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Abstract: In this paper, a method of distributionally robust fault detection (FD) is proposed for
stochastic linear discrete-time systems by using the kernel density estimation (KDE) technique.
For this purpose, an H2 optimization-based fault detection filter is constructed for residual
generation. Towards maximizing the fault detection rate (FDR) for a prescribed false alarm
rate (FAR), the residual evaluation issue regarding the design of residual evaluation function
and threshold is formulated as a distributionally robust optimization problem, wherein the
so-called confidence sets are constituted to model the ambiguity of distribution knowledge of
residuals in fault-free and faulty cases. A KDE based solution, robust to the estimation errors in
probability distribution of residual caused by the finite number of samples, is further developed
to address the targeting problem such that the residual evaluation function, threshold as well
as the lower bound of FDR can be achieved simultaneously. A case study on a vehicle lateral
control system demonstrates the applicability of the proposed FD method.

Keywords: Fault detection, distributionally robust optimization, kernel density estimation.

1. INTRODUCTION

With the increasing demands for safety and reliability of
modern control systems, study on fault detection (FD)
has received considerable attention both in theory and
practical application fields over the past forty years and a
rich body of achievements have been reported, see Li et al.
(2018); Ding (2013); Yin et al. (2014); Ding (2014); Odi-
owei and Cao (2010) and the references therein. Generally
speaking, an FD system consists of the residual generation
and residual evaluation units. Up to now, plenty of residual
generation methods have been studied both in model-
based and data-driven frameworks, e.g., the fault detection
filter (FDF), parity space-based methods and subspace
identification methods, Ding (2013); Huang and Kadali
(2008) etc. In residual evaluation phase, the residual eval-
uation function and an appropriate threshold are deter-
mined such that the occurrence of a fault can be detected
by comparing them. It is notable that residual evaluation
is essential to achieve satisfactory FD performance while
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China, the Beijing Natural Science Foundation under grant 4202045,
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few research efforts have been contributed to this topic
Jung and Frisk (2018).

Concerning the FD for stochastic processes subject to ran-
dom noises, hypothesis test schemes are usually adopted
for residual evaluation by setting the residual evaluation
function as a statistic variable of residual and determining
a threshold to maximize the fault detection rate (FDR)
for a prescribed false alarm rate (FAR), under the as-
sumption of known precise probability distribution for
noises Yin et al. (2014); Ding (2014). In industrial ap-
plications, however, we are generally inaccessible to the
precise distribution knowledge of noises. To handle this
obstacle, an alternative solution is to estimate the dis-
tributional information of residual from historical data
by using the probability distribution estimation methods
such as kernel density estimation (KDE) and histogram
estimation Silverman (1986). In this way, the hypothesis
test methods or Kullback-Leibler divergence based ap-
proaches can be applied for residual evaluation, see, e.g.,
Zhang et al. (2014). Particularly, KDE as a nonparametric
approach can estimate the probability density function
(PDF) of a random variable from historical data effec-
tively under no distribution assumption on the samples.
Remarkably, though a satisfactory estimate of PDF can
be achieved when the data set is sufficiently large, the
differences between the true probability distribution and
the empirical estimate are naturally inevitable due to the
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limited number of samples, which might lead to poor FD
performance. For this consideration, study on the residual
evaluation robust against the ambiguity of distributional
information of noises and faults is of practical importance.
This motivates our study.

As for dealing with distributionally robust optimization
(DRO) problems, the technique of stochastic program-
ming has attracted considerable attention in recent years
Gabrel et al. (2014); Jiang and Guan (2016); Shang and
You (2018). In the framework of DRO, instead of making
specific distribution assumption on random variables, a so-
called confidence set is constituted to model the ambiguity
of distribution knowledge in terms of the probability prop-
erties, e.g., the moments, PDF, support and structural in-
formation or the combination of them, etc. In this manner,
the optimization problem can be handled without exact
distribution knowledge and the delivered solution would
be robust to the distributional uncertainties.

Inspired by these observations, in this paper we endeavor
to address the distributionally robust FD problem for
stochastic linear discrete-time systems. To this end, an
H2 optimization-based FDF is first designed for residual
generation. By modeling the confidence sets with empir-
ical PDFs of residuals in fault-free and faulty cases, we
then formulate the residual evaluation as a DRO problem
in the context of maximizing the FDR for a prescribed
FAR. Furthermore, a KDE based solution is developed to
solve the underlying FD problem, achieving the residual
evaluation function, a threshold and a quantitative lower
bound of FDR without posing any distribution assump-
tion on unknown input and fault. Finally, we show the
applicability of the proposed method on a vehicle lateral
control system.

Notations: In this paper, Pr{·} and Pξ denote the prob-
ability of {·} and the cumulative distribution function

(CDF) of random variable ξ, respectively. {ξ(i)}Ni=1 is a
N independent and identically distributed (i.i.d) sample
set of ξ. E[·] is the expectation of [·]. N (ξ̄, σ2) denotes the
normal distribution with mean ξ̄ and variance σ2. U [a, b]
represents uniform distribution over the interval [a, b].

2. PROBLEM FORMULATION

Consider a stochastic linear discrete-time system as follows{
x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bff(k)

y(k) = Cx(k) +Du(k) +Ddd(k) +Dff(k)
(1)

where x ∈ Rn, u ∈ Rq, y ∈ Rm, f ∈ Rl and d ∈ Rp
are the state, input, output, fault and unknown input
vectors, respectively, A, B, C, D, Bd, Dd, Bf , Df are time
invariant matrices with appropriate dimensions. In this
paper, we assume that the fault f(k) can be a deterministic
or random signal and the unknown input d(k) a random
vector without knowing exact distribution knowledge.

For FD purpose, a residual generator should be first
constructed. In this paper, we use an FDF to this aim

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

r(k) = y(k)− ŷ(k)

(2)

where x̂ ∈ Rn is the estimate of state, r(k) ∈ Rm is the
residual signal, L is the observer gain matrix to be designed
stabilizing (A− LC).

In residual evaluation stage, the residual evaluation func-
tion J(r) and an appropriate threshold Jth should be de-
termined so that the occurrence of a fault can be detected
according to the following logic{

J(r) > Jth ⇒ fault alarm,

J(r) ≤ Jth ⇒ fault-free.
(3)

To assess the FD performance, we recall the following
definitions of FAR and FDR Ding (2013)

FAR = Pr{J(r) > Jth|f(k) = 0}
FDR = Pr{J(r) > Jth|f(k) 6= 0}.

In case that the probability distribution knowledge of
unknown input d(k) and fault f(k) are known perfectly,
precise distributional information of residual r(k) can thus
be obtained both in fault-free and faulty cases. In this sit-
uation, hypothesis test schemes can be adopted by setting
J(r) as a statistic variable of residual and determining a
threshold Jth to maximize FDR for an acceptable FAR or
minimizing the FAR for a satisfactory FDR Ding (2014).
Unfortunately, we are generally inaccessible to the exact
distribution knowledge of d(k) and f(k) in practice.

To address the residual evaluation issue under mild condi-
tions, we without lose of generality define

J(r) =
∣∣wT r(k)

∣∣ , Jth = b (4)

where the weighting vector w ∈ Rm, w 6= 0, scalar
b > 0. Then the design of residual evaluation function
J(r) and threshold Jth is converted into the design of
w, b. Towards maximizing FDR for a prescribed FAR,
we further formulate the design of w, b as the following
optimization problem

max
w 6=0,b>0

β (5)

s.t.


sup
f(k)=0

Pr{
∣∣wT r(k)

∣∣ > b} ≤ ρ0

inf
f(k)6=0

Pr{
∣∣wT r(k)

∣∣ > b} ≥ β
(6)

where ρ0 ∈ (0, 1) is the given upper bound of FAR,
β ∈ (0, 1) the lower bound of FDR. Constraints in (6)
guarantee that the FDR is achieved no less than β and
FAR no greater than ρ0 in the worst-case scenario with
respect to performing (4) and (3) for online FD.

The main objectives of this paper are formulated as: 1) to
design the observer gain matrix L for residual generation
and 2) to address the problem (5)–(6) for w, b without
precise distribution knowledge of unknown input and fault.

3. KDE BASED DISTRIBUTIONALLY ROBUST
FAULT DETECTION

In this section, we focus on addressing the FD problem
(5)–(6) by means of the KDE technique. To this end, the
observer gain matrix L is first designed for residual gener-
ation in the context of H2 optimization. Then the problem
(5)–(6) is handled for the distributionally robust residual
evaluation, followed by a KDE based solution. Finally, the
confidentiality of the achieved solution depending on the
number of residual samples is briefly discussed.
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3.1 H2 Optimization-based Residual Generation

Based on (1) and (2), we can obtain the dynamics of the
residual generator (2) as follows

r(k) = N̂d(z)d(k) + N̂f (z)f(k)

where N̂d(z) = C(zI − A + LC)−1(Bd − LDd) + Dd and

N̂f (z) = C(zI −A+ LC)−1(Bf − LDf ) +Df .

Under the assumptions that (C,A) is detectable, DdD
T
d =

I and ∀θ ∈ [0, 2π], rank

([
A− ejθI Bd
C Dd

])
= n + m, we

can design the observer gain matrix L by addressing the
following problem Ding (2013)

min
L

∥∥C(zI −A+ LC)−1(Bd − LDd)
∥∥

2
(7)

which is an H2 optimization problem that determines L
in the context of minimizing the influence of the norm-
bounded unknown input d(k) to residual r(k).

According to Ding (2013), the optimal solution of (7) is
obtained as follows

L = (AY CT +BdD
T
d )(I + CY CT )−1 (8)

with Y ≥ 0 solving the following Riccati equation

AY AT − L̄(I + CY CT )−1L̄T −DdD
T
d = Y

where L̄ = AY CT +BdD
T
d .

It is remarkable that various other classes of methods can
be used for an optimal design of observer gain matrix L in
the context of, e.g., H∞, H2/H2 and Hi/H∞ optimization,
etc. Especially, Ding (2013) presents a unified solution to
these problems. Due to the main attention of this paper
focuses on the residual evaluation issue with respect to
solving (5)–(6), the residual generation will not be dis-
cussed here detailedly for brevity. We refer the interested
reader to Ding (2013) for more information.

3.2 Distributionally Robust Residual Evaluation

As for solving the problem (5)–(6), the key point lies in
coping with the constraints in (6). Despite of the unknown
exact distribution knowledge of unknown input and fault,
we can usually extract the distributional information of
residual from historical data by means of the density esti-
mation methods such as KDE. Meanwhile, it is reasonable
to believe that the empirical estimates are nearby the true
ones with high probability, especially when the number of
samples is large enough. In this context, let

r0(k) = r(k)|f(k)=0, rf (k) = r(k)|f(k) 6=0

z(k) = wT r(k), z0(k) = wT r0(k), zf (k) = wT rf (k).

We constitute the so-called confidence sets Ω0, Ωf for
fault-free and faulty cases in the following form

Ω0 = {Pz ∈M : DKL (p||p̂0) ≤ δ0, p = dPz/dz} (9)

Ωf = {Pz ∈M : DKL (p||p̂f ) ≤ δf , p = dPz/dz} (10)

where Pz represents the true CDF of z(k),M denotes the
set of all valid CDFs, p is the true PDF of z(k), p̂0, p̂f are
the empirical estimates of p in fault-free and faulty cases,
respectively, and

DKL (p||p̂0) =

∫
p(r)ln

(
p(r)

p̂0(r)

)
dr

is the Kullback–Leibler divergence of p and p̂0, and ditto
for DKL (p||p̂f ), δ0, δf are chosen to represent the diver-
gence tolerances measuring the deviations of p̂0, p̂f from
p in fault-free and faulty cases, respectively.

On this basis, the problem (5)–(6) can be reformulated as
the following distributionally robust optimization problem

max
w 6=0,b>0

β (11)

s.t.


sup

Pz∈Ω0

Pz
{∣∣wT r(k)

∣∣ > b
}
≤ ρ0

inf
Pz∈Ωf

Pz
{∣∣wT r(k)

∣∣ > b
}
≥ β

(12)

In (11)–(12), the ambiguity of probability distribution Pz
in fault-free and faulty cases is taken into consideration by
modeling the confidence sets Ω0,Ωf in terms of the em-
pirical PDFs, which implies the robustness of the solution
to problem (11)–(12) against the estimation uncertainties
of PDFs p̂0, p̂f caused by the limited numbers of residual
samples in fault-free and faulty cases.

We are now in the position of solving the problem (11)–
(12). To this aim, the following theorem is recalled. Please
refer to Jiang and Guan (2016) for the proof.

Theorem 1. Given random variable ξ ∈ Rkξ and a con-
fidence set Ω = {P ∈M : DKL (p||p̂) ≤ δ, p = dP/dξ}, let
γ ∈ (0, 1), F(w, ξ) be a feasible region described in terms
of ξ and the decision variable w. The condition

inf
P∈Ω

P{F(w, ξ)} ≥ γ (13)

can be equally formulated as follows

P̂{F(w, ξ)} ≥ γ′

where γ′ = max

{
inf

t∈(0,1)

{
e−δtγ−1
t−1

}
, 0

}
∈ [0, 1), P̂ is the

empirical estimate of P.

Let F(w, r) :=
{∣∣wTr(k)

∣∣>b}. According to Theorem 1, it
yields from (6) that

sup
Pz∈Ω0

Pz
{∣∣wTr(k)

∣∣>b}≤ρ0⇔ inf
Pz∈Ω0

Pz{
∣∣wTr(k)

∣∣≤b}≥1−ρ0

⇒P̂z0
{∣∣wT r0(k)

∣∣ ≤ b} ≥ 1−ρ′0
inf

Pz∈Ωf
Pz{
∣∣wT r(k)

∣∣ > b} ≥ β ⇒ P̂zf {
∣∣wT rf (k)

∣∣ > b} ≥ β′

where P̂z0 , P̂zf denote the estimates of Pz in fault-free and
faulty cases, respectively, and

ρ′0 = 1−max

{
inf

t∈(0,1)

{
e−δ0t1−ρ0 − 1

t− 1

}
, 0

}
∈ (0, 1] (14)

β′ = max

{
inf

t∈(0,1)

{
e−δf tβ − 1

t− 1

}
, 0

}
∈ [0, 1). (15)

Then the problem (11)–(12) can be rewritten as follows

max
w 6=0,b>0

β′ (16)

s.t.

{
P̂z0

{∣∣wT r0(k)
∣∣ ≤ b} ≥ 1− ρ′0

P̂zf
{∣∣wT rf (k)

∣∣ > b
}
≥ β′.

(17)

It is remarkable that (16)–(17) is an approximation of the
problem (11)–(12), the solution of which highly relies on

the quality of empirical estimates P̂z0 , P̂zf . Moreover, the
theoretical upper bound of FAR ρ0 and the lower bound of
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FDR β are achievable based on (14), (15) with probability
one on condition that the parameters δ0, δf are chosen
appropriately to depict the differences between p̂0, p̂f and
their true values, respectively.

Regarding estimating P̂z0 , P̂zf based on historical residual
data, KDE as an efficient nonparametric technique has
been adopted in a rich body of literature thanks to its
capability of estimating PDF of random variables directly
from data without any distribution assumption on samples
as required in the parametric schemes Zhang et al. (2014).
For this merit, in the following subsection we propose a
KDE based solution to the problem (16)–(17).

3.3 A KDE based Solution

We start with the basic idea of KDE method. Denote by
{ξ(i)}Ni=1 a N i.i.d sample set of ξ being with PDF p. The
number of samples, i.e., N , is assumed to be sufficiently
large enough. A KDE based estimate of p is obtained as

p̂(ξ) =
1

Nh

N∑
i=1

K
(
ξ − ξi
h

)
(18)

where K(·) is a kernel function satisfying K(·) > 0,∫
K(ξ)dξ = 1,

∫
ξK(ξ)dξ = 0,

∫
ξ2K(ξ)dξ > 0, h > 0 is the

bandwidth of kernel function. Furthermore, the estimate
of the CDF of ξ is given by

P̂ξ {ξ ≤ l} =
1

Nh

N∑
i=1

I
(
l − ξ(i)
h

)
(19)

where I(l) =
∫ l
−∞K(ξ)dξ.

Given {r0(i)}N0
i=1, {rf (i)}Nfi=1 the i.i.d sample sets of residu-

als in fault-free and faulty cases, respectively, the empirical
estimate of the CDF Pz0 is obtained as follows

P0(w, b) = P̂z0{
∣∣wT r0(k)

∣∣ ≤ b}
= P̂z0{−b ≤ wT r0(k) ≤ b}

=
1

N0h0

N0∑
i=1

[
I
(
b− wT r0(i)

h0

)
−I

(
−b− wT r0(i)

h0

)]
.

(20)
For the faulty case, we have

P̂zf {
∣∣wT rf (k)

∣∣ > b} = 1− P̂zf {
∣∣wT rf (k)

∣∣ ≤ b}
with

Pf (w, b) = P̂zf {
∣∣wT rf ∣∣ ≤ b}

=
1

Nfhf

Nf∑
i=1

[
I
(
b− wT rf (i)

hf

)
− I

(
−b− wT rf (i)

hf

)]
(21)

Based on (20), (21), the problem (16)–(17) can be intu-
itively converted into the following form

max
w 6=0,b>0

β′ (22)

s.t.

{
P0(w, b) ≥ 1− ρ′0
Pf (w, b) ≤ 1− β′. (23)

To achieve a feasible solution to (22)–(23), a bisection line
search method Jiang and Guan (2016) is adopted in this
paper, as summarized in Algorithm 1. More specifically,
for a given acceptable ρ′0, we first search for w, b satisfying

Algorithm 1 A KDE based solution to (22)–(23)

1: Construct residual sample sets {r0(i)}N0
i=1, {rf (i)}Nfi=1;

2: Select kernel function K(·) and bandwidths h0, hf .
Initialize ρ′0 ∈ (0, 1), δ0, δf > 0, β′low = 0, β′up = 1,
a sufficient small parameter τ > 0;

3: while β′up − β′low > τ do

4: Set β′n =
β′up+β′low

2 , β′ = β′n;
5: if feasible w, b satisfying (23) can be found then
6: β′up = β′n;
7: else
8: β′low = β′n.
9: end if

10: end while
11: Set β′ = β′n and compute β according to (15). Com-

pute ρ0 based on (14) for given ρ′0;
12: Return w, b, β, β′ and ρ.

Algorithm 2 Online FD

1: Compute residual r(k) with residual generator (2);
2: Compute J(r) and threshold Jth with (4);
3: Detect the occurrence of a fault with decision logic (6).

the conditions (23) for a fixed β′, then update β′ within
(0, 1) and repeat this procedure until a maximum value of
β′ is found. Correspondingly, the solutions of ρ0, β to (11)–
(12) can be achieved based on the relationships between
ρ′0, β

′ and ρ0, β as specified in (14), (15), respectively.

After achieving w, b with Algorithm 1, we can perform
online FD by computing the residual evaluation function
J(r) and threshold Jth with (4). The algorithm is summa-
rized in Algorithm 2. In this manner, the achieved FAR
would be no greater than ρ0 and FDR no less than β.

It should be pointed out that the selection of the kernel
function K(·) and bandwidths h0, hf in KDE is important
to achieve satisfactory FD performance with respect to
solving the problem (22)–(23). Roughly speaking, there
are several types of kernel function available such as
the Gaussian, Epanechnikov, rectangular and triangular,
Barbé et al. (2014); Odiowei and Cao (2010); Silverman
(1986) to name just a few. Concerning a trade-off between
the bias and variance of estimation error, Epanechnikov
kernel is one of the most popular choice in KDE, the kernel
function is defined as

K(ξ) =
3

4
(1− ξ2), |ξ| ≤ 1 (24)

and the function I(·) can then be easily derived as

I(l) =

 0 l < −1
0.25(−l3 + 3l + 2), |l| ≤ 1
1 l > 1.

With respect to the bandwidths h0, hf , it is notable that
a larger bandwidth is prone to be used for simplicity but
obscuring bimodal nature of the true distribution and a
smaller bandwidth delivers good local density information
but possible spurious structure of density by comparison
Silverman (1986). To choose an optimal bandwidth, the
methods of plug-in, cross-validation and rules-of-thumb
can be utilized Gramacki (2018) while at the cost of high
computational complexity. Though there is no unified rule
for the choice of bandwidth yet, we can usually choose
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h0 = 1.06σ̂0N
− 1

5
0 , hf = 1.06σ̂fN

− 1
5

f (25)

for brevity with σ̂0, σ̂f being the estimates of variances
of z0(k), zf (k), respectively. Particularly, in this manner,
the bandwidths are optimal in the context of minimizing
the mean squared estimation error when the underlying
distribution for unknown input and fault being Gaussian
Barbé et al. (2014).

3.4 Discussion

As mentioned previously, parameters δ0, δf introduced in
the confidence sets (9), (10) are chosen to represent the
divergence tolerances of empirical estimates p̂0, p̂f from
the true PDF p in fault-free and faulty cases, respectively,
which, according to (14), (15), further determine the
theoretical values of the upper bound of FAR ρ0 and the
lower bound of FDR β with respect to solving (22)–(23)
for ρ′0, β

′. Since the choice of δ0, δf depends on the sample
numbers of historical residuals in fault-free and faulty
cases, the values of δ0, δf can be further regarded as the
robustness indices of the solution to (11)–(12) against the
ambiguity of distribution knowledge of residuals in fault-
free and faulty cases for the limited number of samples.

So far, few achievements about the determination of δ0, δf
are available with regard to estimating p̂0, p̂f using KDE.
As one possible solution suggested by Jiang and Guan
(2016), δ0, δf can be chosen as decreasing functions of sam-
ple numbers N0, Nf , respectively, i.e., δ0 = L(N0), δf =
L(Nf ). Then it holds that δ0 → 0, δf → 0 and ρ′0 →
ρ0, β

′ → β as N0 → ∞, Nf → ∞. Viewing in this point,
we can without lose of generality choose

δ0 = L(N
− 2

5
0 ), δf = L(N

− 2
5

f ) (26)

with |δ0/N
− 2

5
0 |, |δf/N

− 2
5

f | being bounded. It follows that
the confidence sets Ω0, Ωf are believable with levels no
less than ε0, εf , respectively, where ε0 satisfies

Pr

{∫
(p(r)− p̂0(r))2dr ≥ δ0

}
≤

E
[∫

(p(r)− p̂0(r))2dr
]

δ0
= 1− ε0

and ditto for εf . We can use εf , εf to represent the
lower bounds of confidence levels of ρ0, β, respectively.
Unfortunately, it remains difficult to achieve analytical
results of ε0, εf in the probabilistic context. Quantitative
analysis of the relationship between δ0, δf in terms of
N0, Nf and ε0, εf needs to be addressed in the future.

4. SIMULATION RESULTS

In this section, a case study on a vehicle lateral control
system Ding (2013) is demonstrated to show the appli-
cability of the proposed method. Denote by α, θ, µL, ω
the vehicle side slip angle, yaw rate, steering angle and
lateral accelerated velocity, respectively. We define the
state, system input and output respectively by

x = [α θ]
T
, u = µL, y = [ω θ]

T
.

In this case study, we assume the vehicle works steadily
with velocity Vref = 50m/s. By setting the sampling time

-10 -5 0 5 10 15

r
2
(k)

-0.4

-0.2

0

0.2

0.4

0.6

r 1
(k

)

Residual in normal case
Residual in faulty case 1
Residual in faulty case 2

Fig. 1. Profiles of residuals in fault-free and faulty cases.

with Ts = 0.1s, a linear discrete-time model of the system
in form of (1) can be established with

A =

[
0.6333 −0.0672
2.0570 0.6082

]
, B =

[
−0.0653
3.4462

]
, Bd = [I 0]

C =

[
−152.7568 1.2493

0 1

]
, D =

[
56
0

]
, Bf = [B 0]

Dd = [0 I], Df = [D I]

The unknown input is assumed to be d(k) = [v1(k) v2(k)]T

with v1(k) ∈ R2 and v2(k) ∈ R2 being the process and
measurement noise vectors, respectively. For simulation
purpose, we generate v1(k) and v2(k) with zero-mean
white noise sequences. Let f(k) = [f1(k) f2(k) f3(k)]T ,
where f1(k) is the fault in steering angle measurement and
f2(k), f3(k) the faults in lateral acceleration and yaw rate
sensors. We consider the following two faulty cases:

Case 1: f1(k) = 0.04 + n1(k), n1(k) ∼ N (0, 0.12)
f2(k) = f3(k) = 0;

Case 2: f3(k) = −0.2 + n2(k), n2(k) ∼ U [−0.01, 0.01]
f1(k) = f2(k) = 0.

For residual generation purpose, an optimal observer gain
matrix L is obtained based on (8) as

L =

[
−0.0042 −0.0340
−0.0134 0.3427

]
.

Then we can construct the residual generator (2) with
r(k) = [r1(k) r2(k)]T and establish the sample sets

{r0(i)}N0
i=1 with N0 =5000 for fault-free case and {rf (i)}Nfi=1

with Nf = 2000 for faulty case 1 and Nf = 5000 for faulty
case 2, respectively. The profiles of the residuals in normal
operation and each faulty case are illustrated in Fig. 1.

Now we confine ourselves to solve the problem (22)–
(23) for w, b without using distribution knowledge of
d(k), f(k). By choosing Epanechnikov kernel (24) as the
kernel function, the bandwidths h0, hf are set as (25) with
σ̂0, σ̂f being determined by performing post-optimization

analysis. Let δ0 = J0/log(N
2/5
0 ) = 2.9352 × 10−4, δf =

Jf/log(N
2/5
f ) with J0 = Jf = 0.001. The confidence sets

Ω0 and Ωf for each faulty case can thus be determined.
Given ρ′0 = 0.05, an acceptable theoretical FAR ρ0 =
0.0554 can then be obtained based on (14). A KDE based
solution of w, b, β′ are achieved by solving the problem
(22)–(23) with Algorithm 1. The theoretical value of β are
then computed according to (15). The results of δf , β, β

′

for the two faulty cases are summarized in Tab. 1. The
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Table 1. Feasible solutions of β, β′ with ρ0 =
0.0554, ρ′0 = 0.05

Faults Nf δf (×10−4) β β′

Faulty case 1 2000 3.2891 0.9642 0.9688
Faulty case 2 5000 2.9352 0.9117 0.9184
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Fig. 2. The profiles of p̂0 and p̂f for faulty cases 1 and 2.
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Fig. 3. FD results for the faulty case 1 and 2.

estimates of PDFs of wT r0(k) and wT rf (k) are shown
in Fig. 2. It is seen from the Tab. 1 and Fig. 2 that the
obtained solution of w can deliver good fault detectability
for the two faulty cases.

To show the effectiveness of the proposed FD method, we
inject each fault at k = 1000. By setting the residual
evaluation function and threshold with (4), we perform
online FD with Algorithm 2. The FD results are given
in Fig. 3. It is seen from Tab. 1, Fig. 2 and Fig. 3 that
satisfactory FD results by virtual of acceptable FAR and
higher FDR can be achieved without knowing precise
distribution knowledge of unknown input and fault.

5. CONCLUSIONS

In this paper, a distributionally robust FD approach has
been proposed for stochastic linear discrete-time processes
by using KDE without precise distribution knowledge of
unknown input and fault. An H2 optimization-based FDF

was first constructed for residual generation. By intro-
ducing the confidence sets to model the ambiguity of
distribution knowledge of residuals in fault-free and faulty
cases, a distributionally robust optimization problem was
formulated for residual evaluation in the context of max-
imizing the FDR for a given acceptable FAR. A KDE
based solution was developed to address the underlying
optimization problem. Its robustness to the estimation
errors of PDF of residual caused by the limited number
of samples was discussed. Simulation results on a vehicle
lateral control system demonstrated the applicability of
the proposed approach.
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