Gauss points noted as τ1, τ2, · · · , τN and the τ0
corresponding to the initial time t0. The state variables
x(τ) in equation (1) are discretized as (Benson et al.
(2006)):

X = [x(τ0), x(τ1), x(τ2), ..., x(τN )]. (24)

Additionally, the control inputs U(τ) are also discretized
as:

U = [u(τ0), u(τ1), u(τ2), ..., u(τN )]. (25)

The state variables and control inputs are approximated
by the Lagrange interpolation polynomials at collocation
points

x(τ) ≈ XL(τ), u(τ) ≈ UL(τ), (26)

here L(τ) is the basis of Lagrange polynomials given by

L(τ) = [L0(τ), L1(τ), ..., LN (τ)]T ,

Li(τ) =
N∏

j=0,j ̸=i

τ − τj
τi − τj

(i = 0, 1, ..., N).
(27)

Differentiating the expression (26), we can obtain the
differential operation on the Lagrange bases:

ẋ(τ) ≈ XL̇(τ). (28)

The derivative of each Lagrange polynomial at the LG
points can be represented in a differential approximation
matrix, D = [D1, D2, ..., DN ]. The elements of the dif-
ferential approximation matrix are determined offline as
follows:

Dk = [L̇0(τk), L̇1(τk), ..., L̇N (τk)]
T , (29)

where k = 1, 2, ..., N . The dynamic constraints are re-
formulated as algebraic constraints via the differential
approximation matrix as follows:

XDk − tf − t0
2

f(Xk, Uk) = 0, k = 1, 2, ..., N, (30)

where Xk ≡ x(τk), Uk ≡ u(τk).

As regards the terminal penalty in the model predictive
control, the additional variables in the discretization are
performed as:

x(−1) = x(τ0),

x(1) = x(τN ) +
tf − t0

2
(1− τN )f(XN , UN ).

(31)

According to the Legendre-Gauss quadrature

1∫
−1

f(x, τ)dτ ≈
N∑
i=0

wif(x(τi)), (32)

where wi are the Gauss weights, thus the nonlinear optimal
problem can be reformulated as an nonlinear programm
problem that find optimal solution Q = [XT , UT ]T , such
that

minJ = φ(x(−1), x(1)) +
tf − t0

2

N∑
k=0

wkg(Xk, Uk). (33)

Furthermore, the system constraints can be summarized
as

XDk − tf − t0
2

f(Xk, Uk) = 0,

h(Xk, Uk) ≤ 0,
Φ(x(−1), x(1)) = 0, k = 1, 2, ..., N.

(34)

The above NLP problem is solved by the Sequential
Quadratic Programming (SQP) algorithm in this paper.

3.3 Moving Horizon Control Strategy

As discussed in above, the prediction horizon is discretized
with a nonuniform subdivision approach, which is different
from the Euler method. According to the control process
of MPC, at each sampling instant, the first control input
in the obtained sequence is applied to the controlled plant.

Assuming the sampling time ∆t in real-time application is
fixed, if the discrete points at the end of the horizon are
dense, which means ∆τ < ∆t. After obtaining the discrete
optimal control variable U(τ), it’s appropriate to apply the
first several elements of the control variable to the plant,
such as

u(t) = u∗(t), t ∈ [t0, t0 +∆t]. (35)

However, if ∆τ ≥ ∆t the moving control instruction u(t)
is derived as

u(t) = u∗(t0). (36)

The details of the influence of the interval ∆τ in control
performance are discussed in the study Guo et al. (2017).

4. SIMULATION ANALYSIS

In this section, several comparative simulations are pre-
sented to observe the energy saving capacity of the pro-
posed energy-efficient PCC, and compare the computation
time with the baseline method. The parameters of the
chosen EV model are shown in Table. 1.
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Table 1. Vehicle parameters

Description Value

Vehicle Mass Mveh 1500kg

Air Density ρ 1.205kg/m3

Frontal Area of the Vehicle Af 2.1m2

Air Resistance Coefficient cd 0.36

Rolling Resistance Coefficient f 0.011

Gravitational Constant g 9.8m/s2

Road Grade α 0

ηt 0.96

Gear ratio ig 13.396

Maximum motor torque Tm,max 200Nm

Maximum motor speed nm,max 9000r/min

Battery capacity Qbat 70Ah

Safe time headway Tr 1.8s
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Fig. 4. Results comparison in vehicle speed and relative
distance.

4.1 Comparison of Energy Consumption

Firstly, for clear description, the method using MHC with
GPM proposed in this paper is marked as GPM-PCC,
that using Euler method is marked as Euler-PCC. The
sampling time and discrete point number are chosen as
∆t = 0.05s and Ngpm = 10, Neuler = 20.

The simulation results are shown in Fig. 4. From top to
bottom, the first figure shows the velocity trajectories of
the preceding vehicle and host vehicle, the second figure
shows the relative distance between the host and the
preceding vehicle. From the results, we can see that the
GPM-PCC with half discrete point number can achieve
the same performance in the car-following scenario. As it
can be observed in the bottom figure, the inter-distance
is not constant, which also indicates that the vehicle
controlled by the PCC can accelerate gradually to follow
the preceding vehicle.

Fig. 5 indicates that the energy efficiency obtained using
GPM-PCC is the same as that using Euler-PCC. And the
energy economy is found to be improved 4.1% on average.
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Fig. 5. Results comparison in energy efficiency.

4.2 Computational Efficiency

In this section, the simulation was run on an Intel (R) Core
(TM) i7-7700 CPU (3.60GHz), and an estimate of CPU
computation time was obtained using the CPU command
in MATLAB 2015b. The computational time results are
shown in Fig. 6. The second figure shows the computation
time in time horizon t ∈ [390s, 440s]. The results show
that the proposed GPM-PCC is more computationally
efficient than the baseline Euler-PCC while ensuring the
same accuracy.
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Fig. 6. Computation time of GPM-PCC and Euler-PCC.
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5. CONCLUSION

In this paper, a predictive cruise control for minimising
charge consumption of the automated electric vehicles has
been proposed as an optimal control problem. The optimal
velocity is obtained by the optimal trade off between the
energy economy and the inter-vehicle distance. To reduce
the computational burden, a fast algorithm combining
Gauss pseudospectral method and moving horizon control
is introduced to solve this nonlinear optimal problem.
Results of several comparative simulations indicate that
the average energy-saving can reach about 4.1%, and the
computational speed is improved compared with the Euler
method while ensuring the same accuracy. In the future
work, the real vehicle implementation is our main focus.
We will also take the more traffic information into account.
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