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Abstract: This paper examines the system identification and control design  for a tip tilt nanopositioning 
stage with an experimental case study based on the Queensgate 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  prototype 
nanopositioning stage that has two degrees of freedom (DOF) of tip tilting motion. The paper presents the 
multi-input multi-output (MIMO) position model and proposes a MIMO H-infinity control with loop 
shaping design. The control performance is compared with a benchmark SISO integral control. The H-
infinity control has the advantage of increasing the response speed and improving the bandwidth while 
considering the whole multivariable model in the design scheme and maintaining the control robustness. 
The experiment results confirm that the MIMO H-infinity control has a better control performance in terms 
of the response time and bandwidth, compared with the benchmark SISO integral control. 
Keywords: Nanopositioning, Tip Tilt, H¥ Control, Robust Control, Multivariable Control 

 

1.  INTRODUCTION 

1.1 Research Background 

Nanotechnology can be defined as the understanding and 
control of matter at the nanoscale, in which there is at least one 
dimension less than 100 nm, and where the unique phenomena 
at the nanoscale enable novel technology applications 
(Devasia et al., 2007). Nanopositioners are ultra-precise 
positioning stages which can be used for high-resolution 
positioning to achieve the manipulation and control of samples 
at the nanoscale (Fleming and Leang, 2014), (Eielsen et al., 
2014). Moreover, nanopositioning stages are widely used in 
many nanoscience and nanotechnology applications. These 
include experimental microscopy, which gives scientists the 
ability to see and move the samples at the nanoscale, using 
equipment such as a scanning probe microscope (SPM) and 
atomic force microscope (AFM) (Gu et al., 2016). In general, 
nanopositioning stages are driven by piezoelectric actuators 
which provide large force and precise motion. The systems are 
also equipped with capacitive sensors which measure position 
output. However, the inherent creep and hysteresis 
nonlinearities of piezoelectric actuators and the lightly damped 
resonant dynamics in the low frequency modes are the main 
challenging issues which limit the system closed-loop 
bandwidth (Gu et al., 2016), (Kara-Mohamed et al., 2015). 
Therefore, research has recently been focusing on the 
improvements in modelling and control design, to fulfil the 
demand for high-precision positioning control at high 
bandwidth for nanopositioning applications (Yong et al., 
2008). 

Furthermore, nanopositioning stages can be categorised into 
different types based on their motion, such as translation, 
rotation, and tip tilting (Fleming and Leang, 2014). For the 
translational nanopositioning stages, several models and 
control methods have been proposed in the literature to achieve 
the different control specifications of applications, and to deal 
with the system nonlinear effects (Gu et al., 2016). However, 
the tip tilt nanopositioning stage is a new research area, and the 
case study of this paper, the Queensgate 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 
nanopositioning stage, is a prototype. Therefore, the 
motivation of this research is to study the tip tilt 
nanopositioning stage, and carry out a procedure to build a 
suitable position model which represents the system dynamics; 
and thus to design and compare the performance of two 
different controllers, such as the classical SISO integral control 
and the MIMO robust H infinity control with loop shaping 
design.  

In Section 2, modelling and system identification of the tip tilt 
nanopositioning stage is presented. Section 3 introduces two 
different control designs for the tip tilt nanopositioning stage. 
The results of a case study are produced in Section 4 and the 
conclusion of the paper is presented in Section 5. 

1.2 Tip Tilt Nanopositioning Stage 

The 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 tip tilt nanopositioning stage shown in 
Fig. 1 is a prototype from Queensgate which has been 
developed for optical inspection and imaging systems 
requiring the ultra-high precision positioning of mirrors, such 
as the precision beam steering and the image jitter correction. 
The nanopositioning stage provides two degrees of freedom of 
tip tilting motion on the x and y axes in milliradians with sub-
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micro-radian resolutions. In Fig. 1, the black arrows represent 
the motion axes, and the red arrows represent the tip tilting 
motion on each axis. The system is driven by the piezoelectric 
actuators from two input channels and also equipped with 
capacitive sensors which measure both the position and force 
output at each axis. To be more specific, the input channels 
receive the voltage reference signal, while the position sensors 
measure the tip tilting motion of the nanopositioning stages, 
and the force sensors measure the force applied from the 
piezoelectric actuators to the moving stages. Accordingly, the 
𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  nanopositioning stage is a multivariable 
system which has two input channels and four output channels, 
including the position and force measurement. Nevertheless, 
only the measured position outputs are studied in this paper. 
Therefore, the system can be identified as a two input and two 
output model.  

 
Fig. 1.  𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 Nanopositioning Stage. 

1.3 Schematic Diagram of the Control Structure 

Fig. 2 shows the schematic diagram of the experimental 
control structure for the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt 
nanopositioning stage used in this study. There are two input 
channels for x and y tip tilting motion and two output channels 
for the position measurement. First, the LabVIEW control 
program computes the control input from the given reference 
and the measurement feedback signals. Then, the Queensgate 
𝑁𝑃𝐶 − 𝐷 − 5200𝐷𝑆  digital controller converts the control 
input to the actual control signal for the nanopositioning stage. 
Finally, the piezoelectric actuator receives the control input 
signal and drives the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 tip tilt nanopositioning 
stage. Specifically, the 𝑁𝑃𝐶 − 𝐷 − 5200𝐷𝑆 digital controller 
is used to communicate to a PC while LabVIEW is used to 
control the nanopositioning stage. However, this experimental 
set up increases some extra loop delay in the control system. 

2. MODELLING AND SYSTEM IDENTIFICATION 

2.1 Data-driven System Identification 

The foundation of all model-based control design is to 
establish a model which provides information about the system 
response under input signals and typical disturbances, in order 
to approximate the actual system (Glad and Ljung, 2000). 
Furthermore, system identification is the technique of building 
a model by treating the system as a black box and identifying 
the input-output dynamics of the system from the excited 
perturbation input signal and the corresponding output signal 
(Godfrey et al., 2005). However, the use of piezoelectric 
actuators introduces nonlinear effects to the nanopositioning 
stage, such as creep and hysteresis; these increase the difficulty 
of modelling and system identification in nanopositioning  

 
Fig. 2. The Schematic Control Structure of the 𝑁𝑃𝑆 − 𝜃𝛾 −
2𝑀 Tip Tilt Nanopositioning Stage. 

stages (Devasia et al., 2007). On the other hand, a linear time-
invariant (LTI) model is commonly used to approximate the 
actual nonlinear system, due to its modelling simplicity, the 
capability to capture most of the system dynamics, and the 
variety of corresponding control design options (Vaqueiro-
Contreras, 2015). In particular, the linear modelling approach 
using the data-driven system identification techniques is 
considered in some literature and shows a sufficient modelling 
accuracy for the feedback control of the nanopositioning 
stages (Gu et al., 2016), (Kara-Mohamed and Heath, 2016), 
(Sebastian and Salapaka, 2005), (Das et al., 2015). 
Nevertheless, it is highly recommended to identify the level of 
system nonlinear distortion by conducting a nonlinearity 
identification test before considering a linear model to 
represent the practical nonlinear system (Vaqueiro-Contreras, 
2015), (Kara-Mohamed et al., 2015). 

2.2 Model Assumptions and Modelling Procedure 

A linear MIMO position model can be identified for the 
nanopositioning stage with a transfer function matrix as 
follows 

 -𝑋𝑌0 = 2𝐺44 𝐺45
𝐺54 𝐺55

6 2
𝑈8
𝑈96 = 𝐺 2

𝑈8
𝑈96 (1) 

where 𝑋 and 𝑌 are the output channels which are the position 
measurement, and 𝑈8  and 𝑈9  are the voltage inputs to each 
channel. It is noted that each element of the MIMO transfer 
function matrix 𝐺 is assumed to be a linear model. 

Furthermore, the exciting signal used for system identification 
is designed as an inverse-repeat PRBS signal with the even 
harmonic suppressed, which is proposed to be suitable for 
linear system identification in the presence of nonlinear 
distortion (Godfrey et al., 2005). A similar approach to identify 
the dynamics of nanopositioning system is used by Kara-
Mohamed et al. (2015). First, a ninth order PRBS signal with 
period of 512 elements and a seventh order PRBS signal with 
period of 254 elements are used to obtain the open loop 
frequency response of the system. Next, a ninth order PRBS 
signal is excited at each channel independently, and the 
outputs of position from both channels are measured to obtain 
each element of 𝐺  in (1). Specifically, the outputs 𝑋  and 𝑌 
will be respectively related to models  𝐺44 and 𝐺54 by exciting 
the PRBS signal at 𝑈8  and setting 𝑈9  to zero. Conversely, 
models 𝐺45  and 𝐺55  will be separately related to the output 
channels 𝑋 and 𝑌 when 𝑈9 is excited by the PRBS signal and 
𝑈8 is set to zero. Further, the best fitting model in the system 
identification for each element of the MIMO transfer function 
matrix 𝐺 is identified by selecting the output error (OE) model 
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with different orders of polynomial and time delay. The OE 
model structure is given by 

 𝑦(𝑡) = >(?)
@(?)

𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (2) 

where 𝑦(𝑡) is the output, 𝑢(𝑡) is the input, 𝑒(𝑡) is the error, 𝑞 
is the difference operator and 𝑛𝑘  is the order of the delay 
(Ljung, 1999). 

2.3 MIMO Position Model 

First, Fig. 3 shows the open-loop frequency response of the 
diagonal position model 𝐺44and the cross-coupling position 
model 𝐺45 . Two non-parametric models are obtained and 
compared by exciting two PRBS signals with the order of ninth 
and seventh in the open-loop system for each position model. 
To be more specific, the blue line represents the response of 
the PRBS signal with the ninth order, while the red line 
represents the response of the PRBS signal with the seventh 
order. It can be observed that there is a slight model 
mismatching between the two non-parametric models in the 
operating range around the first resonant frequency of the 
diagonal position model 𝐺44 . On the other hand, the model 
discrepancy in the cross-coupling position model 𝐺45 is more 
severe around the first resonant frequency. The model 
mismatching may be affected by the system nonlinearity from 
the piezoelectric actuator, and by the system uncertainty. It 
shows that the nonlinear effect has more impact on the cross-
coupling position model than the diagonal position model. 
Moreover, it is noted that the steady state gain of the cross-
coupling model is lower compared to the diagonal model. The 
modelling result of position model 𝐺55 and 𝐺54  are not 
included here as they are similar to the position model 𝐺44and 
𝐺45. 

In addition, Fig. 4 displays the absolute value of the Fourier 
Transform of the position model 𝐺44 and 𝐺45, which reveals 
the level of the nonlinear distortion in the system response. The 
output spectrum is plotted by Godfrey’s method, which can be 
used to analyse the nonlinear distortion in the system response 
(Godfrey et al., 2005), (Schoukens et al., 2003), (Kara-
Mohamed et al., 2015). Specifically, the crosses represent the 
linear response at excited frequencies, while the circles 
indicate the nonlinear response at the other suppressed 
frequencies. It can be observed that the linear response has a 
relatively higher value than the nonlinear response in the 
whole frequency range for the diagonal model 𝐺44. The value 
of linear response and nonlinear response near the first 
resonant frequency are closer in the cross-coupling model 𝐺45 
which corresponds to the former result. Nevertheless, it is 
reasonable to approximate the actual nonlinear 
nanopositioning system using the linear position model, as the 
linear response dominates most of the frequency response in 
the operating frequency region. 

Next, Table 1 presents the information of the best-fit position 
OE models obtained by the MATLAB System Identification 
Toolbox. It shows that the obtained OE position models have 
around a 90% fit to the procured data. Moreover, the frequency 
response of each OE model and the non-parametric model of 
the MIMO position linear transfer function matrix 𝐺  are 
presented in Appendix A and each coefficient of the discrete 

transfer function of the MIMO position model are presented in 
Appendix B. 

(a) Diagonal position model 𝐺44 

 
(b) Cross-coupling position model 𝐺45 

Fig. 3. Frequency Response of Position Model. 

 
(a) Diagonal position model 𝐺44 
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(b) Cross-coupling position model 𝐺45 

Fig. 4. Position Output Spectrum.   

Element Parameters Best fit 
percentage 

Validation 
MSE 

𝐺44 [2, 4, 1] 89.91 8.837 × 10RS 
𝐺45 [8, 8, 1] 91.79 1.217 × 10RS 
𝐺54 [8, 8, 1] 90.56 6.628 × 10RU 

𝐺55 [2, 4, 1] 92.26 8528 × 10RS 

Table 1. Summary of MIMO Position Model System 
Identification. 

3. CONTROL DESIGN 

3.1 Benchmark SISO Integral Control 

We implement the integral only control as it is a standard 
benchmark for commercial nanopositioning stages. The 
closed-loop bandwidth with integral control is limited to circa 
2% of the first resonant frequency (Fleming and Leang, 2014). 
Commercial nanopositioners achieve higher bandwidth via 
techniques such as notch filtering, feedforward or the use of 
force feedback (Fleming and Leang, 2014). 

The integral controller is designed in the SISO structure and 
implemented in the feedback loop as the diagonal control 
structure, also known as the decentralised control structure is 
the most straightforward approach among all the multivariable 
control design (Skogestad and Postlethwaite, 2005). In 
addition, the error signal is used as the input of the controller, 
to improve the system tracking performance and compensate 
for the modelling uncertainty. Therefore, the feedback SISO 
integral controller has the robustness to modelling error, and 
the ability to reduce the nonlinear effect of the piezoelectric 
actuator at low frequencies (Fleming and Leang, 2014). The 
aim of designing a classical SISO integral controller is to set 
up a standard control performance that can be compared with 
the other control designs.  

The diagonal SISO integral control structure can be 
represented as  

 𝐶 = 2
𝐶V8 0
0 𝐶V96

 (3) 

Each element of the controller 𝐶 in (3) is designed in discrete 
form, and the transfer function is given by 

 𝐶V(𝑧) = 𝐾Y ∙ 𝑇\
4
]R4

 (4) 

where K_ is the integral gain and Ta is the sampling time.  

For the 	𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt nanopositioning stage, two 
discrete SISO integral controllers are designed based on the 
diagonal position models 𝐺44  and 𝐺55  separately, as the 
system has two DOF and the diagonal position models are not 
identical. It is noted that the cross-coupling position models 
𝐺45  and 𝐺54  are neglected in order to simplify the design 
procedure, as their gains at low bandwidth are relatively 
smaller than those of the diagonal models, according to the 
modelling results in Section 2.3.  

The integral gains are designed following the closed-loop 
stability condition from Fleming’s recommendation that the 
maximum integral gain is equal to twice the multiplication of 
the natural frequency and the damping ratio, which is given by 

 𝐾Y = 2𝜔d𝜁  (5) 

where 𝜔d is the natural frequency, and ζ is the damping ratio 
of the diagonal models (Fleming and Leang, 2014).  

Table 2 presents the designed integral gains, the natural 
frequency and damping ratio of the diagonal position models.  

Element 𝐺44 𝐺55 
Natural Frequency (rad/sec) 6307 5883 

Damping ratio 0.082 0.0635 

Integral gain 𝐾Y 1034.348 747.141 

Table 2. Natural Frequency, Damping Ratio and Integral Gain 
of the Diagonal Position Models. 

3.2 MIMO Robust H-infinity Control with Loop Shaping 
Design 

The robust H-infinity control with loop shaping design, using 
the Glover-McFarlane method, is applied to design a MIMO 
robust controller for the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt 
nanopositioning stage (McFarlane and Glover, 1992). The 
aims of designing the MIMO robust H-infinity control are to 
improve the system closed-loop bandwidth and the response 
time. It is noted that the MIMO robust H-infinity control can 
reduce the system cross-coupling effect as it considers the 
whole multivariable position model.  

The design of the robust H-infinity control starts by defining 
the nominal plant and its coprime factorisation (Bongers and 
Bosgra, 1993). First, the left fractional representation of the 
nominal plant is given by  

 𝐺 = 𝑀gR4𝑁g (6) 

where 𝐺 is the MIMO position transfer function and 𝑀g  and 𝑁g 
are stable transfer functions. Then, the left coprime factor 
perturbed system 𝐺∆ can be represented by  

 𝐺∆ = i𝑀g + ∆jkl
R4(𝑁g + ∆jm) (7) 
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where ∆jk  and ∆jm  are the unknown uncertainties. Also, ∆jk 
and ∆jm are stable transfer functions, such that 

 ‖[∆jk ∆jm]‖o < 𝜖  (8) 

where 𝜖  is the stability margin of the robust H-infinity 
controller (Glad and Ljung, 2000). In addition, Fig. 6 shows 
the left coprime factor perturbed system. 

Next, the robust H-infinity controller with guaranteed closed-
loop stability and robust stability is obtained by applying the 
loop shaping method, which includes the design of pre-
compensator weights 𝑊4  and post-compensator weights 𝑊5 . 
In general, 𝑊4  is designed as a PID controller, while 𝑊5  is 
designed as a low-pass filter to achieve the expected control 
performance, such as high gain in low frequencies, low gain in 
high frequencies, and the desired stability margin (Sebastian 
and Salapaka, 2005), (McFarlane and Glover, 1992). The 
design procedure of the robust H-infinity control with loop 
shaping consists of two steps. First, the shaped model 𝐺\ 
shown in Fig. 7(a) is defined as the multiplication of the loop 
shaping weights with the nominal model 𝐺, such that 

 𝐺\ = 𝑊5𝐺𝑊4 (9) 

where 𝐺 is the MIMO position transfer function matrix in (1). 
To simplify the design of the loop shaping compensators, both 
𝑊4 and 𝑊5 are considered as a diagonal matrix, while the non-
diagonal terms are set to zero. To be more specific, the transfer 
function of 𝑊4 is designed as 

 𝑊4 = 1 + 3000 ∙ 4
\
+ 10RU ∙ 𝑠 (10) 

and the transfer function of 𝑊5 is designed as 

 𝑊5 =
Stt
\uStt

 (11) 

Second, the robust H-infinity controller 𝐾o  with associated 
robustness property is synthesised to stabilise the shaped 
model 𝐺\ in (9) and to maximise the stability margin based on 
the robust H-infinity control theory (Sebastian and Salapaka, 
2005). Therefore, the final feedback controller 𝐾  shown in 
Fig. 7(b) is given by 

 𝐾 = 𝑊4𝐾o𝑊5 (12) 

Fig. 6. Left Coprime Factor Perturbed System. 

 

(a) 

 

(b) 
Fig. 7. The Loop Shaping Design Procedure. 

The H-infinity optimisation problem is solved by the 
MATLAB ncfsyn command. In addition, the singular values of 
the nominal model 𝐺  and the shaped model 𝐺\ , with the 
designed loop shaping weights, are presented in Fig. 8. This 
shows that the first resonant peak of the shaped model 𝐺\ is 
lower than the steady-state value of the nominal model 𝐺.  

  

Fig. 8. The Singular Values of Nominal Model 𝐺 and Shaped 
Model 𝐺\. 

4. CASE STUDY 

In this section, two designed controllers are implemented to 
the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt nanopositioning stage and their 
control performance are discussed and compared based on the 
system step response and PRBS frequency response. The 
simulation result is obtained from the MIMO position model 
in MATLAB/Simulink, while the experimental result is 
obtained from a 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 tip tilt nanopositioning stage 
in the lab. In particular, the control performance is analysed 
according to the system settling time and overshoot in the time 
domain, and the closed-loop bandwidth in the frequency 
domain. The system response is assumed to reach the steady-
state when the system output error is bounded within 0.1% of 
the final value, which is almost equal to a unit nanoscale error. 

4.1 Benchmark SISO Integral Control 

The SISO integral control is implemented using Fleming’s 
method (Fleming and Leang, 2014). The control performance 
of the experimental result is presented in Table 3; this shows 
that the system response of channel x has a smaller overshoot 
and is faster than channel y. Moreover, the closed-loop 
bandwidths of channels x and y are 2.5% and 2.1% of the first 
resonant frequency respectively, which accords with 
Fleming’s results that the maximum bandwidth of simple PI 
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feedback control is limited to 2% of the first resonant 
frequency (Fleming and Leang, 2014).  

Channel Settling time 
(sec) 

Overshoot 
(%) 

Bandwidth 
(rad/sec) 

X 0.0876 0.4 156 
Y 0.1597 1.1 122 

Table 3. The Control Performance of SISO Integral Control. 

Fig. 9 shows the simulated and experimental step responses for 
diagonal channel xx and cross-coupling channel xy. Here, the 
input channel x is given the step signal, while the input channel 
y is set to zero. The output error reduces to approximately zero 
in the steady-state, which satisfies the control specification of 
the SISO integral control. The cross-coupling effect on 
channel xy has a slight variation, which is around the scale of 
10-2 V when the input channel x has a unit step changed. In 
addition, Fig. 10 shows the closed-loop frequency response of 
diagonal channel xx and cross-coupling channel xy. 

Fig. 9. Step Response of SISO Integral Control. 

 
Fig. 10. Frequency Response of SISO Integral Control. 

4.2 MIMO Robust H-infinity Control with Loop Shaping 
Design 

The MIMO robust H-infinity control with loop shaping design 
follows the Glover-McFarlane method (McFarlane and 

Glover, 1992). Table 4 presents the control performance of the 
experimental result. It shows that the nanopositioning stage 
controlled by the designed robust H-infinity controller has a 
faster response and a higher closed-loop bandwidth compared 
with the SISO integral control. To be more specific, the closed-
loop bandwidths of channel x and y are 460 and 530 rad/sec, 
respectively, which is three to four times higher than the SISO 
integral control. Thus, the result meets the design objectives of 
reducing the system response time and improving the closed-
loop bandwidth. Nonetheless, the main drawback is the 
overshoot in the transient response, which is more significant 
than that in the SISO integral control.  

Channel Settling time 
(sec) 

Overshoot 
(%) 

Bandwidth 
(rad/sec) 

X 0.0416 10 460 
Y 0.0331 9 530 

Table 4. The Control Performance of MIMO Robust H-infinity 
Control with Loop Shaping Design. 

Fig. 11 shows the result of the simulated and experimental step 
responses. It is noted that the output signal tracks the reference 
signal with the same magnitude but in the opposite direction, 
as the robust H-infinity controller is implemented in the 
positive feedback structure. Furthermore, the experimental 
response has a more significant overshoot and a slightly longer 
settling time than the simulated response. The reason for the 
discrepancy between the simulation and experimental result 
may be the modelling mismatching and the neglected system 
nonlinearity problems. Also, the micro oscillation in the 
experimental response is affected by the noise and disturbance 
from the system itself and the environment. Besides, Fig. 11 
reveals the system cross-coupling effect and shows that the 
variation of the cross-coupling channel xy is around the scale 
of 10-3 V when input channel x has a step change. The 
magnitude of the cross-coupling effect is ten times smaller 
than the SISO integral control, as the whole multivariable 
position models were considered in the MIMO robust H-
infinity control design scheme. In addition, Fig. 12 shows the 
closed-loop frequency response of both diagonal channel xx 
and cross-coupling channel xy. 

Fig. 11. Step Response of MIMO Robust H-infinity Control 
with Loop Shaping Design. It is noted that the scale of y-axis 
is different from Fig. 9. 

0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (sec)

-0.5

0

0.5

1

1.5

Po
si

tio
n 

(V
)

Diagonal Channel xx

Simulation
Experiment
Reference

0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (sec)

-15

-10

-5

0

5

Po
si

tio
n 

(V
)

10-3 Cross-coupling Channel xy

Simulation
Experiment
Reference

101 102 103 104 105

Frequency (rad/sec)

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (d

B)

Diagonal Channel xx

Closed Loop
Open Loop

101 102 103 104 105

Frequency (rad/sec)

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (d

B)

Cross-coupling Channel xy

Closed Loop
Open Loop

0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (sec)

-1.5

-1

-0.5

0

0.5

1

Po
si

tio
n 

(V
)

Diagonal Channel xx

Simulation
Experiment
Reference

0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (sec)

-6

-4

-2

0

2

Po
si

tio
n 

(V
)

10-3 Cross-coupling Channel xy

Simulation
Experiment
Reference

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8703



 
Fig. 12. Frequency Response of MIMO Robust H-infinity 
Control with Loop Shaping Design. 

From the above system step and frequency responses, it is clear 
that the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt nanopositioning stage 
controlled by the MIMO robust H-infinity control with loop 
shaping design has a faster tracking response, a higher closed-
loop bandwidth and lower cross-coupling effect compared 
with the SISO integral control. Therefore, the design of the 
MIMO robust H-infinity control achieves the main objective. 
Moreover, the resulting system can track a faster reference 
signal and can be used in faster nanopositioning applications. 

5. CONCLUSIONS 

In the paper, we have studied the tip tilt nanopositioning stage 
and carried out the modelling and control design for the 
𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 tip tilt nanopositioning stage to achieve the 
desired tip tilt nanopositioning control. Accordingly, the 
conclusion can be divided into two parts: one concerned with 
the modelling, and the other with the control design. 

In terms of modelling, the discrete OE model structure with 
different orders and the data-driven system identification 
approach has been applied to establish the MIMO linear 
position model for the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀  tip tilt 
nanopositioning stage. Moreover, the analysis of nonlinear 
distortion level for position model following Godfrey’s 
method proves that the linear dynamics dominate most of the 
system dynamics below the first resonant frequency. It is, 
therefore, a reasonable assumption to use the linear model to 
approximate the practical nonlinear system. Additionally, the 
modelling validation by the non-parametric method shows that 
the best fit linear OE model from the MATLAB System 
Identification Toolbox captures most of the system dynamics 
in the operating range. 

In addition, a MIMO H-infinity control design method was 
developed and implemented for the 𝑁𝑃𝑆 − 𝜃𝛾 − 2𝑀 tip tilt 
nanopositioning stage. This was also compared with a 
benchmark integral only control design. Both controllers were 
tested in both the simulation and the experiment. The 
benchmark SISO integral control following Fleming’s design 
method has a relatively slower response, and the closed-loop 
bandwidth is around 2% of the first resonant frequency, as 
expected. By contrast the MIMO robust H-infinity control with 
loop shaping design has a faster response that is two to five 

times faster than the SISO integral control, and also a higher 
closed-loop bandwidth, which is 7% to 9% of the first resonant 
frequency. Moreover, the cross-coupling effect was reduced to 
ten times smaller than the SISO integral control, as the whole 
multivariable models were considered in the design scheme of 
the MIMO robust H-infinity control.  

Future research is feasible for studying the physical properties 
of the tip tilt nanopositioning stage and its nonlinearity. The 
MIMO force model can be introduced and built by system 
identification and the experiment can be strengthened by 
testing different reference trajectory such as sinusoidal or 
triangular signals. Furthermore, the other advanced control 
theories could be applied to improve control performance.  
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 Appendix A. Frequency Response of MIMO Position Model 

 

Appendix B. Discrete Transfer Function of MIMO Position Model 

𝐺44 =
−0.01615zR4 − 0.04643zR5

1 − 1.007zR4 − 0.3023zR5 + 1.078zRw − 0.3527zRx 

𝐺45 =
0.00616zR4 − 0.03272zR5 + 0.07203zRw − 0.08673zRx + 0.05777zRS − 0.01751zRU − 0.001315zRy + 0.001884zRz

1 − 3.889zR4 + 6.368zR5 − 4.251zRw − 1.469zRx + 5.052zRS − 4.012zRU + 1.481zRy − 0.1948zRz  

𝐺54 =
0.006383zR4 − 0.02373zR5 + 0.03607zRw − 0.01939zRx − 0.01492zRS + 0.03098zRU − 0.02048zRy + 0.005818zRz

1 − 2.624zR4 + 1.809zR5 + 2.466zRw − 4.836zRx + 2.156zRS + 1.536zRU − 1.655zRy + 0.6719zRz  

𝐺55 =
−0.01922zR4 − 0.05236zR5

1 − 0.9942zR4 − 0.3008zR5 + 0.968zRw − 0.2326zRx 
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