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Abstract: Recently, the research of identification input design for Bayesian methods has been
actively investigated. Either the problem is formulated as a non-convex problem with difficulty in
solving or relaxed as a convex problem with a price of some conservativeness. In this contribution,
a new minimum power input design problem is formulated by viewing the input as a stochastic
process. We seek the minimum energy input with variance constraints over a frequency band.
By exploiting the generalized Kalman-Yakubovich-Popov lemma, the stochastic consideration
facilitates the input design problem to be presented as a convex problem whose decision variables
are a finite number of autocorrelation coefficients. We obtain the autocorrelation coefficients of
the desired stochastic input signal by solving the convex problem and extend them by the
maximum entropy extension. Then, a specific identification input is sampled from the obtained
stochastic process. Simulations results demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

System identification is a traditional and practical research
topic which aims to build the mathematical expressions for
dynamic systems. An essential problem in this literature
is to estimate linear transfer functions based on limited
input-output data. A classical method for handling such
problems is prediction error methods (PEMs). However,
PEMs suffer from the critical model/order selection prob-
lem, which may lead to tedious identification, and the
performance of PEMs may not always be satisfactory
especially for short and noisy observations.

By contrast, another identification technique, i.e., the
Bayesian identification, overcomes the shortcomings of
PEMs and has therefore received much attention recently.
In kernel-based identification, the system parameters are
commonly considered to be a zero-mean Gaussian random
vector whose covariance (kernel) is designed to contain
system information. Via combining the prior knowledge
and the data, the kernel-based approach turns out to be a
more reliable identification method with a small data set
than PEMs. Furthermore, the kernel-based identification
almost focuses on the high-order finite-impulse-response
(FIR) model which will reasonably approximate the true
stable identified system provided that the model order is
large enough. This formulating let kernel-based identifi-
cation escape from heavy model/order selection problems
and thus conduct a more concise identification than PEMs.
Other details about the kernel-based identification can be
referred to Chen et al. (2012).

The latest research for kernel-based identification virtu-
ally focuses on the kernel structure. Previous researches
demonstrated that kernels should reflect the characteris-
tics of the impulse response such as stability and smooth-
ness. Hence, the kernels designed for stable linear systems
typically have exponentially decreasing diagonal elements
and positive correlation, which makes them different from
kernels frequently-used in machine learning literature. The
basic kernels, i.e., the diagonal/correlated (DC) kernel,
the tuned/correlated (TC) kernel, and the stable/spline
(SS) kernel, are all available for expressing stable and
smooth impulse responses in the stable linear systems
identification. Furthermore, the prior selection is another
important topic for Bayesian identification. For example,
the use of a noninformative prior is discussed in Zheng and
Ohta (2018).

However, there are still lots of problems unsettled for
the kernel-based identification including the input design
problem. The research about the input design for PEMs
has a long history and has led to a rich collection of
theoretical results Ljung (1999). The classical approach to
organizing the input design problem is to minimize some
scalar function of the covariance matrix with constraints
on input power. Meanwhile, the study by Jansson and
Hjalmarsson (2005) shows that the classical input design
problem allows a convex formulation via considering the
input spectrum as the design variable. The framework of
input design for PEMs identification is available to the
kernel-based identification because the covariance matrix
of the posterior is straightforward under the Bayesian
consideration. There have been several results in relation
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to this idea. In Fujimoto and Sugie (2018), they proposed
a non-convex problem which maximizes the mutual in-
formation between the output and the impulse response
subject to the energy-constraint. Then, a gradient-based
method is proposed to handle this problem. However, the
proposed problem in Fujimoto and Sugie (2018) will suffer
a local minimum issue. In another contribution Mu and
Chen (2018), an input design problem is proposed via
minimizing some scale measures of the posterior covariance
subject to the input energy constraint. Then, a convex
formulation is valid for the periodic input. On the other
hand, the algorithm proposed in Mu and Chen (2018) will
only be effective if the optimal input is a periodic input.
The periodic signal facilitates the convex formulation of
the input design problem proposed in this paper. However,
the optimal input may not always be a periodic input. A
simple counterexample is given in Section 3. Thus, the
exploitation for a more general and practical input design
problem formulation is essential.

In this paper, we propose a novel input design problem
which is different from the previous work. Instead of de-
signing a deterministic input, we first consider to select
a stochastic process and then sample the identification
input from the obtained stochastic process. In the first
step, we formulate the problem for a stationary Gaussian
stochastic process whose autocorrelation coefficients are
design variables instead of a deterministic input signal.
Then, we consider minimizing the average power of the de-
signed stochastic process subject to a variance constraint
of the frequency response. In the second step, we can
obtain the input by sampling techniques. Although some
samples from the captured stochastic process may not
satisfy the design requirements, we can easily distinguish
an unsatisfactory input and only accept a good one.

The paper is organized as follows. In Section 2, the
Bayesian system identification approach on Gaussian prior
is reviewed briefly. In Section 3, we first propose an
input design problem with frequency-domain constraints
considering a deterministic input signal. The property
about the optimal input in this problem is also derived.
Section 4 reviews several mathematical preliminaries. In
Section 5, we transform the original problem proposed
in Section 3 to a convex optimization problem using the
stochastic consideration. In Section 6, simulated data is
reported to demonstrate the effectiveness of the proposed
approach. Our conclusions, given in Section 7, end the
paper.

Notation: The symbol Ok×l denotes the zero matrix of
order k × l. For a complex number c ∈ C, the real part
and the imaginary part of c are denoted by Re(c) and
Im(c), respectively. Meanwhile, Rn denotes the real vector
space of n-dimension. For a vector β ∈ Rn, βk denotes
the kth element of β. The symbol Hn stands for the
space of n-dimensional Hermitian matrices. For a matrix
M ∈ Hn, M ⪰ 0 and M ⪯ 0 denote positive semidef-
initeness and negative semidefiniteness, respectively. Let
T (r0, r1, . . . , rn−1) denote the symmetric Toeplitz matrix
whose first row is [r0 r1 . . . rn−1].

2. BAYESIAN IDENTIFICATION FRAMEWORK

A linear single-input-single-output system is written as

y(t) = G(q)u(t) + v(t). (1)

Here {u(t), y(t), t = 1, . . . , N} denote the input-output
data and v(t) denotes the additive noise, while q in (1)
is the shift operator, qu(t) = u(t+1). The Bayesian linear
identification usually considers to build G like an n-order
discrete FIR model, namely

G (θ, q) =

n∑
k=1

gkq
−k, (2)

where θ := [g1 g2 . . . gn]
T
is the estimation objective, i.e.,

the finite impulse response. The transfer function of the
linear model (2) is obtained by the z-transformation of
the impulse response

G (θ, z) =

n∑
k=1

gkz
−k, (3)

where z is a complex variable. The corresponding fre-
quency response of G is G(θ, z) |z=ejω , i.e.,

G
(
θ, ejω

)
=

n∑
k=1

gke
−jωk. (4)

Via considering the FIR construction (2), the linear model
(1) is rewritten in a matrix formulation:

YN = ΦT
Nθ + ΛN ,

where

YN := [y(n+ 1) y(n+ 2) . . . y(N)]
T
, (5a)

ϕ(t) := [u(t− 1) . . . u(t− n)]
T
, (5b)

ΦN := [ϕ(n+ 1) ϕ(n+ 2) . . . ϕ(N)] , (5c)

ΛN := [v(n+ 1) v(n+ 2) . . . v(N)]
T
. (5d)

An interpretation in a Bayesian perspective is that the
parameter θ has a prior distribution which is a Gaussian
distribution with mean zero and the covariance matrix K.
Then under the assumption that the noise ΛN is white
Gaussian, i.e., ΛN ∼ N

(
0, σ2I

)
, the posterior distribution

of θ given YN is

θ | YN ∼ N
(
θB , P

)
,

where θB is the maximum a posteriori (MAP) estimation
calculated by

θB = argmin
θ

|| YN − ΦT
Nθ ||2 +σ2θTK−1θ

=
(
ΦNΦT

N + σ2K−1
)−1

ΦNYN ,

and P is

P =

(
ΦNΦT

N

σ2
+K−1

)−1

. (6)

Here, the frequency response G(θ, ejω) can also be realized
as a random variable which is dependent on the frequency
variable ω and the impulse response θ. When the distri-
bution of θ is Gaussian, then the linear combination of gk,
i.e., G(θ, ejω), is also Gaussian relying on ω. It should be
noted that G(θ, ejω) is a complex random variable which
has real and imaginary parts. Thus, based on the prior
and posterior distribution of θ, we can derive the posterior
distribution of G(θ, ejω) as follows:
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[
Re
(
G
(
θ, ejω

))
| YN

Im
(
G
(
θ, ejω

))
| YN

]
∼

N

([
ρ1θ

B

−ρ2θ
B

]
,

[
ρ1PρT1 −ρ1PρT2
−ρ2PρT1 ρ2PρT2

])
, (7)

where

ΛG :=
[
e−jω e−2jω . . . e−njω

]
, (8a)

ρ1 := Re(ΛG) = [cos(ω) cos(2ω) . . . cos(nω)] , (8b)

ρ2 := −Im(ΛG) = [sin(ω) sin(2ω) . . . sin(nω)] . (8c)

3. PROBLEM FORMULATION VIA
DETERMINISTIC INPUT

3.1 Problem statement

A natural idea to formulate the input design problem is
minimizing the energy of a deterministic input subject to
a variance constraint. In this paper, we consider to use the
trace of the covariance matrix in (7), i.e., ρ1PρT1 +ρ2PρT2 ,
as a scalar measure of the posterior covariance. Meanwhile,
it should be noticed that this scalar measure is equivalent
to a quadratic form of the covariance matrix P as follows:

ΛGPΛ∗
G = (ρ1 − ρ2j)P (ρ1 + ρ2j)

T

= ρ1PρT1 + ρ2PρT2 − ρ2PρT1 j + ρ1PρT2 j

= ρ1PρT1 + ρ2PρT2 , (9)

where Λ∗
G denotes the conjugate transpose of ΛG.

Thus, we can summarize the proposed input design prob-
lem as follows:

min
u

uTu (10a)

s.t. ΛGPΛ∗
G ≤ α ∀ω ∈ [ω1, ω2]. (10b)

Here, the frequency band [ω1, ω2] represents the set of
important frequencies. For example, the band near the
crossover frequency in feedback control is critical for the
control robustness if the identified model is used for com-
pensator design. This frequency band can be decided ac-
cording to preliminary experiments or practical demands.
Similarly, the error α is decided by practical requirements.
Nevertheless, it should satisfy α < supω∈[ω1,ω2] ΛGKΛ∗

G

to let (10b) work as an active constraint in the above
problem.

Unfortunately, the problem (10) is a non-convex optimiza-
tion problem and thus suffer the local minimum issue.
Hence, it is necessary to exploit the convex reformulation
for (10).

3.2 Discussion of previous approaches

A periodic input, proposed by Mu and Chen (2018),
admits a convex construction of problem (10). However,
the optimal input obtained by (10) may not always be a
periodic signal. As an example, we consider a special case
of problem (10). We assume that N − 1 = n, K = I,
and ω is fixed to be one frequency. Then, problem (10) is
rewritten as follows:

min
u

uTu (11a)

s.t. ΛG

(
uuT

σ2
+ I

)−1

Λ∗
G ≤ α. (11b)

Let J be a matrix that is all ones along the secondary
diagonal and zero everywhere else. Then, a vector u
is called symmetric if Ju = u and skew symmetric if
Ju = −u respectively. The following theorem reveals the
property about the optimal solution of problem (11).

Theorem 1. The optimal solution of (11) is symmetric or
skew-symmetric.

Proof. Based on the so-called matrix inversion lemma,
(11) is equivalent to

min
u

uTu (12a)

s.t. uT

(
Λ∗
GΛG

σ2
− n− α

σ2
I

)
u ≥ n− α, (12b)

where α < ΛGIΛ
∗
G = n.

Notice that the complex vector ΛG is decomposed as

ΛG = ρ1 − ρ2j.

Then, because uT (ρT2 ρ1 − ρT1 ρ2)u = 0, we have

uTΛ∗
GΛGu = uT

(
ρT1 + ρT2 j

)
(ρ1 − ρ2j)u (13a)

= uT
(
ρT1 ρ1 + ρT2 ρ2 +

(
ρT2 ρ1 − ρT1 ρ2

)
j
)
u
(13b)

= uT
(
ρT1 ρ1 + ρT2 ρ2

)
u, (13c)

where ρT1 ρ1 + ρT2 ρ2 is verified to be a symmetric Toeplitz
matrix. Thus, (12) is further simplified as follows:

min
u

uTu (14a)

s.t. uT

(
ρT1 ρ1 + ρT2 ρ2

σ2
− n− α

σ2
I

)
u ≥ n− α. (14b)

The optimal solution of (14) lies on the eigenvector of
ρT1 ρ1 + ρT2 ρ2 corresponding to the maximum eigenvalue.

It should be noticed that the paper Cantoni and Butler
(1976) explores the eigenvectors of symmetric Toeplitz
matrices whose eigenvalues are all distinct. Furthermore,
they indicate that the eigenvectors are symmetric or skew-
symmetric in this case. However, when n ≥ 4, the matrix
ρT1 ρ1 + ρT2 ρ2 always has the same eigenvalues 0, for which
the eigenvectors are not discussed clearly in the previous
research. Thus, we now turn to prove that all eigenvectors
of ρT1 ρ1 + ρT2 ρ2 corresponding to the non-zero eigenvalues
are symmetric or skew-symmetric, which leads to Theorem
1 immediately. First, let xρT1 + yρT2 lie on the eigenvector
of ρT1 ρ1 + ρT2 ρ2 where x ̸= 0 and y ̸= 0. Then, it follows
that(

ρT1 ρ1 + ρT2 ρ2
) (

xρT1 + yρT2
)

=
(
xρ1ρ

T
1 + yρ1ρ

T
2

)
ρT1 +

(
xρ2ρ

T
1 + yρ2ρ

T
2

)
ρT2 . (15)

Since the right-hand side of (15) is in the same direction
of xρT1 + yρT2 , it follows that

xρ1ρ
T
1 + yρ1ρ

T
2

x
=

xρ2ρ
T
1 + yρ2ρ

T
2

y
. (16)

Solving the equation (16) gives

y

x
=

−a±
√
a2 + 4b2

2b
, (17)

where a := ρ1ρ
T
1 − ρ2ρ

T
2 and b := ρ1ρ

T
2 .

If we let x = 1, the vector xρT1 + yρT2 becomes

ρ̄ := ρT1 +
−a±

√
a2 + 4b2

2b
ρT2 . (18)
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What is left is to show that ρ̄ is symmetric or skew-
symmetric.

By the formulas of trigonometric functions, it is trivial to
confirm that

a =

n∑
k=1

cos (2kω) = Re

(
n∑

k=1

e2kωj

)
, (19)

2b =

n∑
k=1

sin (2kω) = Im

(
n∑

k=1

e2kωj

)
. (20)

Notice that
n∑

k=1

e2kωj =
e2ωj − e2ωj+2nωj + e2nωj − 1

2− 2 cos (2ω)
. (21)

Thus,

a =
cos (2ω)− cos (2ω + 2nω) + cos (2nω)− 1

2− 2 cos (2ω)
, (22)

2b =
sin (2ω)− sin (2ω + 2nω) + sin (2nω)

2− 2 cos (2ω)
, (23)

and √
a2 + 4b2 =

√√√√ n∑
k=1

e2kωj

n∑
k=1

e2kωj (24a)

=
| 2 sin (nω) sin (ω) |

1− cos (2ω)
, (24b)

where
∑n

k=1 e
2kωj stands for the complex conjugate of∑n

k=1 e
2kωj .

Substituting (22), (23), and (24b) into ρ̄, we have

ρ̄ = ρT1 +
− cos (2ω) + 2 cos2 ((n+ 1)ω)− cos (2nω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2

± 4 sin (nω) sin (ω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2 . (25)

By the above, it is strightforward to confirm that

ρ̄k = ρ̄n−k+1 (26)

when

ρ̄ = ρT1 +
− cos (2ω) + 2 cos2 ((n+ 1)ω)− cos (2nω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2

+
4 sin (nω) sin (ω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2 , (27)

and

ρ̄k = −ρ̄n−k+1 (28)

when

ρ̄ = ρT1 +
− cos (2ω) + 2 cos2 ((n+ 1)ω)− cos (2nω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2

− 4 sin (nω) sin (ω)

sin (2ω)− sin (2nω + 2ω) + sin (2nω)
ρT2 . (29)

We conclude from (26) and (28) that ρ̄ is symmetric or
skew-symmetric.

Theorem 1 demonstrates that the optimal input of (10) is
symmetric or skew-symmetric for a special case. Thus, a
periodic input turns out to be unreasonable, though it can
facilitate a convex reconstruction of (10).

Other contributions such as Fujimoto et al. (2018) pro-
posed interesting input design criteria for the kernel-based

identification. However, the problems they work on all
suffer the non-convex issue, which leads to difficulties on
qualifying the solution. In this paper, we tend to work on a
convex input design problem which let us able to search the
input in a more general vector space besides the periodic
input.

4. MATHEMATICAL PRELIMINARIES FOR
STOCHASTIC PROCESS

We firstly summarize the parameterization of a spectrum
and some useful results respect to the signal spectrum as
mathematical preliminaries.

4.1 Parameterization of the input spectrum

The spectrum of a stochastic signal u is defined as

Φu (ω) =

∞∑
k=−∞

r|k|e
−jωk,

where rk := E (u(t)u(t− k)) denote the autocorrelation
coefficients of u.

The spectrum of a real stochastic process is an even func-
tion of frequency which describes the expected energy dis-
tributed over the frequency domain. Thus, the coefficients
rk must satisfy

Φu(ω) ≥ 0 ∀w.
The spectrum is rewritten as

Φu(ω) = Ψu(ω) + Ψ∗
u(ω),

where

Ψu(ω) :=
1

2
r0 +

∞∑
k=1

rke
jωk.

The positive constraint of the spectrum allows a linear
matrix inequality (LMI) representation by the generalized
Kalman-Yakubovich-Popov (KYP) lemma, which will be
discussed in the next subsection.

However, in practice, the spectrum is hard to be pa-
rameterized by infinite autocorrelation coefficients. One
possible approach to handle this problem is to use the
finite-coefficients parameterization, which means that the
spectrum is parameterized as

Φfu(ω) =

n−1∑
k=−n+1

r|k|e
−jωk.

Similarly, Φfu(ω) should satisfy nonnegative constraints,
i.e., Φfu(ω) ≥ 0 ∀ω. Because the autocorrelation coef-
ficients are symmetric, ri = r−i, we are able to merely
consider the positive part of the input spectrum and pa-
rameterize the spectrum equivalently by

Φfu(ω) = Ψ
(
ejω
)
+Ψ

(
ejω
)∗

, (30)

Ψ
(
ejω
)
=

1

2
r0 +

n−1∑
k=1

rke
jω. (31)

4.2 The representation via KYP lemma

Several kinds of inequalities regarding the frequency vari-
able can be boiled down to an LMI form. Here, we first
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introduce the following lemma for the positive definiteness
on the whole frequencies.

Lemma 2. (Lemma 2.1 in Jansson and Hjalmarsson (2005))
Let (A,B,C,D) be a controllable state-space realization of

Ψ
(
ejω
)
= 1

2r0 +
n−1∑
k=1

rke
jω. Then,

Φfu(ω) = Ψ
(
ejω) + Ψ(ejω

)∗ ≥ 0 ∀ω,
if and only if there exists a symmetric matrix Q = QT

such that

K (Q, (A,B,C,D)) :=

[
Q−ATQA −ATQB
−BTQA −BTQB

]
+

[
0 CT

C D +DT

]
⪰ 0. (32)

Lemma 2 inspires us how to handle the nonnegative
constraint of the input spectrum. If we have the input
spectrum which is parameterized like (30) and (31), then
a controllable canonical realization (A,B,C,D) of (31) is

A =

[
O1×n−2 0
In−2 On−2×1

]
, B = [1 0 . . . 0]

T
,

C = [r1 r2 . . . rn−1] , D =
1

2
r0.

(33)

Analogous to Lemma 2, there is a similar result to trans-
late the inequality constraints on a finite frequency band
to another form.

Lemma 3. Let (A,B,C,D) be a controllable state-space
realization of H

(
ejω
)
. Define the finite frequency interval

Λ := {ejω | ω2 ≤ ω ≤ ω1}.
Let Ω be the set of eigenvalues of A in Λ. Then, the
following statements are equivalent.
i) For each λ ∈ Λ\Ω, we have

H(λ) +H∗(λ) ≥ 0.

ii) There exist P,Q ∈ Hn such that Q ⪰ 0 and

Ka (P,Q, (A,B,C,D)) :=[
0 CT

C D +DT

]
−
[
A B
I 0

]∗
(Σ⊗ P +Θ⊗Q)

[
A B
I 0

]
⪰ 0.

(34)

Here

Σ :=

[
−1 0
0 1

]
, Θ :=

[
0 ejωc

e−jωc −2 cos (ωm)

]
,

where ωc := (ω1 + ω2) /2, and ωm := (ω2 − ω1) /2.

Proof. This is a simple application of Theorem 4 in
Iwasaki and Hara (2005).

Lemma 3 reveals the relationship between the constraints
on a finite frequency interval and an equivalent condition.
This translation facilitates a convex formulation of the
input design problem.

4.3 Maximum entropy extension

When partial autocorrelation coefficients {r0, r1, . . . , rn−1}
have been obtained, the extension {rn, rn+1, . . . } should
be explored to make sure that the corresponding param-
eterization can define a spectrum. One rational extension
is called maximum entropy extension. The maximum en-
tropy extension considers determining a spectrum Φu(ω)

of a discrete-time zero-mean stationary stochastic process
u via maximizing the entropy subject to given partial auto-
correlation elements. The unique solution to this problem
is the spectrum given by

Φu(ω) = µ2 | a(ejω) |−2,

where

a
(
ejω
)
:=

n−1∑
k=0

ake
jkω, a0 = 1.

The coefficients {a1, a2, . . . , an−1} and µ are determined
via the so-called Yule-Walker equations, i.e.,

[an−1 . . . a1 1]


r0 r1 . . . rn−1

r1 r2 . . . rn−2

...
...

. . .
...

rn−1 rn−2 . . . r0

 = µ2 [0 . . . 0 1] .

In this paper, we choose to use the maximum entropy
extension after we have obtained partial autocorrelation
coefficients of the designed input.

5. PROBLEM FORMULATION VIA STOCHASTIC
INPUT

5.1 Stochastic input design problem formulation

In this subsection, instead of designing a deterministic in-
put signal, we alternatively consider deriving a stationary
zero-mean Gaussian stochastic process, which will facili-
tate the convexity of the input design problem.

If we were able to use the law of large numbers, the long-
time average converges in probability to the expected value
as observed data size converges to infinity. Thus, the finite
autocorrelations matrix, i.e.,

R := T (r0, r1, . . . , rn−1) =


r0 r1 . . . rn−1

r1 r0 . . . rn−2

...
...

. . .
...

rn−1 rn−2 . . . r0

 , (35)

can approximate the average of the matrix 1
N−nΦNΦT

N as
N to be large enough. The limitation of this approximation
is that it will only be valid with a sufficiently large data
size which may be an unnatural setting in Bayesian iden-
tification. However, when N is finite, the stochastic input
signal generated by the designed stationary process still
satisfy the ordinary variance constraint to some extent.
The probability of sampling such good inputs has been
studied, which will be explained in our subsequent paper.

With the asymptotic approximation R of the matrix
1

N−nΦNΦT
N , the original variance constraint in (10) admits

the approximation as follows:

ΛGPΛ∗
G ≈ ΛG

(
(N − n)R

σ2
+K−1

)−1

Λ∗
G ≤ α, (36)

Then, we formulate the minimum power stochastic input
design problem regarding a variance constraint.

Problem 4. Suppose that the kernel K, the noise variance
σ2, and the credible frequency interval [ω1, ω2] are given.
Let α > 0 denote a system error which should be decided
preliminarily. The identification input is generated from a
stationary zero-mean Gaussian process u(t). Our objective
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is to design the spectrum Φu(ω) of u(t) which minimizes
the input power r0 subject to the variance constraint (36)
for all ω ∈ [ω1, ω2].

The problem 4 is expressed in a mathematical way like the
following optimization problem:

min
r

r0 (37a)

s.t. ΛG

(
(N − n)R

σ2
+K−1

)−1

Λ∗
G ≤ α ∀ω ∈ [ω1, ω2],

(37b)

Φfu(ω) ≥ 0 ∀ω. (37c)

Here, the variable r is defined to be r := [r0 r1 . . . rn−1].
Via solving this problem (37), we will obtain finite auto-
correlation coefficients r. However, the problem (37) is not
a convex problem per se. We will explain how to convert
this problem to a convex problem on r via Lemma 2 and
Lemma 3.

5.2 Convex representation of input design problem

Section 4.2 reveals that the frequency inequalities (37b)
and (37c) are equivalent to certain linear matrix inequali-
ties.

First, let us concentrate on the constraint (37c). Using the
controllable canonical realization (33) of the positive real
part (31), the problem (37) is equivalent to the following
form:

min
r,Q

r0 (38a)

s.t. ΛG

(
(N − n)R

σ2
+K−1

)−1

Λ∗
G ≤ α ∀ω ∈ [ω1, ω2],

(38b)

K (Q, (A,B,C,D)) ⪰ 0, (38c)

Q = QT , (38d)

where the function K (Q, (A,B,C,D)) is defined like (32).

With the realization (A,B,C,D) like (33), the inequal-
ity regarding the infinite frequency domain, i.e., (37c),
becomes an LMI (38c) where the decision variables are
the symmetric matrix Q and autocorrelation coefficients
r = [r0 r1 . . . rn−1].

Then let us explain how to convert the constraint (38b) to
another LMI. The Schur complement shows that the finite
frequency inequality (38b) is equal to

T
(
ejω
)
:=

[ α

σ2
ΛG

Λ∗
G (N − n)R+ σ2K−1

]
⪰ 0 ∀ω ∈ [ω1, ω2].

(39)
Then, it is straightforward to check that T ∗ = T and
T + T ∗ ⪰ 0 ∀ω ∈ [ω1, ω2]. Thus, Lemma 3 is used here
to derive (39) to an equivalent LMI like (34), which is
explained in the following paragraphs.

Let (AG, BG, CG, DG) be a controllable canonical realiza-
tion of the multi-input-single-output transfer function ΛG.
Then a controllable canonical realization of the positive
real part of T (ejω) is (AΓ, BΓ, CΓ, DΓ), where

AΓ = AG, BΓ = [On×1 BG] , CΓ =

[
CG

On×n

]
,

DΓ +DT
Γ =

[ α

σ2
DG

DT
G (N − n)R+ σ2K−1

]
.

(40)

Thus, the inequality (39) holds if and only if there exist
P1, Q1 ∈ Hn such that Q1 ⪰ 0 and

Ka (P1, Q1, (AΓ, BΓ, CΓ, DΓ)) ⪰ 0. (41)

Considering the definition of ΛG, one example of the
controllable canonical realization (AG, BG, CG, DG) is

AG =

[
On−1×1 In−1

0 O1×n−1

]
, BG = In,

CG = [1 O1×n−1] , DG = O1×n.

(42)

Applying the realization (42) to (41), one can check that
(41) is also an LMI in P1, Q1, and r.

Based on the explanation above, finally we can summarize
the following convex optimization problem which is equal
to the original problem (37):

min
r,Q,Q1,P1

r0 (43a)

s.t. Ka (P1, Q1, (AΓ, BΓ, CΓ, DΓ)) ⪰ 0, (43b)

K (Q, (A,B,C,D)) ⪰ 0, (43c)

Q = QT , (43d)

P1 = PT
1 , (43e)

Q1 = QT
1 , (43f)

Q1 ⪰ 0. (43g)

The problem (43) is a positive semidefinite problem which
is efficiently solved by a Matlab package named ’YALMIP’.

After solving the problem (43), the complete spectrum
Φu(ω) is obtained through the maximum entropy exten-
sion according to the finite autocorrelation coefficients r.

5.3 Procedures for stochastic input design

Based on the explanation above, we can summarize the
procedures for sampling a stochastic input as follows:

(1) Step 1: Perform a preliminary experiment to estimate
the kernel K, the noise variance σ2, and the credible
frequency interval [ω1, ω2].

(2) Step 2: Solve the optimization problem (43) to obtain
the finite autocorrelation coefficients r via convex
optimization techniques such as ’YALMIP’ in Matlab.
Here, the matrices (A,B,C,D) and (AΓ, BΓ, CΓ, DΓ)
have been defined in (33) and (40) respectively.

(3) Step 3: Calculate the complete spectrum Φu(ω) using
the maximum entropy extension (Section 4.3).

(4) Step 4: Sample a signal from Φu(ω) as the identifica-
tion input.

6. SIMULATIONS

6.1 Test functions

In numerical experiments, a test system is defined as
follows:

F (z) =
z − 2

(z − 0.62− 0.62j)(z − 0.62 + 0.62j)
.
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The test system F (z) has a pair of complex eigenvalues
which will lead to a resonance phenomenon in Fig. 1.

Fig. 1. Bode diagram for the test system F (z).

We also plot the impulse response of F (z) in Fig. 2. It can
be seen from Fig. 2 that the impulse response decreases
to zero at around the 50th step. Thus, the system order n
is set to be 50, while the observed data size N should be
fixed bigger than 50 in the following experiments.
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Fig. 2. The impulse response for the test system F (z).

6.2 Preliminary setting

A preliminary experiment is needed to obtain the kernel
K and the noise variance σ in the input design problem
4. In this paper, we select the kernel to be the DC kernel
which is written as follows:

K(i, j) := k1k
i+j
2

2 k
|i−j|
3 ,

where k1, k2, and k3 are hyperparameters. The hyperpa-
rameters and σ are effectively estimated by the empirical
Bayes method. Then, the credible frequency set is decided
to be [0.6, 0.9] in all of the following experiments.

It should be noticed that the preliminary experiment
is conducted with a random small energy input which
may lead to a rough identification. However, the rough
identification result also contains some system information
which can instruct the input design problem.

6.3 Numerical experiment: bode diagrams

In this experiment, we first solve the problem (43) with
n = 50, α = 20, while N is set to be 51, 100, and 1000,
respectively. Then, the finite correlation coefficients r are
extended using the technique mentioned in Section 4. The

complete spectrum Φu(ω) is obtained after the extension.
The proposed identification inputs denoted by filtered G
are generated by sampling Φu(ω). By comparison, we
consider another white Gaussian process which has the
same power r0 with Φu(ω) and denote the samples from
the white Gaussian process by white G. We conduct 1000
identification experiments using the filtered G and the
white G respectively. Then, the estimations of F (z) using

the filtered G and the white G are denoted by Ĝf and Ĝw,

respectively. The bode diagrams of Ĝf and Ĝw are shown
in Fig. 3.

Generally speaking, in all experiments, it can be seen that
the estimations Ĝf are more precise and more stable than

the estimations Ĝw statistically. The identification when
N = 51 is the most difficult case whose results are shown in
the top row of Fig. 3. We can find that both filtered G and
white G perform unsatisfactorily because the data is too
few to provide enough information for the identification.
However, the bode diagrams of Ĝf is closer to the true

system than Ĝw generally. When N = 100, we give the
identification results in the medium row of Fig. 3. As the
increase of data sizeN , the power r0 of filtered G and white
G decreases. Nevertheless, the matrix 1

N−nΦNΦT
N made

by filtered G is closer to the matrix R, while 1
N−nΦNΦT

N

made by white G is closer to r0I generally. Furthermore,
the matrix R is the optimal solution of (43). Thus, filtered
G performs more stable and more precise, especially on the
credible frequency [0.6, 0.9]. When N = 1000, the matrices

1
N−nΦNΦT

N made by filtered G and white G are further
close to R and r0I, respectively. However, the performance
of white G does not improve significantly compared with
the case of N = 100. By comparison, filtered G makes a
further improvement, especially on the credible frequency
[0.6, 0.9].

Although a particular input in filtered G is not always
better than white G, comparing the energy uTu and the
posterior variance ΛGPΛ∗

G of the sampled u leads to a
rough selection of the good inputs. A good input satisfies
the variance constraint (10b) with the smaller energy. The
probability of sampling such good input is discussed in the
journal version of this paper.

7. CONCLUSION

In this research, we formulated an input design problem
for Bayesian identification with variance constraints over a
frequency band. When the input is a deterministic signal,
the problem is a nonlinear optimization problem. In the
first part of the paper, it was shown that the optimal
solution is, in general, not a periodic function of time. This
suggests that though the restriction of the input signals to
periodic functions makes the problem convex, it may not
yield a satisfactory signal.

In the second part of the paper, we proposed to use a
stationary stochastic process to reformulate the problem
into a convex problem. By exploiting the generalized KYP
lemma, the input design problem was cast as an LMI prob-
lem whose decision variables are correlation coefficients.
Then, the maximum entropy extension allows us to build
the complete spectrum of the proposed stochastic process.
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(a) white Gaussian input (b) filtered Gaussian input

Fig. 3. Bode diagrams of estimated systems Ĝw (left) and Ĝf (right) without selection. The red line denotes the true
system F (z).

The simulation results demonstrate the effectiveness of our
method.
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