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Abstract: A model-based optimal gait is obtained for the 2-D locomotion of a modular
snake robot in a duct. Optimality is considered in the sense of traveling as fast as possible
or traveling with minimal energy consumption. The novelty of the work lies in the development
of a framework to cast the full dynamic behavior, including contact constraints with simple
objects, into an optimization problem which allows for gait parameter, control parameter
and/or physical parameter optimization. Optimal gait and control parameters are found via a
surrogate optimization procedure which reveals optimal locomotion strategies depending on the
duct width and optimization criteria. The framework is tested and illustrated with a number
of optimizations of 2-D locomotion of a snake robot where either traveling time or energy
consumption is minimized.
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1. INTRODUCTION

Learning from natural phenomena has been an inspiration
for engineers for decades. A fascinating field of research
includes biologically inspired robotics under which the
movement pattern of a snake robot may be categorized.
The inherent hyper redundancy of snake robots makes
them difficult to control, but results in enhanced mobility
with respect to conventional robots. Due to their small
cross-section, snake robots are ideal for locomotion in
confined spaces such as ducts. For several years, research
has been conducted on snake robots. The first reported
analytical studies are from Gray (1946). Several decades
later, Hirose (1946) built the first actual snake robot. In
the last decades, multiple modeling approaches have been
shown, as well as novel developments in snake robot mech-
anisms and their control Liljebäck et al. (2013). The term
‘obstacle-aided locomotion’, implying to propel via contact
with the environment, has been introduced by means of
a hybrid model in Transeth et al. (2008); Liljeback et al.
(2009). Purely based on kinematics, simulation of the loco-
motion in a pipe and its experimental validation have been
shown in Trebuňa et al. (2015, 2016); Virgala et al. (2018).
The work of Rollinson and Choset (2016) demonstrates
the use of snake robots in pipe networks. In Enner et al.
(2013), an estimation method for pipe crawling and pole
climbing is shown supported by experimental results.

This paper contributes in casting the 2-D locomotion
problem of a modular snake robot as a single optimization

problem in which gait parameters, control parameters and
physical parameters are simultaneously optimized. Here
optimal behavior will either mean travelling as far as
possible or with minimal energy consumption to traverse a
distance in a confined space. Control strategies for either of
these optimizations are proposed. This paper will focus on
a 2-D confined space, but extensions to 3-D are possible.

This paper is organised as follows. Section 2 discusses
the kinematics. The optimization problem is formulated
in Section 3 for different control objectives. The motion
dynamics and the contact model with surface friction as
well as the contact with the duct walls are derived in Sec-
tions 4 and 5, respectively. The simulation parameters and
optimization strategies are defined in Section 6. Optimal
gait trajectories and the influence of control parameters
will be examined for either of the cases where the aim
amounts to traveling as fast as possible or where the aim
amounts to minimizing energy consumption.

2. KINEMATICS

We consider a modular snake robot that consists of n links
as depicted in the schematic drawing shown in Fig. 1. It
is assumed that all linked elements have the same mass
m and inertia J . For simplicity, we assume that a link
is symmetric with length 2l, meaning that its center of
mass is located at a distance l from either end. The
vector in the global (x,y)-plane indicating the location
of the center of mass of link i ∈ {1, . . . , n} is given by
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Fig. 1. Schematic snake robot in the (x,y)-plane with n
links.

ri = [xi, yi]
>

. The vector pointing to the tail of the snake

robot is defined by rt = [xt, yt]
>

. The center of mass of the

snake robot is indicated by rp = [px, py]
>

. The absolute
angle and the torque applied to of each link are denoted
by θi and τi, respectively. The relative angle between
the links is φi = θi − θi+1, where i ∈ {1, . . . , n − 1}.
To write the kinematics of the snake robot in matrix
form, some vectors and matrices will be defined as follows.
The vectors of absolute and relative angles are defined as

θ := [θ1, . . . , θn]
>

and φ := [φ1, . . . , φn−1]
>

, respectively.

Let τ := [τ1, . . . , τn−1]
>

be the vector of all torques.
Trigonometric functions of vectors are defined entry-wise

as in sin (θ) := [sin (θ1) , . . . , sin (θn)]
>

. Restructuring
these into n×n diagonal matrices gives Sθ := diag (sin (θ))
and Cθ := diag (cos (θ)). The coordinates of all links are

stacked in x := [x1, . . . , xn]
>

and y := [y1, . . . , yn]
>

. To
represent these coordinates as a function of θ and the tail
coordinates rt, we define the n×n matrix G where Gij = l
if i = j, Gij = 2l if i > j and Gij = 0 if i < j. The
coordinates of the links in the global reference frame can
then be written as

x = ext +G cos (θ) (1a)

and

y = eyt +G sin (θ) , (1b)

where e = [1, . . . , 1]
>

is a vector of length n. Similarly,
their velocities are expressed as

ẋ = eẋt −GSθ θ̇ (2a)

and

ẏ = eẏt +GCθ θ̇. (2b)

The coordinates of the center of mass of the robot can be
inferred from rp = [px, py]> = 1

n [e>x, e>y]>. Similarly, its

velocity ṙp = 1
n [e>ẋ, e>ẏ]>. For the tail coordinates of the

robot we can rewrite these expressions as

xt = px −
1

n
e>G cos (θ) (3a)

and

yt = py −
1

n
e>G sin (θ) . (3b)

The linear velocity of the tail of the robot then satisfies

ẋt = ṗx +
1

n
e>GSθ θ̇ (4a)

and

ẏt = ṗy −
1

n
e>GCθ θ̇. (4b)

3. PROBLEM FORMULATION

It is desired to control the body shape of the snake robot
so as to optimize its locomotion in a well defined sense and
without any prior knowledge regarding the way the robot
interacts with its environment. In this paper, we restrict
ourselves to two relevant optimization criteria. The first
objective amounts to maximizing the traveled distance
in an a priori specified time window. We focus here
on 1-D movements in the x-direction, which means that
this objective is interpreted as maximizing the traveled
distance of the center of mass px of the entire snake robot
in a given time window T > 0. Hence, the objective is to

maximize
z

px(z, t = T )

subject to h (z) ≤ 0,
(5)

where z ∈ Z ⊆ Rnz denotes a vector representing
all design variables and h is a vector-valued function
representing all inequality constraints incurred by the
model and design constraints to be defined below.

The second objective amounts to minimizing energy con-
sumption during locomotion. Since autonomous snake
robots are usually operated by battery cells with limited
energy capacity, it is of evident interest to minimize energy
consumption. This objective is formalized by maximizing
the traveled distance per unit of consumed energy as

maximize
z

px(z, t = T )∫ T
0

∣∣∣φ̇>τ ∣∣∣dt
subject to h (z) ≤ 0

(6)

where the denominator of the cost function represents the
total supplied energy to the robot in the time interval
[0, T ].

4. DYNAMICS

The equations of motion for the modular snake robot are
derived using Lagrangian mechanics by setting(

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+
∂V

∂q

)>
= Q, (7)

where T equals the kinetic energy, V is the potential
energy and Q contains the non-conservative generalized
forces and moments. Here, q denotes the position vector
of generalized coordinates

q := [φ1, . . . , φn−1, θn, px, py]
>
. (8)

Thus, the first n − 1 variables denote the relative angles
among the links. The remaining three coordinates are the
absolute angle of the head θn and the coordinates of the
center of mass. Since θi =

∑n−1
m=i φm + θn, the vector of

absolute angles θ can be written as

θ = [H e 0n×2]︸ ︷︷ ︸
C

q, (9)

where the n× (n− 1) matrix Hij = 1 if i ≤ j and Hij = 0
if i > j. With the latter, (1) can be rewritten as function
of the generalized coordinates as

x = [0n×n e 0n×1]︸ ︷︷ ︸
Bx

q −
(
−G+

1

n
ee>G

)
︸ ︷︷ ︸

A

cos (Cq) (10a)
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and

y = [0n×n 0n×1 e]︸ ︷︷ ︸
By

q −
(
−G+

1

n
ee>G

)
︸ ︷︷ ︸

A

sin (Cq), (10b)

where the matrices A, Bx, By, and C are real valued. In a
similar fashion, (2) can be rewritten as

ẋ = Bxq̇ +ASθCq̇ (11a)

and
ẏ = By q̇ −ACθCq̇. (11b)

The total kinetic energy is the sum of the translational
energy and the rotational energy of each link. This means
that the kinetic energy

T (q, q̇) =
1

2
mẋ>ẋ+

1

2
mẏ>ẏ +

1

2
Jθ̇>θ̇. (12)

In the case of planar locomotion, there is no component
that contributes to the potential energy, hence we set
V = 0. Now that expressions are determined for T and V ,
the left hand side of (7) is established. Explicit expressions
for the derivatives with respect to q and q̇ are described
in Koopaee et al. (2019). The sum of all non-conservative
generalized forces and moments acting on the robot define
the right hand side of (7) and can be written as

Q =

nF∑
j=1

(
∂rj
∂q

)>
Fj +

nM∑
k=1

(
∂Θk

∂q

)>
Mk. (13)

Here, nF and nM denote the number of non-conservative
forces and non-conservative moments, respectively. The
generalized non-conservative force vector j is denoted by
Fj and the generalized non-conservative moment k is
denoted by Mk. The absolute position vector of the jth

force is denoted by rj and the absolute rotation vector of
the kth moment is denoted by Θk. The non-conservative
generalized force vector is split in three components as

Q = Qact +Qsur +Qenv, (14)

where Qact represents the actuator torques, Qsur repre-
sents the frictional surface forces and Qenv contains the
forces exerted by the environment. The distribution of the
applied torques over the various joints is encoded in matrix
D so that

Qact = Dτ, (15)

where D =
[
I(n−1) 0(n−1)×3

]>
in which I(n−1) is an

identity matrix of size n− 1 and 0(n−1)×3 is a zero matrix
of size (n− 1)× 3.

5. CONTACT MODEL

This section is devoted to discussing surface friction and
forces exerted by the environment. It is shown how to
incorporate these in Qsur and Qenv.

5.1 Surface Friction

If the snake is moving in the horizontal plane, there is a cer-
tain surface friction. This surface friction is incorporated
in the model by applying the frictional force at the center
of mass of each link as depicted in Fig. 2. A Coulomb type
of friction, acting on link i, is incorporated as[

FCou
tan,i

FCou
nor,i

]
= −mg

[
µtan 0

0 µnor

]
sign

([
vtan,i
vnor,i

])
, (16)

x

y

Fig. 2. Rotation from the local link coordinate system to
the global coordinate system.

where g is the gravitational constant and µtan and µnor

denote the friction coefficient in tangential and normal
direction, respectively. The tangential and normal velocity
of link i are written as vtan,i and vnor,i. Similarly, a viscous
component is added as[

F vis
tan,i

F vis
nor,i

]
= −

[
νtan 0

0 νnor

] [
vtan,i
vnor,i

]
, (17)

where νtan and νnor are the viscous friction coefficients.
Note that the frictional forces are always acting in opposite
direction with respect to the local direction of motion. To
transform the local forces to the global coordinate frame, a
coordinate transformation is applied via a rotation matrix
R. In the global coordinate frame, the frictional forces are
obtained from a counter-clockwise rotation matrix

Ri :=

[
cos (θi) − sin (θi)
sin (θi) cos (θi)

]
by setting [

Fx,i
Fy,i

]
= Ri

[
Ftan,i

Fnor,i

]
. (18)

Here, Ftan,i = FCou
tan,i + F vis

tan,i and Fnor,i = FCou
nor,i + F vis

nor,i.
To incorporate these forces in (13) (and hence in (7)),
the forces in x and y-direction will be stacked as Fx :=

[Fx,1, . . . , Fx,n]
>

and Fy := [Fy,1, . . . , Fy,n]
>

. The surface
friction is then defined as

Qsur =
[
(Bx +ASθC)

>
(By −ACθC)

>] [Fx
Fy

]
. (19)

5.2 Environment Model

A snake robot is able to exploit contact with the environ-
ment to its advantage. An example of this is where the
snake robot is in contact with a wall when moving in a
duct. In the model of the snake robot, we assume that
the head, the tail and the joints are allowed to exchange
forces via contact with the environment. To model this,
it is necessary to identify the coordinates that make di-
rect contact. Similar expressions to (10) and (11) can be
derived. For any coordinate that makes contact with an
environmental constraint, a penalizing normal force will
be exerted at this position coordinate according to

Fnor =

{
max (kw − dvnor, 0) if w > 0

0 if w ≤ 0,
(20)

where w is the distance that the head, tail or joint exceeds
the environmental boundary and where vnor denotes the
local normal velocity, directed perpendicular to the bound-
ary. The max operator is used to prevent the environment
pulling on the robot. Only a normal force is desired.
The parameters k and d are positive real numbers that
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x

y nor

tan

Fig. 3. Environmental model represented as a spring-
damper system.

represent the elasticity and damping of the environment.
Notice that one can interpret this force as a spring-damper
system that becomes active only when the robot makes
contact with the boundary and where only a positive force
can be exerted. This is schematically represented in Fig. 3.
Similar to the modeling of the surface friction, there is also
a tangential force at contact locations which is modeled as

Ftan = −Fnorµosign (vtan)− νovtan, (21)

where µo and νo are the Coulomb and viscous friction
coefficients of the wall. Here, vtan is the local tangential
velocity. In case of a duct, suppose that its wall is oriented
at an angle γ. In the global reference frame, the normal
and tangential force are represented by[

Fx
Fy

]
= Rγ

[
Ftan

Fnor

]
, (22)

where

Rγ :=

[
cos (γ) − sin (γ)
sin (γ) cos (γ)

]
.

The force vectors F̄x := [Fx,t, F
joint
x,1 , . . . , F joint

x,n−1, Fx,h]>

and F̄y := [Fy,t, F
joint
y,1 , . . . , F joint

y,n−1, Fy,h]>. The environ-
mental forces are then incorporated in Qenv as

Qenv =
[(
B̄x + ĀSθC

)> (
B̄y − ĀCθC

)>] [F̄x
F̄y

]
. (23)

This completes the specific modeling of all terms in (14).

6. CONTROL STRATEGY AND OPTIMIZATION

The torque vector τ is used to control the movements and
body shape of the snake robot. The equations of motion,
obtained from (7), are structured such that the actuated
dynamics are separated from the unactuated dynamics as[
M11 M12

M21 M22

]
︸ ︷︷ ︸

M(q)

[
q̈a
q̈u

]
+

[
N1

N2

]
︸ ︷︷ ︸
N(q,q̇)

=

[
τ

03×1

]
︸ ︷︷ ︸
Dτ

+

[
Qsur

1
Qsur

2

]
+

[
Qenv

1
Qenv

2

]
, (24)

where M(q) is the inertia matrix and N(q, q̇) accounts
for the centrifugal and Coriolis terms. The general-
ized coordinates are partitioned into an actuated part,
qa := [φ1, . . . , φn−1]>, and an unactuated part qu :=
[θn, px, py]>. Due to the structure of D, the actuated dy-
namics are directly controlled by the joint torques τi. The
unactuated coordinates represent position and orientation
of the snake robot in the global coordinate system.

An arbitrary 2-D duct is modeled by two walls at heights
y = ymin and y = ymax with orientations defined by angles
γmin = 0◦ and γmax = 180◦, resp. (enabling a proper
orientation of the exerted forces). In this study, a snake
robot consisting of n = 10 links will be considered. Each

link is considered to be a slender rod and has an inertia
of J = 1/12ml2 around its center of mass. The other
parameters are given in Table 1. Note that a relatively
high stiffness k is required since the walls are assumed to be
close to rigid. The surface friction parameters are chosen
to be equal in tangential and normal direction such that
the robot has to use the environment in order to propel.

Table 1. Simulation Parameters

Parameter Unit Value Parameter Unit Value
l m 0.1 k N/m 500
m kg 0.1 d Ns/m 25
µt, µn - 1 µ0 - 1
νt, νn Ns/m 1 ν0 Ns/m 1

The torque control vector τ is determined on the basis of a
partial feedback linearized input as in Spong (1994), where
the transformation

τ =
(
M11 −M12M

−1
22 M21

)
τ̄ +N1 −Qsur

1 −M12M
−1
22 (N2 −Qsur

2 ) (25)

results in the dynamics

q̈a = τ̄ +
(
M11 −M12M

−1
22 M21

)−1 (
Qenv

1 −M12M
−1
22 Q

env
2

)
q̈u = f (M (q) , N (q) , Qsur, Qenv, τ̄) ,

(26)

in which τ̄ is the new control input and f represents
the (non-linear) vector field of the unactuated dynam-
ics. Hence, the influence of contact with environmental
constraints is not linearized in this model because these
influences are assumed unknown or unmeasurable.

The applied torque input in joint i is assumed to be of the
standard proportional-derivative control form

τ̄i = φ̈refi + kd

(
φ̇refi − φ̇i

)
+ kp

(
φrefi − φi

)
(27)

with control parameters kd and kp independent of i. For
kd > 0 and kp > 0 the undisturbed system (without
contact with the environment), gives exponentially stable
joint dynamics, as shown in Liljebäck et al. (2013); Khalil
(2002), since without contact q̈a = τ̄ . The reference signal
that will be used will be confined to signals of the type

φrefi (t) = a sin (ωt− (i− 1)δ) , (28)

where a denotes the amplitude of the joint angle, ω is
the angular frequency and δ is the phase shift among
the joints. That is, we aim to track a sinusoidal reference
signal at frequency ω, amplitude a and a joint-dependent
phase. With the described dynamical model, the control
strategy and the body shape reference, one can simulate
the locomotion in a duct.

Apart from the inequality constraints on the controller
parameters, we also add two termination criteria to the
simulation. We do not want the snake to push too hard
against the wall. In such case, the simulation will be
terminated prematurely and the objective function (5) or
(6) will return zero. This termination occurs when the
amplitude ‖F̄y(t)‖∞ > Fmax. Similarly, a simulation will
be terminated if ‖θ(t)‖∞ > θmax. The latter criterion is
used to prevent the possibility of links to get jammed.
Throughout this study, we set Fmax = 25 N and θmax = π.
The time window is taken by setting T = 20 s.

The evaluation of the cost functions (5) and (6) requires a
dynamical model simulation over a time window of length
T . With n = 10 and T = 20 s this simulation takes around
10 seconds and is computationally expensive. Therefore,
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a surrogate optimization routine is used to find the op-
timum. This surrogate optimization routine is proven to
converge to a global solution in Gutmann (2001) and is a
feasible trade-off between the speed of the algorithm and
the exploration in the design parameter space. The sur-
rogate optimization is constructed by interpolating cubic
radial basis functions with a linear tail through objective
function evaluations.

6.1 Optimization in (a, δ)-space

First, both optimizations (5) and (6) will be performed,
where the design variables are stacked in z := [a, δ]> ∈ Z,
where Z := ([0, 3]× [0, π]). These bounds on the gait
parameters are incorporated in the constraint function
h(z). For now, the angular frequency is kept constant at
ω = 2/5π rad. That is, the controller (27) is assumed
to be fixed with kp = 100 and kd = 25. A T = 20 s
simulation will be performed for each pair (a, δ). First, a
wide duct is used with ymin = −0.125 m and ymax = 0.125
m. The objective function evaluations are shown in Fig. 4
and Fig. 5 for both objective functions. The optimal
solution (a∗, δ∗) solving (5) is (1.986, 1.456) rad and is
used to simulate the trajectory of the robot snake over
time. Snapshots of this simulation are depicted in Fig. 6.
Similarly, snapshots of the optimal solution solving (6)
are shown. In this case, the optimal solution (a∗, δ∗) =
(1.022, 1.238) rad. One can conclude that the body shape
to propel as fast as possible resembles a transverse wave.
This type of body shape pushes its joints against the wall.
This force induces a significant error in terms of joint angle,
hence resulting in significant control energy. The energy
efficient behavior is similar, but makes little contact with
the wall which is just enough in order to propel, therefore
requiring less control effort.

Fig. 4. Distance objective function for a wide duct.

Fig. 5. Energy objective function for a wide duct.

A similar gait optimization is performed in a narrower
duct, where ymin = −0.075 m and ymax = 0.075 m. In this
case, the optimal solutions (a∗, δ∗) of (5) and (6) are given
by (2.625, 2.944) rad and (1.891, 2.712) rad respectively.
The locomotion, using the optimal solutions are shown
in Figure 7. The optimal gait is significantly different
in this narrow duct. It can be concluded that the robot
propels faster. The robot clamps itself down on the tail
end by pushing against the wall, after which it extends.
Subsequently, the robot clamps its head down and and
retracts, showing resemblance to a longitudinal wave.

6.2 Optimization in (kp, kd)-space

To investigate the influence of the control gains another
optimization will be performed. Now, the gait parameters
are fixed to a = 1 rad, δ = 1 rad and ω = 2/5π rad.
Note that this will yield a body shape reference in the
form of a traveling wave, close to what is shown in Fig.
6. We will optimize the criteria (5) and (6) over the
controller gains [kp, kd]

> =: z that are assumed to reside
in Z := ([0, 1000]× [0, 1000]). We will confine ourselves
to the case of the wide duct where ymin = −0.125 m and
ymax = 0.125 m. The objective function evaluations are

Fig. 6. Snapshots of a robot with 10 links in a wide duct.

Fig. 7. Snapshots of a robot with 10 links in a narrow duct.
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Fig. 8. Distance objective function for varying control
gains.

Fig. 9. Energy objective function for varying control gains.

shown in Fig. 8 and Fig. 9. It can be concluded, that
a high value of kd will yield a solution that pushes too
hard against the wall. Regarding the achieved distance, the
influence of kp and kd is limited as long as there is contact
with the wall. However, in terms of energy efficiency, a low
control gain will perform significantly better.

6.3 Optimization in (a, δ, ω, kd, kp)-space

Finally, we will examine the influence of all aforementioned
decision variables in the optimization problems (5) and (6).
The decision variables are taken as z := [a, δ, ω, kp, kd]

> ∈
Z, where Z := ([0, 3]×[0, π]×[0, 2π]× [0, 1000]×[0, 1000]).
Again, we will confine ourselves to the case of the wide
duct where ymin = −0.125 m and ymax = 0.125 m. The
optimal solutions (a∗, δ∗, ω∗, k∗p, k

∗
d) of (5) and (6) are

given by (1.426 rad, 1.319 rad, 6.162 rad, 935.321, 280.313)
and (1.237 rad, 0.940 rad, 0.171 rad, 330.079, 391.064) re-
spectively. Both criteria show that there is a corresponding
optimal combination of amplitude a and phase shift δ. To
maximize traveled distance, a high ω and kp is desired. To
be energy efficient, a low ω is desired to have less viscous
friction and to reduce the control error.

7. CONCLUSION AND FUTURE WORK

In this paper, a modeling framework is presented to opti-
mize the 2-D locomotion of a modular snake robot where
the spring-damper contact model enables to model dif-
ferent environments such as a duct. The surrogate op-
timization routine shows how the model could be used
for optimization based on a velocity or energy efficiency
criterion. It shows that for locomotion in a duct, optimal
gaits are significantly different depending on the duct
width and the objective. An energy effient locomotion
requires a low angular frequency and low control gains. A
fast locomotion is obtained with a high angular frequency

and higher control gains. The modeling strategy that is
developed here is generic and scalable and can be easily ex-
tended to include gravitational effects. Although we have
considered locomotion in ducts in the paper, the environ-
mental model is completely flexible and independent from
the kinematics. Also physical parameters such as the link
length may be optimized for a specific task. In Koopaee
et al. (2019), rectilinear locomotion over an obstacle will
be demonstrated using an adaptive control strategy. In
Koopaee et al. (2020), the model will be extended to
incorporate the influence of series elastic actuators. Its
effect on the locomotion over obstacles will be discussed
and is supported by experimental validation.
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