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Abstract: Deep reinforcement learning makes it possible to train control policies that map high-
dimensional observations to actions. These methods typically use gradient-based optimization
techniques to enable relatively efficient learning, but are notoriously sensitive to hyperparameter
choices and do not have good convergence properties. Gradient-free optimization methods,
such as evolutionary strategies, can offer a more stable alternative but tend to be much less
sample efficient. In this work we propose a combination, using the relative strengths of both. We
start with a gradient-based initial training phase, which is used to quickly learn both a state
representation and an initial policy. This phase is followed by a gradient-free optimization of
only the final action selection parameters. This enables the policy to improve in a stable manner
to a performance level not obtained by gradient-based optimization alone, using many fewer
trials than methods using only gradient-free optimization. We demonstrate the effectiveness
of the method on two Atari games, a continuous control benchmark and the CarRacing-v0
benchmark. On the latter we surpass the best previously reported score while using significantly
fewer episodes.
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1. INTRODUCTION

Deep Reinforcement Learning (DRL) is a learning frame-
work that has recently enjoyed significant successes (Sil-
ver et al., 2018; Mnih et al., 2015; Bansal et al., 2017;
Andrychowicz et al., 2018). In this framework, Reinforce-
ment Learning (RL) is used to train Deep Neural Network
(DNN) controllers. DNN control policies are especially
promising for tasks that require making decisions directly
from natural data such as images. This is because the
functional decomposition of deep neural networks mirrors
the hierarchical nature of the physical processes that gen-
erate the sensor data (Lin et al., 2017), making them more
statistically and computationally efficient than alternatives
that do not have a hierarchical structure (Bengio et al.,
2013).

While the DNN controllers are often trained end-to-end to
map raw sensor data to actuator commands, the hierarchy
of functions that is encoded by their layers could be thought
of as representing two distinct sub-functions. The first
is a mapping from the high-dimensional sensor data to
a concise lower-dimensional representation of the task-
relevant aspects of the environment state. The second is a
mapping from this state representation to the action that
needs to be taken in that state to accomplish the task at
hand.

? This work is part of the research programme Deep Learning for
Robust Robot Control (DL-Force) with project number 656.000.003,
which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

To learn these functions, stochastic gradient-based op-
timization techniques are most commonly used. When
good enough estimates of the true parameter gradients
can be obtained, these techniques can efficiently find good
values for the network parameters. In this work we will
take the view that for the mapping from observation to
state representation this is indeed often the case. For
an interesting class of problems, many—if not most—of
the parameters of the DNN controller will be used to
encode this mapping. This mapping can be learned either
implicitly through end-to-end reinforcement learning, or
explicitly by using state representation learning objectives
(e.g. Jonschkowski and Brock, 2015; Lange et al., 2012;
Finn et al., 2016; de Bruin et al., 2018b). Intuitively, the
sensory observations are a direct result of the latent state of
the environment. While we do not have access to the true
state, there are many objectives that will allow us to learn
to infer the task-relevant aspects of this state relatively
easily. These include reconstructing observations, predicting
action-dependent changes to the state representation or
observations, predicting the instantaneous rewards, and
more. Even when hand-crafted state representations are
available, learned state representations can sometimes
enable better policies (Levine et al., 2016).

The mapping from the state representation to the optimal
action in that state often requires fewer parameters.
However, this mapping can still be much harder to learn.
This is because the effect of any single action on the
eventual task performance is often rather small, and there
might be delays before the consequences of actions become
apparent. Getting high-quality estimates of the gradients
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of the task performance with respect to the network
parameters through the chosen actions is therefore difficult.
These difficulties show up in different forms, depending
on how the parameter gradients are obtained. Techniques
using policy rollouts are able to get unbiased estimates
of the policy gradient, but suffer from very high variance,
while techniques using bootstrapping suffer from biased
gradients (Schulman et al., 2015b; Marbach and Tsitsiklis,
2003). For both extremes, as well as the methods that
trade off bias and variance by using both rollouts and
bootstrapping, the low-quality parameter gradients can
make the stochastic gradient optimization process diverge
(Sutton and Barto, 2018; Henderson et al., 2017; Gu et al.,
2017). Many different strategies have been used to deal with
these problems, generally trading learning speed and data
efficiency for learning stability. Examples include target
networks (Mnih et al., 2015), experience replay buffers
(Lin et al., 2017; Mnih et al., 2015), trust region updates
(Schulman et al., 2015a, 2017; Wang et al., 2017) and
very large batch sizes (Bansal et al., 2017). While these
techniques ameliorate the problem, DRL is still notoriously
sensitive to hyperparameter tuning and prone to divergence
(Henderson et al., 2017).

An alternative to these attempts to deal with low-quality
parameter gradients is to use gradient-free optimization
techniques, such as Evolutionary Strategies (ES) (e.g.
Koutník et al., 2013; Salimans et al., 2017). Rather than
trying to assign credit to the policy parameters through the
individual actions that were taken, gradient-free techniques
assign credit to parameter vectors directly based on entire
trajectories. These techniques tend to be much less data
efficient than gradient-based techniques, but they can lead
to more stable convergence of the policy performance. They
also have other benefits like their ability to optimize policies
that need to make decisions at high sampling frequencies,
and the fact that their training is highly parallelizable
(Salimans et al., 2017).

In this work we combine the desirable aspects of both
gradient-based and gradient-free optimization techniques
for DNN controllers. We start with a gradient-based phase
in which we use standard deep reinforcement learning
techniques. This allows us to quickly learn a policy that
is good enough to collect relevant training data and learn
a state representation. We then freeze the state encoder
part of the policy, and tune the final action-selection
parameters further using a gradient-free technique. Since
we are only tuning relatively small number of parameters,
we use the CMA-ES algorithm (Hansen and Ostermeier,
2001). This algorithm is not only relatively sample efficient
for an ES algorithm, but also includes a natural way of
decaying the amount of exploration (Stulp and Sigaud,
2012). This makes it possible to perfect the policy while
reducing the probability of poor performances. Note that
reducing the amount of exploration while training the entire
policy—including the state encoder—using gradient-based
optimization can lead to over-fitting and destabilize the
learning process (de Bruin et al., 2018a).

2. RELATED WORK

Our method is perhaps most closely related to that of
Ha and Schmidhuber (2018). In their work, a random

policy is used to collect training data, which is used to
train a state encoder using state-representation learning
objectives. Then, the action-selection subnetwork of the
policy is trained from scratch using CMA-ES. While we
consider the use of state representation learning objectives
in addition to reinforcement learning, we rely mainly on RL
to learn the whole policy during the gradient-based learning
phase. This not only results in more relevant training
samples (enabling a better representation to be learned
(Pérez Dattari et al., 2019)), but also a good initialization
of the action-selection parameters. We show in Section 5
how these changes allow us to solve the CarRacing-v0 task
using forty times fewer episodes, while still obtaining a
considerably better final policy.

Evolutionary Strategies (ES) have also been used to
optimize all parameters of deep neural network controllers
(e.g. Hausknecht et al., 2014; Salimans et al., 2017). These
methods are able to scale across many CPUs in an efficient
way. They are however not very sample efficient. The fact
that we only optimize a small number of parameters using
ES helps us to limit the sample inefficiency of the method. It
also allows us to use CMA-ES which does not scale to large
parameter vectors, but is able to optimize small parameter
vectors in a more sample-efficient manner than other ES
strategies (Hansen and Ostermeier, 2001). We additionally
show in Section 5 that even when we do optimize all
parameters of a policy using ES, initializing the parameters
using a short gradient-based optimization phase before
starting the ES optimization can help to both speed up
the learning as well as improve the eventual performance.

The idea that the last layer of a DNN is harder to train using
gradient-based reinforcement learning than the preceding
layers was previously explored by Levine et al. (2017). In
their work, the instability of the DQN method was limited
by performing least-squares updates of the parameters of
the final layer in addition to the standard gradient updates.

Plappert et al. (2018) also consider the final layers of
the policy to represent the action selection part and
add noise to these parameters to enable exploration. We
use their technique during the gradient-based learning
phase and update only these parameters through CMA-ES
during the policy fine-tuning phase. Here, the CMA-ES
can be understood as an optimization algorithm for both
the exploration policy as well as the policy parameters
(Stulp and Sigaud, 2012). Decaying exploration is desirable
when fine-tuning the policy, but continuing to update the
entire network using gradient-based methods can lead to
divergence due to a lack of training data variation (de Bruin
et al., 2018a).

3. PRELIMINARIES

We consider a reinforcement learning setting in which an
agent takes actions a ∈ A to change the state s ∈ S of a
dynamical environment. At every discrete time step k, the
agent receives sensory observations ok = F(sk) of the state,
based on which it chooses an action ak = π(ok; θ) which
changes the state according to the environment transition
dynamics: P(s′|s, a). In this work, π is a DNN control
policy parameterized by θ. A reward is given based on the
transition: rk = ρ(sk, ak, sk+1). We assume that the reward
comes from the environment, which has access to the true
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s̄

s̄ = g(o; θs) a = h(s̄; θa)

o a

ŷsrln(s̄, ·; θsrln)

...

ŷsrl1(s̄, ·; θsrl1)

Q̂(s̄, a; θq)

. . .

Fig. 1. We learn DNN control policies that map observations o to actions a: a = π(o; θ). We consider the first n layers of
m-layer DNN to encode a mapping from observations to a state representation s̄: s̄ = g(o; θs). The parameters θs
that encode this mapping are learned through gradient-based optimization by fitting value functions, optionally
supplemented with state representation learning objectives. The final m− n layers encode the mapping from the
state representation to actions: a = h(s̄; θa). The parameters θa are initialized during the gradient-based learning
phase and then fine-tuned during a gradient-free optimization phase.

state s. For the simulated control problems considered in
this paper, this is indeed the case. For some real problems,
the reward might be a function of the observation o instead.
We consider episodic tasks, where the end of the episode
is indicated with the terminal indicator T, which is 1 for
terminal states and 0 otherwise. The aim is to maximize
the return R =

∑K
k=0 γ

krk where K is the final time-step
of the episode. We consider the true objective to be the
undiscounted return (γ = 1).

The aim of learning will be to find the parameter vector θ
that corresponds to a policy that maximizes the expected
returns R from the initial states. As is common practice,
we will optimize for a surrogate objective with γ < 1
during the gradient-based optimization of θ, which makes
the optimization easier (Marbach and Tsitsiklis, 2003;
Schulman et al., 2015b).

4. METHOD

In this work, the training of the deep neural network
controller consists of two distinct phases; a gradient-based
optimization phase and a gradient-free phase. The aim
of the initial gradient-based learning phase is twofold: we
want to efficiently learn a state representation that can be
used for control and we want to find a good initialization
of the action-selection subnetwork of the policy. After
this phase is complete, we will trade learning speed for
stability by further tuning the action-selection parameters
using a gradient-free evolutionary strategy. This will allow
for stable convergence of the policy performance, while
optimizing for the true undiscounted return objective,
rather than the discounted return surrogate objective.

4.1 DNN Controllers

The control policy that maps observations o to actions a is
parameterized as a deep neural network with parameters θ:
a = π(o; θ). The network consists of m layers, of which we
consider the first n to represent the state encoder, which
maps observations to a state representation: s̄ = g(o, θs).
The finalm−n layers are considered to represent the action

selection subnetwork, which encodes the mapping from this
state representation to the policy action: a = h(s̄; θa) with
π(o; θ) = h(g(o; θs); θa). In addition to the policy action,
several other predictions can be made based on the state
representation s̄. In the DRL methods considered in this
work these include the return estimates Q̂(s̄, a; θQ) and
optionally additional predictions such as reconstructed
sensor observations, next states or instantaneous rewards
used for state representation learning, as shown in Figure 1.
We use the notation θx,y to indicate a subset of the
parameters θ consisting of θx and θy.

4.2 Gradient-based optimization

For the gradient-based optimization of θ we use two simple
and popular deep reinforcement-learning algorithms. For
policies with discrete actions we use the DQN algorithm
(Mnih et al., 2015). For continuous actions we use the
DDPG algorithm (Lillicrap et al., 2016). Both algorithms
rely on bootstrapping to learn state-action value functions.
Experience samples {o, a, o′, r,T} are collected by following
an exploratory policy π̃ (defined below). These samples
are stored in an experience buffer, from which they are
sampled uniformly at random to calculate training targets
qt(o, a; θ−s,Q,a) = r + (1 − T)γQ̂(o′, π(o′; θ−s,a); θ−s,Q). Here,
θ− are older versions of the network parameters θ. The
state-action estimation function Q̂(o, a; θs,Q) is trained
by minimizing the squared error between the predictions
Q̂(o, a; θs,Q) and the training targets qt(o, a; θ−s,Q,a) through
stochastic gradient descent. For the DQN algorithm, the
return predictions for all actions are estimated for a given
state representation s̄ by a linear layer. In the DDPG
algorithm, a neural network is used that takes both o and
a as inputs and outputs the predicted expectation of the
return Q̂(o, a; θs,Q).

For the DQN algorithm, we follow Plappert et al. (2018)
in having an explicit policy head that is separate from
the value function estimation (but uses the same state
representation). This head is trained using the negative
log likelihood objective to predict the action with the
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highest Q-value, given the state representation. For the
DDPG algorithm, the policy is also separate from the
value function. It is trained to output the actions that
maximize the Q-value estimates using the deterministic
policy gradient (Lillicrap et al., 2016). For further details
we refer the reader to (Mnih et al., 2015; Lillicrap et al.,
2016; Plappert et al., 2018) and the supplementary material
of this paper 1 .

Through fitting value functions, a state encoder is trained
implicitly. It can sometimes be beneficial to add explicit
state representation learning objectives as well, for instance
to enable learning when rewards are sparse, and to learn
more general features (Jaderberg et al., 2017; de Bruin
et al., 2018b).

4.3 Parameter space exploration

During both the gradient-based and the gradient-free
phases of the optimization, parameter space exploration is
used to explore the state-action space. The exploratory
policy is given by π̃ = h(g(o; θs); θã). The parameters
θã, which represent the exploratory version of the action-
selection part of the policy, are re-sampled at the start of
every Kth episode according to:

θã ∼ N (µ, σC), (1)
where the choice and evolution of µ, σ and C depend on
the optimization phase.

During the gradient-based (reinforcement learning) phase
of the algorithm, a new exploratory policy is sampled every
episode (K = 1). The parameters are sampled from an
isotropic mutation distribution (C = I) which is centered
around the parameters of the current policy (µ = θa). The
scaling of the parameter noise σ is adjusted according to
the method of Plappert et al. (2018):

σk+1 =

{
ασk if d(π, π̃) ≤ δ,
1

α
σk otherwise.

(2)

To ensure that the scale of the parameters to which this
noise is applied is not too different, layer normalization (Ba
et al., 2016) is used on the perturbed layers (Plappert et al.,
2018). The distance measure d and threshold δ relate the
exploration scale σ to action space exploration, allowing
for more intuitive hyperparameter choices. For DDPG, we
follow Plappert et al. (2018) in using

dDDPG(π, π̃) =

√√√√ 1

N

N∑
i=1

E
[
(π(oi)− π̃(oi))

2
]
,

where N is the dimensionality of the actions and the
expectation is estimated over a batch of samples o from
the experience buffer. Using this distance measure, the
threshold value can be chosen as δ .

= σa to get exploration
with the same standard deviation from the policy in the
action space as normally distributed noise with a standard
deviation of σa. For DQN, we do deviate from the method
of Plappert et al. (2018) and simply count the fraction of
observations per episode for which π 6= π̃ and compare
this directly to the desired epsilon greedy action space
exploration fraction: δ = ε.
1 https://github.com/timdebruin/drl-gradient-free-finetuning

4.4 Gradient-free optimization phase

During the second phase of learning, we first restore all
network parameters θ to the values θ∗ that resulted in
the highest undiscounted return so far 2 . We then use
the gradient-free CMA-ES (Hansen and Ostermeier, 2001)
optimization procedure to further optimize the action-
selection parameters θa.

We start by initializing a normal distribution (1) with:

• µ0 = θ∗ã (the parameters that led to the best perfor-
mance during training),
• σ0: we use the procedure of (2) to adapt σ based on

a desired exploration intensity in the action space.
• C0 = I (the mutation distribution starts out isotropic,

but is adapted over time in contrast to the exploration
during the gradient-based phase).

After this initialization, the CMA-ES algorithm then adapts
µ, σ and C by iteratively sampling λ parameter vectors θ̃a
from the current distribution N (µk, σkCk) and updating
the distribution based on their fitness. For the evaluation
of the sampled parameter values θã, we perform K roll-
outs of the exploration policy π̃(·; θs,ã) and average the
returns. The values of µ, σ and C are updated so that the
parameters corresponding to the higher fitness scores are
more likely under the updated distribution. In this update,
previous updates are also taken into account to speed up
the learning. For a more detailed description of the CMA-
ES procedure we refer to (Hansen and Ostermeier, 2001;
Hansen et al., 2019). One important aspect of the CMA-ES
algorithm is that the intensity (σ) and shape C of the
exploration are adapted automatically. During the final
phase of learning, this can allow the optimization procedure
to reduce the exploration intensity in a controlled manner
(Stulp and Sigaud, 2012).

5. EXPERIMENTS

We write DRL(time)→CMA-ES(exploration) in the fol-
lowing to indicate that we use the DRL deep reinforce-
ment learning algorithm (either DQN or DDPG) for time
episodes or environment steps before switching to CMA-
ES where we initialize σ (1) to exploration. We use
the CMA-ES implementation of Hansen et al. (2019). In
all experiments, we use their default population size of
λ = 4 + floor(3 ln(n)), where n is the number of elements
in θa. Our code is available online 1.

We start with experiments on the OpenAI Gym CarRacing-
v0 benchmark (Brockman et al., 2016). In this task, the
observation o is a top-down image of a car on a randomly
generated racing track on which it needs to complete a lap
as quickly as possible. Only a single image is provided at
each time-step, where the car’s translational and angular
velocities, wheel speeds and steering wheel position are
encoded as bars in the image. The task of the state encoder
g(o; θs) is therefore to decode this information, along with
all other relevant information, and include it in the state
representation s̄. We discretize the action space (of throttle,
breaking and steering inputs) into 7 actions. The aim of
2 Note that each episode is run on a randomly generated track. The
highest reward so far was therefore not necessarily obtained by the
best policy so far, but likely obtained by one that is close tot that.
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Fig. 2. Mean undiscounted return over K = 16 episodes on the CarRacing-v0 benchmark. Median results over 3
experiment repetitions are boldened in the left and middle plots. Population size λ = 28. Left) Mean undiscounted
return of the population when fine-tuning θ∗ã. Here, σ0 is chosen such that ε0 = 0.25. Middle) Training θa from
scratch (σ0 = 1), Right) highest mean undiscounted return in the population per iteration when fine-tuning θ∗ã
depending on switch episode (ep) and initial CMA-ES exploration magnitude ε0. Each line represents a single run.

the action selection subnetwork h(s̄; θa) is to select these
actions in a very reliable way; the car should drive along the
track quickly without mistakes. This is because solving the
task is defined as getting a mean score of at least 900 over
100 subsequent episodes. While obtaining an undiscounted
sum of rewards over an episode of a little more than 900 is
not too hard, leaving the track at any point will quickly
result in much lower scores.

The need for a very precise and reliable policy based
on a learned state representation makes this benchmark
interesting for our proposed method. It also allows for a
comparison with the related work of Ha and Schmidhuber
(2018) who chose this benchmark for similar reasons. On
this benchmark we use the DQN architecture (Mnih et al.,
2015) with an added policy head (Plappert et al., 2018).
We consider all but the final layer to be the state encoder
g, making the state representation 512 dimensional. This
leaves a final layer with θa ∈ R3591 for the action selection
h. For the CMA-ES phase we sample λ = 28 values of
the parameter vector θã and evaluate each over K = 16
episodes. Each iteration of the CMA-ES algorithm therefore
consists of 448 episodes.

We use this benchmark to test the assumptions on which
our method is based: that the state-encoder part of a good
policy can quickly be learned through deep reinforcement
learning and that stable convergence to a better performing
policy can be achieved through gradient-free fine-tuning
of the final action-selection parameters. The left panel of
Figure 2 shows both parts in action. The main graph shows
the relative speed with which the gradient-based DRL
phase can learn the values of the 1.7 million parameters in
θs and initialize the 3591 parameters in θa to a point where
the task is performed reasonably well. Note that getting the
DQN algorithm to perform this well required careful tuning.
The inset shows the stability with which the parameters of
θa can subsequently be tuned further using the gradient-free
CMA-ES procedure, learning not just to solve the task but

also beating what is to the best of our knowledge the highest
reported score in the literature (Ha and Schmidhuber, 2018)
while using considerably fewer episodes, as shown in Table 1.
This gradient free optimization required significantly less
tuning, but would not work without the initialization from
the gradient-based phase.

Given that we have two distinct optimization phases, one
important question is when we should switch from the
gradient-based phase to the gradient-free phase. Unfor-
tunately, there is no simple answer to this question. As
the gradient-based training progresses, the performance
increases rapidly. For the learning speed, it is therefore
beneficial not to switch too early. At the same time,
the results in the middle and right panels of Figure 2
seem to indicate that the gradient-based optimization will
eventually seek out areas in the parameter space that are
harder to optimize for the gradient-free optimizer. This
might partially be a result of using ADAM for the gradient-
based optimization (Wilson et al., 2017)—a very common
choice in DRL.

A closely related question is how much (initial) exploration
around the action-selection parameters θ∗ã is beneficial. The
right panel of Figure 2 shows the mean undiscounted return
for the best parameter vector θã sampled per iteration of
the CMA-ES procedure, as a function of the number of
DRL episodes and the initial exploration ε0 that σ0 is
adapted to using (2). It can be seen that more gradient
based optimization steps might limit the potential for
improvement. To see whether this effect is related to
over-fitting in the state encoder or the action-selection
parameters, we perform two experiments.

In the first one we train θa from scratch using CMA-
ES, rather than starting from θ∗ã. This is shown in the
middle panel of Figure 2. We see again that when using
a state encoder that is trained for fewer episodes, the
subsequent gradient free optimization of the action selection
subnetwork is easier. As an aside, comparing the left and
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Table 1. Performance over 100 test episodes on the CarRacing-v0 benchmark. Tested policies
were those that set the highest (mean) undiscounted return during training for the first (of 3)

training experiment repetitions.

Method Episodes Score

DQN(2500ep) [ours] 2,500 871 ± 86
DQN Gerber et al. (2018) 3,000 892 ± 41
SRL → CMA-ES Ha and Schmidhuber (2018) 1,843,200 906 ± 21
DQN(2500ep) → CMA-ES(ε0 = 0.10) [ours] 50,000 890 ± 34
DQN(2500ep) → CMA-ES(ε0 = 0.25) [ours] 50,000 918 ± 20
DQN(2500ep) → CMA-ES(ε0 = 0.50) [ours] 50,000 915 ± 28
Genetic Algorithm Risi and Stanley (2019) 240,000 903 ± 72
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Fig. 3. Magman benchmark results. Mean undiscounted
return per episode for DDPG(switch episode)→CMA-
ES(σa0 = 0.25) Results are from 50 trials, with the
95% bootstrapped confidence bounds of the means
shown.

middle panels of Figure 2 also clearly shows the sample
efficiency benefit of starting from the pre-trained θ∗ã.

Since at least part of the performance loss when switching
later seems to be related to over-fitting in the state encoder,
we perform an experiment where state representation losses
are added to the state encoder learning objective to help
regularize the state representation (de Bruin et al., 2018b).
While the details of this experiment as well as the resulting
learning curves are left out for brevity, we indeed observed
that switching later now lead to better performance. While
this seems to confirm that the state-encoder was over fitting
and that the SRL objectives can help prevent this over
fitting, the eventual performance of these experiments
was worse than those of the experiments without SRL
objectives.

Due to the computational complexity of these methods,
these results were from three experiment repetitions. For
more statistically significant results we perform experiments
on the Magman benchmark (de Bruin et al., 2018a). This
benchmark is low-dimensional, but requires a very precise
control policy with continuous actions. We use two smaller
networks with 2 hidden layers of 64 units each for a policy
and a Q-function. During the gradient based optimization
we use the DDPG algorithm to train these networks. During
the CMA-ES phase, we optimize all parameters of the policy.
The results, shown in Figures 3 and 4, again demonstrate
the benefits of this two stage optimization. Switching early,
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Fig. 4. Magman benchmark results. Maximum undis-
counted return per learning trial. Results are from 50
trials, with the 95% bootstrapped confidence bounds
of the means shown.

with sufficient initial exploration, results in both faster
learning as well as a higher maximum performance than
either DDPG or CMA-ES alone.

Finally, we tested the method on two Atari games. We
followed the architecture of (Plappert et al., 2018) where the
policy head is implemented as a single fully connected layer,
right after the convolutional layers of the DQN architecture.
The Q̂ head still had the usual 512 dimensional fully
connected intermediate layer Mnih et al. (2015). While we
found that this architecture worked better during the DRL
phase, it meant that the final action selection layer now
contained more parameters than can feasibly be optimized
using CMA-ES. Therefore, we trained a new policy head—
which did have the 512 dimensional intermediate layer—
after the DRL phase. This head was trained to minimize the
KL divergence between its predictions and the predictions
of the original policy head on samples from the replay buffer
(Parisotto et al., 2015). We then used CMA-ES to optimize
the final layer of this new policy head. When testing the
controllers resulting in the highest undiscounted returns
during both phases (evaluated with K = 1), we again
observe that the CMA-ES procedure was able to noticeably
improve the policy performance by fine-tuning the final
action-selection parameters. Results are shown in Table 2.
For the Enduro benchmark, where episodes can be very long
and consequences of actions less immediate, the gradient-
free optimization also resulted in the highest outright scores.
On the freeway benchmark, with short episodes and more
immediate consequences to actions, DRL was able to find a
near optimal policy. The gradient-free optimization phase
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Table 2. Performance over 100 test episodes on two Atari benchmarks.

Enduro Freeway
Method Steps Mean ± SD Steps Mean ± SD

DQN(50m) 50m 1188 ± 240 50m 30.7 ± 0.9
DQN(50m) → CMA-ES(ε0 = 0.5) 250m 1483 ± 505 100m 32.6 ± 1.0
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Fig. 5. Atari results, mean return (of population) indicated
in dark and max return (best of population) per
iteration in lighter colors.

here found a policy that has a higher mean performance
over 100 episodes, but did not obtain the maximum score.

6. CONCLUSION AND FUTURE WORK

In this work we combined gradient-based deep reinforce-
ment learning methods with a gradient-free evolutionary
strategy. We showed how a relatively short initial gradient-
based phase was able to learn a good state representation
and a decent action selection strategy relatively quickly,
while a subsequent gradient-free fine-tuning of the action-
selection parameters resulted in stable convergence to a
policy performance not achieved with gradient-based opti-
mization alone. Experiments on a small scale benchmark,
where no state encoder needed to be trained, also showed
how the combination of gradient-based and gradient-free
optimization was able to learn more quickly, and find better
performing policies, than either method alone.

The results suggests several avenues for future work. When
we consider part of the network to represent a state encoder,
we freeze this encoder during the gradient-free fine-tuning
of the policy. However, if the improved policy that is
found through gradient-free optimization visits significantly
different states, it might be worth updating the state
encoder using the data obtained with this new policy. On
the other hand, if we do keep the state encoder frozen, we
can consider using model compression (Moniz et al., 2019;
Hinton et al., 2015) on this part of the network to speed
up the evaluation of the gradient-free phase further.

When optimizing all parameters of a neural network, it
might be interesting to investigate a tighter integration
of deep reinforcement learning with parameter-space ex-
ploration and CMA-ES. For instance by introducing the

ability of CMA-ES to scale and shape the exploration to the
gradient-based optimization phase, or by allowing the DRL
gradients to bias the update direction of the population
mean of CMA-ES.
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