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Abstract: This paper addresses the design of a parallel compensator and a stabilizing controller
for the simplified crystal growth dynamics of the Czochralski (CZ) process, i.e., the process for
the production of monocrystalline silicon ingots of uniform diameter. The diameter control of
the produced ingots is achieved by a CCD camera measurement used to sense the radius of the
boundary between the base of the growing crystal and the surrounding glowing meniscus — a
raised melt surface connecting the crystal ingot with the flatter melt surface. Due to the intrinsic
nature of the process, the bright ring radius measurement signal exhibits a non-minimum phase
behaviour. A combination of the parallel compensator and a stabilizing controller is designed,
such that the former provides for the mitigation of non-minimum phase behaviour, while the
latter combined with the formal yields a suitable closed-loop performance.
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1. INTRODUCTION

The CZ process is commercially used to grow monocrys-
talline crystals (silicon (Si), germanium, gallium arsenide),
metal compounds and synthetic gemstones to name a few.
Our study of the CZ process focuses on the growth of
monocrystalline Si ingots. The growth process begins with
the melting of silicon contained in a quartz crucible. The
crucible receives heat input from the surrounding and
base heaters. Then, a high purity Si seed crystal of the
desired lattice structure is dipped into the melt, followed
by pulling the seed gradually upwards such that the silicon
solidifies at the seed crystal base, resulting in a cylindrical
Si ingot.

The pulling mechanism comprises a pulling rod supported
by a rotating metal shaft at the top, while the seed crystal
is attached to the lower end of the pulling rod. The
complete assembly of a commercial CZ puller is shown
in Fig. 1. The pulling process causes a meniscus to form
between the growing crystal ingot and the molten Si.
Hence, the meniscus is a curved surface of the molten melt
that protrudes above the flat melt level in the vicinity of
the crystal ingot.
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Fig. 1. Assembly of a typical CZ puller. (This figure
is licensed under a Creative-Commons BY-NC-SA
license) (Rahmanpour et al., 2017)

The accretion of crystal ingot continues as a result of heat
loss from the top melt surface into a relatively colder envi-
ronment. Although the crystal growth comprises of various
stages, the commercial product is produced during the
body stage, which is also the production stage addressed
in this paper. During this stage, it is desired to maintain
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the crystal diameter constant which in turn depends on a
balance between crystal growth and pulling speed.

Due to high temperatures inside the growth chamber, the
light from the hot furnace components gets reflected by
the meniscus. The reflected light appears as bright annular
rings of varying intensities on the meniscus surface.

From a small viewing port at the pulling chamber, the
crystal emerging from the meniscus can be visually in-
spected, though the crystal edge and the surrounding
bright meniscus are indistinguishable. The high temper-
atures within the growth furnace prevent any direct mea-
surement of the crystal radius. Instead, a pre-calibrated
CCD camera aiming in the vicinity of the melt-crystal
interface captures the image of the bright ring. Hence,
the control of a simplified CZ crystal growth process boils
down to bright ring radius measurement as a controlled
variable, whereas pulling speed is a manipulated variable.
During the entire growth process, the crucible is gradually
lifted upwards to compensate for any changes in the melt
level. Consequently, the position of the camera stays fixed.

In our previous work Bukhari et al. (2019), we investigated
the anomaly in the bright-ring radius measurement by sim-
ulating the camera image through rigorous 3D ray-tracing
simulation followed by the linearization of crystal growth
dynamics based on the measurement model. The output of
the linear models obtained, henceforth, exhibited the non-
minimum phase behaviour. Such behaviour poses a funda-
mental limit on the achievable system bandwidth, thereby
affecting the overall performance. This undesired effect of
right-half-plane (RHP) zeros can neither be circumvented
through simple feedback nor using series compensation.
The latter results in pole-zero cancellation, which can pose
problems related to the internal stability. However, based
on parallel compensation, the location of RHP-zeros can
be shifted. Therefore, as a sequel to our previous work, we
continue to design a parallel compensator followed by a
stabilizing controller in this paper.

2. PROCESS DYNAMICS

The complete description of the CZ process is highly com-
plex and beyond the scope of the present work. Instead,
we have considered basic growth dynamics at the interface
Winkler et al. (2010) with two simplified heater models
Bukhari et al. (2019).

2.1 Crystal Growth Dynamics

A simplified model for the crystal growth takes into
account the process dynamics across the crystallization
interface as depicted in Fig. 2. The model describes crystal
radius r. as a function of meniscus height h. and crystal
growth rate v, which in turn depends upon heat transfer
balance across the crystallization (melt-crystal) interface.
Thus, well-balanced heat/energy transfers ensure smooth
and constant crystal growth. The simplified CZ model
describing the crystal growth at the melt-crystal interface
is given by:

Te = Vg tan(o) (1la)
he = v, — v, (1b)
Y =Tpr (1c)

where 7. is the crystal radius, h. is the height of the
meniscus at the three-phase boundary, vy is the growth
rate of the crystal (lengthwise) and v, is the pulling speed.
The measured output available for the feedback control
is the bright ring radius r,, estimated using a 3D ray-
tracing simulation. The details of the estimation, based
either on the numerical solution (Huh and Scriven, 1969)
or the analytical approximation of the meniscus profile
(Hurle, 1983), can be found in Bukhari et al. (2019).

The cone angle at the interface a. is determined from the
analytical approximation of meniscus height h. given by
Johansen (1994).

B\ 2 NS
o = arcsin {1 — <C) [1 + 0.6915(6) } } —
a a

where « is the contact (wetting) angle at constant radius
growth, while a is the capillary length. The overall growth
angle « relates the cone angle o, with the contact angle
as @ = ag + a.. In case of Si, the values of oy and a are
11° (Tatarchenko (1993), Rahmanpour et al. (2017)) and
7.62 mm, respectively.

The crystal growth rate is given as:

¢s - ¢l

Ug - psAH (2)

where ¢, is the heat flux from the interface to the crystal,
while ¢; is the heat flux from the meniscus to the interface.
Two different models are used for describing the heat flux
from the meniscus to the interface. Model I calculating
the heat flux based on pure heat conduction across the

meniscus, is given as:
kcond
drr = =4 (T — T) (3)

In the second thermal model approach (Model II), the
heat flux from the (melt + meniscus) to the interface is
calculated on the basis of convective heat transfer as given
in eq. (4)

1,11 = heonv, 11 (Touik — Ts) (4)
where T is the temperature at the base of the meniscus,
Thuir is the temperature of the bulk of the melt and T
is the temperature at the solidification interface, i.e., the
melting temperature of Si.
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Fig. 2. Schematic view of the melt-crystal interface. (This
figure is licensed under a Creative-Commons BY-NC-
SA license) (Rahmanpour et al., 2017)

The measurement dynamics based on rigorous ray tracing
method are explained in (Bukhari et al., 2019).
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3. PLANT DYNAMICS AND CONTROLLER DESIGN

The linearized plant model, along with the 3D ray tracing
measurement, possesses non-minimum phase characteris-
tics due to the presence of a right-half plane zero (RHPZ)
in the transfer function describing this dynamics.

Since the reader will frequently encounter the transfer
function models henceforth, therefore in the upcoming
text, the uppercase letters (e.g., R.(s)) denote the Laplace
transformed (frequency-domain) signals of their time do-
main counterparts (e.g., r.(t)).

Gp(s), the transfer function between V,(s) and R.(s), for
the models I and II, is given in (5a) and (5b), respectively.

—0.0047626
(s —8.78¢76) (s + 1.684e73)

Gy 12(s) = —0.0048849
PIS) T (6 = 4.63¢T) (s — 7.602¢—6)
Similarly, the transfer functions between R.(s) and Rp,(s),

i.e., Gi(s), for the models I and II, are given in (6a) and
(6b), respectively.

Gom.1(s) = —47.1864s + 1.0041 (62)

Grm.11(s) = —46.0050s + 1.0043 (6b)

The measurement transfer functions in (6) are not phys-
ically realizable, unless multiplied by the corresponding
transfer functions in (5) to obtain the overall transfer
functions Gy(s) and Gyr(s) for the models I and II, re-
spectively. However, this factorization is quite handy when
designing the parallel compensator in section (3.1). Fig. 3
shows the complete system block diagram that includes
both the compensator and a stabilizing controller con-
nected respectively in parallel and cascade with the plant.

The RHP zero in (6) cannot be relocated through feed-
back, as feedback can move the system poles only while the
zeros stay unaffected. The parallel compensation, however,
accomplishes the desired shift in RHP zero by making use
of an additional branch in parallel to the main branch
(cf. Fig. 3) comprising of the non-minimum phase system
dynamics ((Skogestad and Postlethwaite, 2007)). The fol-
lowing sections will explain how to design such a parallel
compensator to remove the bandwidth limiting effect of
the RHP zero, thereby allowing fast feedback control and
simplifying the design of stabilizing feedback.

Gp.1(s) = (5a)

(5b)

3.1 Compensator Design

The non-minimum phase dynamics G(s) combined with
the parallel branch, comprising of compensator dynamics,
result in the compensated system Gi(s) that no longer
possesses non-minimum phase characteristics.

The idea of using a parallel compensator to remove non-
minimum phase characteristics is not new. However, in
most cases, it does not make much sense, since the non-
minimum phase dynamics are removed from the compen-
sated measurement, and not from the physical measure-
ment itself. Thus, while good control of the compensated
measurement can be achieved, control of the physical
measurement is still limited by the presence of the non-
minimum phase dynamics. What makes the case of the

Czochralski process stand out from the rest, is the fact,
that the non-minimum phase dynamics are not associated
with the variable desired to be controlled (the crystal
radius), but rather with an indirect and inaccurate mea-
surement thereof (the bright ring radius). It is, therefore,
possible to make a compensated measurement, that is not
just void of undesired non-minimum phase characteristics,
but also serves a better approximation of the variable to
be controlled.

__________________________________ GHS)
_________________________ Gs)
R
c,ref(5)+_ E(s) K(s) Gyls) RC(S)‘ Grn(s) Robr(S)
2
""""" stable approximation
Y
Gipc(s) Ginpi(s) rt*'
R(s)

Fig. 3. Basic block diagram of plant with a parallel
compensator

The compensator design procedure with reference to the
proposed schematic, depicted in Fig. 3 is explained below:
The parallel compensator Gp.(s), (ignoring the high pass
filter Gppy(s) for the time being) can be designed as:

R(s) = [Gpe(s) + Gm(s) Gp(s)] Vip(s) )
= Gi(s) Vp(s)

Ideally it is desired to have R ~ R,. Therefore, the parallel
compensator dynamics are given by:

Gpe(s) = [I = G (s)] Gy(s) (8)

It is apparent from (7) and (8) that the ideal parallel
compensator will contain the same unstable poles as those
of the plant. Thus, having the identical unstable modes
in the two parallel branches will lead to an unobservable
(undetectable) compensated system. To avoid the compen-
sator dynamics with any unstable modes from the plant,
a stable approximation to the ideal (but unstable) parallel
compensator is necessary.

For this purpose, a stable/unstable decomposition of the
compensator dynamics is performed. The unstable mode
spans the lower frequency range, and therefore, its dy-
namical contribution is reduced by connecting a high pass
filter (Ghps(s)) in cascade with the compensator. The
stable/unstable decomposition is thus performed on the
ideal precompensator with the high pass filter. The result
is that the unstable part is very small, and is simply
discarded.

An alternative to using the stable/unstable decomposition
could be to use the Nehari extension (Zhou et al., 1996).
Although it provides the best stable approximation to the
unstable compensator dynamics, it does so by minimizing
the absolute error and then distributing the error over all
frequency ranges. The Nehari extension is not applicable
in this work, because it shifts a significant amount of
error from lower frequencies to higher frequencies, i.e.,
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(the frequencies of interest). Thus, the ‘stable/unstable
decomposition’ is a preferred approach for this work.

The designs of the parallel compensator and feedback
controller are based on the model I, ie., Gy(s)
Gp.1(8) G 1(s), but verified using closed-loop simulation
for both dynamic models I and II.

assumptions, i.e., Model I & II in (Bukhari et al., 2019)

both linear and nonlinear environments.

The closed-loop responses (the bright ring radius mea-
surement 7. and the compensated measurement 7) of
both linear plant models with a step change of 1mm in
commanded crystal radius 7. .s are shown in the top and
the bottom panes of Figs. 5 and 6, respectively.

3.2 Controller Design 1 60
»
. . I Teref | —
After the design of the parallel compensator, the design . 05, - - Ty g 40
of a stabilizing feedback controller follows. The controller é ofEE e = "
block marked as K(s) in Fig. 3 is the automatic diameter T |y - g
controller (ADC), designed using PID control due to the ™ g5 \\\ = 0
ease, it offers towards the implementation in the existing K\
. . . ] P BN ]
industrial control setup. The PID controller is given by: 0 100 200 a0 a0 w0 % 100 200 300 400 500
K, (Tis+1)(Tgs+1
K(S) — P ( v ) (TdUsl )
Tis(1+ =) 0 4
The tuned paraneters for the PID controller and the 20 3
resulting cross over frequency are given in Table 1. o~ £
\: -40 5 2
Table 1. PID Control Parameters 2 <
-60 © 1
Proportional gain (Kj) 0.01s T
Integral Time constt. (75) 5000 s -80 0
Derivative Time constt. (Ty) 550 0 100 200 300 400 500 0 100 200 300 400 500
- . - d Time (sec) Time (sec)
Filter coefficient (V) 100
1
Crossover frequency (weo) 0.03275rad s Fig. 5. Step responses for linear model I depicting changes

The achieved crossover frequency we, =~ 0.03275rads™!

shows that the limitations imposed by the RHP zero at
~ 0.02rads™! is quite clearly mitigated and a higher
system bandwidth is achieved. The frequency response in
Fig. 4 shows that the proposed PID controller with the
compensator (based on Model I) stabilizes both models.

in (bright ring radius measurement (ry,), crystal ra-
dius (r.), compensated measurement (7)) (top-left
pane) to a negative step change in (r,.s) alongwith
the changes in control input (u) (top-right pane), crys-
tal cone angle (a.) (bottom-left pane) and meniscus
height (h.) (bottom-right pane)
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Fig. 4. Frequency response of the compensated plants
(models T and II) with a feedback controller

4. CLOSED-LOOP PERFORMANCE

The closed-loop performance of the overall system, includ-
ing both the compensator and the controller, designed
on the basis of Model I, is evaluated for both model

Fig. 6. Step responses for linear model II showing changes
in (bright ring radius measurement (rp,), crystal ra-
dius (r.), compensated measurement (7)) (top-left
pane) to a negative step change in (7 ,.s) alongwith
the changes in control input (u) (top-right pane), cone
angle (a.) (bottom-left pane) and meniscus height
(he) (bottom-right pane)

In the case of Model II there is a small offset in both
the bright ring radius measurement (r3,) and compensated
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measurement (7) which is removed slowly. The closed-loop
testing of nonlinear CZ growth dynamics in the presence
of both parallel compensator as well as the feedback
controller (K (s)) is illustrated in Fig. 7.

L 5| Guols) Gipr(s) ++)

Fig. 7. Schematic for the closed-loop testing of nonlinear
CZ growth dynamics

In Fig. 7, 0 v, and 6 rp, are the deviation variables, whereas
Upo and 7y, are the steady state values (points at which
linearization was performed) such that the input to and
the output from the nonlinear CZ dynamics are v, =
Upo + 0vp and 1y, = Thro + O Thr, respectively.

Since, the real life physical systems are represented by
variables that are smooth and uninterrupted, therefore the
reference crystal radius trajectory is varied smoothly to an-
alyze the resulting nonlinear closed-loop system responses.
Figs. 8 and 9 depict the closed-loop performance, as the
response of essential system parameters to a smooth, fast
and negative crystal radius reference change for models I
and II, respectively.
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Fig. 8. Model I responses from a nonlinear CZ simulation
(bright ring radius measurement (4 74, ), crystal radius
(6 7¢), compensated measurement (4 7)) (top pane) to
a smooth and slow change in (7. ,er) alongwith the
control input (u) (middle-left pane), meniscus height
(he) (middle-right pane), growth rate (vy) (bottom-
left pane) and cone angle (a.) (bottom-right pane)

It is noteworthy that the first subfigure of Figs. 8 and
9 represent nonlinear quantities expressed in deviation

variables. The change in reference trajectory amplitude
is 0Omm to 0.5 mm taking place in 250s.
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Fig. 9. Model II responses from a nonlinear CZ simulation
(bright ring radius measurement (4 7, ), crystal radius
(67c), compensated measurement (6 7)) (top pane) to
a smooth and slow change in (7. ,.s) alongwith the
control input (u) (middle-left pane), meniscus height
(he) (middle-right pane), growth rate (vy) (bottom-
left pane) and cone angle («.) (bottom-right pane)

5. CONCLUSIONS

The bright-ring radius measurement used as a controlled
variable in the CZ process possesses an RHP zero that
limits the achievable system bandwidth and hence the
overall system performance. This nonminimum phase be-
haviour is dispensed with the use of parallel compensation,
thereby enabling the use of a feedback controller, which
in turn, provides improved performance of the system.
Moreover, the compensated plant stabilized through a PID
controller performs satisfactorily for both thermal model
assumptions.

Future work will study how the temperature-induced dis-
turbances entering the crystalization interface affect the
overall crystal radius control regime.
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