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Abstract:
This paper presents a proof of Routh’s theorem for polynomials with real coefficients, determin-
ing the number of roots in the right half plane (RHP). The proof exploits the relationship of the
Routh array to the Euclidean algorithm and applies Cauchy’s theorem in an analogous way to
that of applying the Nyquist criterion to investigate the stability of a control system. While a
number of papers have been published over the years with different proofs of Routh’s stability
criterion or Routh’s theorem, the aim in this paper is to present a proof that may offer most
insight to undergraduate students of engineering. Routh’s theorem and his array are introduced
without any proof in most undergraduate texts on control theory, whereas the Nyquist criterion
is typically treated quite extensively in such texts. As well as presenting a proof for the regular
case when all the coefficients in the first column of the Routh array are non-zero, analogous
proofs are given for the singular cases when some of the leading coefficients in a row, or the
coefficients of the entire row, become zero. In the first case, these result in a statement on the
number of roots in the RHP, more explicit than those typically presented in papers on Routh’s
theorem. In the second case, the only case where there may be roots on the imaginary axis,
use is made of the modified array introduced by Routh, often referred to as the Q-method, to
determine the number of such roots, differentiating between simple and multiple roots. One can
thus distinguish between exponential stability, marginal stability and polynomial instability,
when there are no roots in the RHP, with these results.

Keywords: Education, Routh’s theorem, Nyquist’s criterion, stability criteria, polynomials,
roots.

1. INTRODUCTION

Routh’s original proof of his theorem on how to determine
the number of roots of a polynomial in the RHP from
the first column in the Routh array is based on results on
Cauchy indices and Sturm sequences, see Routh (1877),
Gantmacher (1959) and Barnett et al. (1977). Wall (1945)
proved Routh’s theorem by applying analytic theory of
continued fractions and Parks (1962) gave a direct alge-
braic proof of Routh’s stability criterion using the second
method of Lyapunov, stating that all the roots are in
the left half plane (LHP), if there are no sign changes
in the first column of the Routh array. Fairly recently, a
number of different proofs of Routh’s theorem or stability
criterion have been published that do not depend on these
results and have thus been characterized as "elementary"
or "simple," see, e.g., Lepschy et al. (1988), Chapellat et. al
(1990), Anagnost et al. (1991), Meinsma (1995), Ho et al.
(1998), Ferrante et al. (1999) and Matsumoto (2001).

This paper presents yet another proof of Routh’s theorem
for polynomials with real coefficients assumed to have no
zero roots, aimed at undergraduate students of engineering
and could, e.g., be presented to them as auxiliary material.
The paper is organized as follows. We introduce a novel
? This work has been supported by the University of Iceland.

notation for the Routh array in the next section, thus
making the proofs more transparent. We then relate the
polynomial form of the array to the Euclidean algorithm
for finding the greatest common divisor of the even and
odd part of the polynomial. From this array, we define the
sequence of polynomials, obtained as the sum of every two
consecutive rows in the array. This sequence lies at the
heart of our proofs as well as most of the more recently
published proofs of Routh’s theorem. We present the proof
for the regular case when all the coefficients in the first
column of the Routh array are nonzero in Section 3. We
use an analogous approach to the singular case when some
of the leading coefficients in a row of the Routh array are
zero in Section 4, obtaining an explicit statement on the
number of roots in the RHP. Finally, the case when all
the coefficients in a row of the Routh array become zero,
resulting from the even and odd part of the polynomial
having a common divisor, is treated in Section 5. This
is the only case when the polynomial may have roots on
the imaginary axis and we explicitly find their number
and the number of such multiple roots. We conclude with
observations on stability relevant to control systems in
Section 6.
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2. COMPUTATION OF THE ROUTH ARRAY

Consider the real polynomial
a(s) = an(s) = ans

n + an−1s
n−1 + · · ·+ a1s+ a0, (1)

where a(s) has no roots at s = 0, i.e., a0 6= 0. If we start
with a polynomial ã(s) = sj

(
ans

n + an−1s
n−1 + · · ·+ a0

)
=

sja(s), we know this polynomial has a root at s = 0 with
multiplicity j and can thus restrict our attention to the
polynomial a(s).

We now introduce the notation
ai(s) = ai,is

i + ai−1,i−1s
i−1

+ai,i−2s
i−2 + ai−1,i−3s

i−3+→,
i = n, n− 1, . . . , 0

(2)

where the former index of the coefficients denotes the row
in which the coefficient will appear in the Routh array and
the second index denotes the corresponding power in s.
The classical Routh array, see any classical text on control
systems, e.g., Dorf et al. (2017) and Ogata (2009), is then
given by this coefficient array, valid for odd and even n by
the use of the right hand arrows:

sn an,n an,n−2 →
sn−1 an−1,n−1 an−1,n−3 →
sn−2 an−2,n−2 an−2,n−4 →
...
si+1 ai+1,i+1 ai+1,i−1 →
si ai,i ai,i−2 →
si−1 ai−1,i−1 ai−1,i−3 →
...
s2 a2,2 a2,0
s1 a1,1
s0 a0,0

(3)

This novel notational representation of the Routh array,
efficiently indicates the exact location of each coeffcient in
the Routh array and makes the subsequent proofs more
transparent. Here, the well known formula shown in our
notation

ai−1,· = −
1

ai,i

∣∣∣∣ ai+1,i+1 ai+1,·
ai,i ai,·−1

∣∣∣∣ (4)

is used to compute rows n−2, n−3, . . . , 1, 0, starting with
rows n and n− 1 for sn and sn−1.

Now returning to polynomial (2), we may split it into a
higher order part and a lower order part and write it in
the form

ai(s) = ai,h(s) + ai,l(s), i = n, n− 1, . . . , 1
a0(s) = a0,h(s)

(5)

where
ai,h(s) = ai,is

i + ai,i−2s
i−2+→

=

bi/2]∑
k=0

ai,i−2ks
i−2k (6)

denotes the higher order polynomial even or odd and
ai,l(s) = ai−1,i−1s

i−1 + ai−1,i−3s
i−3+→

= ai−1,h(s)
(7)

denotes the lower order polynomial odd or even. These
two polynomials correspond to two consecutive rows in
the Routh array (3), the coefficients of ai,h(s) being those
of the row for si, i.e., the Routh array may be written as
the following polynomial table:
an,h(s)=an,ns

n + an,n−2s
n−2+→

an−1,h(s)=an,l(s)=an−1,n−1s
n−1 + an−1,n−3s

n−3+→
an−2,h(s)=an−1,l(s)=an−2,n−2s

n−2+an−2,n−4s
n−4+→

...
ai+1,h(s) = ai+2,l(s) =ai+1,i+1s

i+1 + ai+1,i−1s
i−1+→

ai,h(s) = ai+1,l(s) =ai,is
i + ai,i−2s

i−2+→
ai−1,h(s) = ai,l(s) =ai−1,i−1s

i−1 + ai−1,i−3s
i−3+→

...
a2,h(s) = a3,l(s) =a2,2s

2 + a2,0s
0

a1,h(s) = a2,l(s) =a1,1s
1

a0,h(s) = a1,l(s) =a0,0s
0.

(8)

As noted by Routh (1877), this sequence of polynomials
corresponds to applying the Euclidean algorithm to an,h(s)
and an−1,h(s) in order to find their greatest common
polynomial divisor, i.e.,

ai−1,h(s) = ai+1,h(s)−
ai+1,i+1

ai,i
sai,h(s),

i = n− 1, n− 2, . . . , 1.
(9)

Here, ai,h(s) is the divisor, ai+1,h(s) the dividend,
ai+1,i+1

ai,i
s

the quotient and ai−1,h(s) is the remainder. If the remain-
der ai−1,h(s) becomes the zero polynomial, ai,h(s) is the
greatest common divisor.

We refer to the case when ai,i 6= 0, i = n− 1, n− 2, . . . , 0
as the regular case. We refer to the case when a leading
coefficient ai,i becomes zero for some i < n, but some other
coefficients of the same row remain nonzero, as the first
singular case. Finally, we refer to the case when all the
coefficients ai,· of some row become zero as the second
singular case. The procedure based on equation (9) has
to be modified and treated separately in both the singular
cases.

The polynomial sequence (5), introduced in different ways,
lies directly or indirectly at the heart of most of the fairly
recently published proofs of Routh’s theorem. In our proof
below, we also focus on this sequence viewed as the sum
of every two consecutive rows in (8) by relating it to (9).
It follows from (5) and (7) by adding ai,h(s) to both sides
of (9), that

ai(s) = ai+1(s)−
ai+1,i+1

ai,i
sai,h(s),

i = n− 1, n− 2, . . . , 0,
(10)

where the divisor and the quotient remain the same as in
(9). This is an approach, very similar to that of Ferrante
et al. (1999).

The main part of these proofs is then to establish a
relation between the root distribution of ai(s) to that of
ai+1(s), i = n − 1, n − 2, . . . , 0. Here, a wide variety
of arguments is applied, such as making use of the root
locus technique on additive polynomial decompositions in
Lepschy et al. (1988), the boundary crossing theorem in
Chapellat et. al (1990), geometric considerations of phase
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changes in Anagnost et al. (1991), the Hermite-Biehler
theorem in Ho et al. (1998), continuity arguments in
Meinsma (1995) and Ferrante et al. (1999), and Cauchy’s
theorem in Matsumoto (2001).

Our approach, guided by the aim of presenting a proof that
may be most meaningful to undergraduate students of en-
gineering, is to apply Cauchy’s theorem to the polynomial
ratio ai+1(s)

ai(s)
in an analogous way to that of applying the

Nyquist criterion to investigate the stability of a control
system. A proof based on the same idea as the Nyquist
criterion both serves the purpose of throwing some light
on the Routh array, as well as providing an interesting
application of this type of argument. Furthermore, as we
show, such a proof can be extended in a natural way to
the singular cases, resulting in an explicit statement of the
number of roots in the RHP for the first singular case. This
is without resorting to the ε-argument initially introduced
by Routh (1877) as is most commonly done in textbooks,
see e.g., Dorf et al. (2017) and Ogata (2009), as well as
recently published proofs of Routh’s theorem. A notable
exception is Ferrante et al. (1999), but the direct results on
the first singular case are not as explicit as those presented
below. The same applies to a direct procedure deduced
by Pal et al. (1992) from a more general approach based
on Bezoutians, as well as direct procedures proposed by
Yeung (1983) and Benidir et al. (1990). We finally note,
that while the proof in Matsumoto (2001) is also based on
Cauchy’s theorem, it does that in a different way, namely
without a reference to the Euclidean algorithm and the
singular cases are not considered.

3. ROUTH’S THEOREM – REGULAR CASE

Definition: Let v(a0, a1, . . . , an) denote the number of
sign changes in the sequence within the brackets.

Routh’s theorem: The total number of roots of poly-
nomial (1) in the RHP, is equal to the number of
sign changes in the coefficients of the first column
of the Routh array (3), i.e.,

v(a0,0, a1,1, . . . , an,n) (11)

assuming that none of these coefficients are zero.
Further, there are no roots on the imaginary axis.

Proof: It follows from (10) that
ai+1(s)

ai(s)
= 1 + Fi(s), (12)

where

Fi(s) =

ai+1,i+1

ai,i
sai,h(s)

ai(s)
=

ai+1,i+1

ai,i
s

1 +
ai,l(s)
ai,h(s)

. (13)

Applying Cauchy’s theorem to (12) we have
Ri+1 −Ri = Ni+1, (14)

where Ri+1 is the number of roots in the RHP of ai+1(s),
Ri is the number of roots in the RHP of ai(s), and
Ni+1 is the number of encirclements of the contour of
ai+1(s)
ai(s)

around the origin as we trace the Nyquist contour

clockwise. Equivalently, we can determine the number of
encirclements of the contour of Fi(s) around −1.
Divide the Nyquist contour into three parts:

• A: 0 ≤ jω < jR, i.e., the positive frequencies, starting
at the origin and proceeding along the imaginary axis
to jR,
• B: |s| = R, then clockwise along the semi circle in the

RHP,
• C: −jR < jω < 0, and finally back along the

imaginary axis from −jR to the origin.

We then consider the parts A, B and C separately as
R → ∞, but for Cauchy’s theorem to hold, we must first
establish that ai(s), 0 ≤ i ≤ n, has no roots on A or
C. Here, we firstly note that since we have assumed that
an(0) 6= 0, it follows from (10) that ai(0) 6= 0, i = n −
1, n− 2, . . . , 0. Secondly, assume that ai(jω) = 0 for some
0 ≤ i ≤ n, ω 6= 0. Then, since the even part of ai(jω) in
(5) will be real and the odd part of ai(jω) will be purely
imaginary, it follows that ai,h(jω) = 0 and ai,l(jω) = 0,
i.e.,

(
s2 + ω2

)
is a common factor of two consecutive

polynomial rows in (8). Hence by the Euclidean algorithm,
a zero polynomial row must appear further down in the
array. But this is the second singular case rather than the
regular case, that is under consideration here, so that jω
cannot be a root of ai(s).

On A and C, s = jω and since one of the polynomials
ai,l(s) and ai,h(s) is even and the other is odd

ai,l(s)

ai,h(s)

∣∣∣∣
s=jω

= α(jω) = jα̂(ω) (15)

for some real valued function α̂(ω). Thus

Fi(jω) =

ai+1,i+1

ai,i
jω

1 + jα̂(ω)
=

(α̂(ω) + j)
ai+1,i+1

ai,i
ω

1 + α̂2(ω)
. (16)

Note here, as s traces A, Fi(s) remains in the upper half
of the complex plane if ai+1,i+1

ai,i
> 0 and for ai+1,i+1

ai,i
< 0,

it remains in the lower half of the complex plane, except
it may touch the origin if ai,h(jω) = 0 for some ω 6= 0. As
s traces C, we have the mirror image of s tracing A.

On B we have

lim
s→∞

Fi(s) = lim
s→∞

ai+1,i+1

ai,i

sai,h(s)

ai(s)
≈ ai+1,i+1

ai,i
s (17)

Therefore, if ai+1,i+1

ai,i
> 0 corresponding to no sign change

between ai,i and ai+1,i+1, the contour of Fi(s) remains in
the upper half plane as s traces A, it effectively follows B
as s traces B and it remains in the lower half plane as s
traces C. Thus it cannot encircle −1 and hence Ri+1 = Ri.

On the other hand, if ai+1,i+1

ai,i
< 0 corresponding to a

sign change between ai,i and ai+1,i+1, Fi(s) remains in
the lower half plane as s traces A, it effectively follows
−B as s traces B and it remains in the upper half plane
as s traces C. Thus, it crosses the real half-line from −1
to −∞ exactly once and hence encircles −1 exactly once,
thus Ri+1 = Ri + 1.

Finally, since R0 = 0, it follows that Rn, i.e., the number
of roots of the polynomial (1) in the RHP, is the number
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of sign changes in the first column of the Routh array (3).
q.e.d.

Example 1: Consider the polynomial
a(s) = s4 − 2s3 − 13s2 + 14s+ 24
= (s+ 1)(s− 2)(s+ 3)(s− 4).

(18)

The Routh array becomes
s4 1 −13 24
s3 −2 14
s2 −6 24
s1 6
s0 24

(19)

with two sign changes in the first column. Thus R4 = 2,
by the statement of Routh’s theorem. Further,

F3(s) =
1

−2
s
(
−2s3 + 14s

)
a3(s)

a3(s) = −2s3 − 6s2 + 14s+ 24
= −2(s+ 4)(s− 2.3028)(s+ 1.3028),

 (20)

F2(s) =
−2
−6

s
(
−6s2 + 24

)
a2(s)

a2(s) = −6s2 + 6s+ 24
= −6(s− 2.5616)(s+ 1.5616),

 (21)

F1(s) =
−6
6

s (6s)

a1(s)
, a1(s) = 6s+ 24 = 6(s+ 4), (22)

F0(s) =
6

24

s (24)

a0(s)
, a0(s) = 24. (23)

We show the contours of Fi(s), i = 3, 2, 1, 0 in Fig. 1 as s
traces the Nyquist contour clockwise. We set R = ωmax =
5 in the Nyquist contour so as to be able to show the
full contours of Fi(s). This R-value is sufficiently large
for the Nyquist contour to enclose all the roots of a(s)
in the RHP, for this example. The contours of F1(s) and
F3(s) first enter the lower half plane and encircle −1 once,
thus N2 = N4 = 1. The contours F0(s) and F2(s) enter
first the upper half plane and do not encircle −1, thus
N1 = N3 = 0. In summary,

R3 = R4 −N4 = 1; R2 = R3 −N3 = 1
R1 = R2 −N2 = 0; R0 = R1 −N1 = 0.

(24)

4. THE FIRST SINGULAR CASE

Now consider the first singular case, when some of the
leading coefficients aj,j , in row j of the Routh array are
zero, but not all the coefficients in that row are zero. Thus,
assume that the first nonzero element of row j is aj,j−2k
for some k ≥ 1, so that the corresponding polynomial is of
degree j − 2k, rather than j. We are in fact applying the
Euclidean algorithm as before, the only difference being
that when we divide aj+2,h(s) by aj+1,h(s), the remainder
polynomial is of degree j−2k rather than j, and hence we
denote it by aj−2k,h(s). Then we have

aj−2k,h(s) = aj+1,l(s) (25)

and instead of (9) we have for i = j that
aj−2k−1,h(s) = aj+1,h(s)− β(s)saj−2k,h(s) (26)

where β(s) is an even polynomial of order 2k.

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

F
2
(s):  > 0

F
0
(s):  > 0

F
3
(s):  > 0

F
1
(s):  > 0

Fig. 1. Example 1. Nyquist plots of Fi(s), i = 3, 2, 1, 0,
R = 5.

Thus, the rows in the Routh array corresponding to
si, i = j, j − 1, . . . , j − 2k + 1 are simply missing
and we proceed from the coefficients of aj−2k,h(s) and
aj−2k−1,h(s) as in the regular case. Denoting the inter-
mediate remainder polynomials of the division with âj(s)
where

âj+1(s) = aj+1,h(s)

âi−1(s) = âi+1(s)−
âi+1,i+1

aj−2k,j−2k
saj−2k,h(s),

i = j, j − 2, . . . , j − 2k
aj−2k−1,h(s) = âj−2k−1(s),

(27)

we have

β(s) =
1

aj−2k,j−2k

(
k−1∑
i=0

âj−2k+1+2i,j−2k+1+2is
2i

+ aj+1,j+1s
2k
)
.

(28)

We have a corresponding jump from aj+1(s) to aj−2k(s)
and it follows from (5) and by adding aj−2k,h(s) to both
sides of (26) that

aj−2k(s) = aj+1(s)− β(s)saj−2k,h(s), (29)

here aj−2k,h(s) is the divisor, aj+1(s) is the dividend, β(s)s
is the quotient and aj−2k(s) is the remainder. Equation
(10) still holds for i = n, n− 1, . . . , j + 1 and i = j − 2k −
1, j − 2k − 2, . . . , 0.

The division (26) can be carried out in a "Routh-like
way" in k + 1 steps as follows:

• The coefficients in row sj are shifted to the left so
that the first non-zero coefficient aj,j−2k becomes the
leading coefficient in the first column and we have k
new trailing zeros. We then compute the coefficients
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in row sj−1 in a "Routh-like way" from rows sj and
sj+1. These will be the coefficients of âj−1(s).
• For i = j−2, j−4, . . . ., j−2k, we copy the coefficients
of the shifted row sj into row si, dropping one trailing
zero at each step, and then compute the coefficients
in row si−1, in a "Routh-like way" from rows si and
si+1. These will be the coefficients of âi−1(s).

After reaching in this way row sj−2k−1, we compute rows
sj−2k−i, i = 2, 3, . . . , j − 2k as in the regular case, where
for the sake of simplicity of presentation, we assume that
leading zero coefficients only occur in a single row in the
array.

Thus, the Routh array (3) becomes
sn an,n an,n−2 →

sn−1 an−1,n−1 an−1,n−3 →
...

sj+2 aj+2,j+2 aj+2,j →
sj+1 aj+1,j+1 aj+1,j−1 →
sj [aj,j−2k aj,j−2k−2 → ]

sj−1 [âj−1,j−1 âj−1,j−3 → ]
sj−2 [aj,j−2k aj,j−2k−2 → ]
sj−3 [âj−3,j−3 âj−3,j−5 → ]

...
sj−2k+2 [aj,j−2k aj,j−2k−2 → ]
sj−2k+1 [âj−2k+1,j−2k+1 âj−2k+1,j−2k−1 → ]
sj−2k aj−2k,j−2k aj−2k,j−2k−2 →

sj−2k−1 aj−2k−1,j−2k−1 aj−2k−1,j−2k−3 →
sj−2k−2 aj−2k−2,j−2k−2 aj−2k−2,j−2k−4 →

...
s1 a1,1
s0 a0,0

(30)

where the bracketed rows are the missing rows that do
not enter into the statement of the First Singular Case
Theorem, but have been filled in according to the division
procedure described above.

First Singular Case Theorem: The total number of
roots of polynomial (1) in the RHP, is equal to
k
+v
{
(−1)k (a0,0, a1,1, · · · , aj−2k−1,j−2k−1, aj−2k,j−2k, )

aj+1,j+1, aj+2,j+2, · · · , an,n}
(31)

assuming that aj−2k,j−2k is the first nonzero coeffi-
cient in row j of the Routh array, but the leading
coefficient in all other rows are nonzero. Further,
there are no roots on the imaginary axis.

Proof: Dividing through (29) by aj−2k(s) and rearranging,
we have

aj+1(s)

aj−2k(s)
= 1 + F (s) (32)

where

F (s) =
β(s)saj−2k,h(s)

aj−2k(s)
=

β(s)s

1 + α(s)
, (33)

α(s) =
aj−2k,l(s)

aj−2k,h(s)
. (34)

Applying Cauchy’s theorem, we now have instead of (14)
Rj+1 −Rj−2k = Nj+1, (35)

where Nj+1 is the number of encirclements of the contour
of F(s) around -1 as we trace the Nyquist contour in the
same way as in the proof of the regular case. We first note
by the same argument as in the proof of the regular case,
it follows from (29) that neither aj+1(s) nor aj−2k(s) have
roots on A or C.

On A and C, s = jω and since one of the polynomials
aj−2k,l(s) and aj−2k,h(s) is odd and the other is even

aj−2k,l(s)

aj−2k,h(s)

∣∣∣∣
s=jω

= α(jω) = jα̂(ω) (36)

for some real valued function α̂(ω). Further since β(s) is
an even polynomial

β(jω) = β̂(ω2) (37)

for some real valued polynomial β̂(ω2). Thus,

F (jω) =
β̂(ω2)jω

1 + jα̂(ω)
=

(α̂(ω) + j) β̂(ω2)ω

1 + α̂2(ω)
. (38)

As s traces A, F (s) must end up in the upper half plane
if the leading coefficient of β̂(ω2),

(−1)kaj+1,j+1

aj−2k,j−2k
> 0 and in

the lower half plane if it is < 0, as

lim
ω→∞

F (jω) = lim
ω→∞

jβ̂(ω2)ω. (39)

It may, however, first enter into the opposite half plane up
to dke2 times for values of ω2 such that β̂(ω2) = 0, since
β̂(ω2) may have up to k distinct positive roots allowing up
to k transitions from one half plane to the other. But for
such ω, F (jω) = 0+j ∗0, i.e., the contour F (s) will always
pass through the origin. Thus, in particular, the contour
F (s) cannot encircle −1 as s traces A. But note that the
contour F (s) will also touch the origin for ω values such
that aj−2k,h(jω) = 0.

As s traces B, we have

lim
s→∞

F (s) =
aj+1,j+1

aj−2k,j−2k
s2k+1. (40)

Thus, the contour will go clockwise k + 1
2 circles around

−1. If (−1)kaj+1,j+1

aj−2k,j−2k
> 0, the contour of F (s) starting in the

upper half plane thus ends up in the lower half plane and
as s traces C, the contour reaches the origin through the
lower half plane having encircled the −1 point Nj+1 = k
times.

Before s reaches the end of C, it may, similarly to the start
of A, enter into the opposite half plane up to dke2 times,
but since the contour will always pass between the half
planes through the origin it cannot encircle −1 any more
times.
If (−1)kaj+1,j+1

aj−2k,j−2k
< 0, the contour of F (s) ends up in the

upper half plane and as s traces C, reaches the origin
through this plane, having now encircled the −1 point
Nj+1 = k+1 times. As in the case above, it cannot encircle
−1 any more times even if it enters the lower half plane
up to dke2 times before s reaches the end of C.
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Thus, we conclude that if there is no sign change between
aj−2k,j−2k and (−1)kaj+1,j+1, aj+1(s) has k more roots
in the RHP than aj−2k(s), and if there is a sign change,
aj+1(s) has k + 1 more roots in the RHP than aj−2k(s).
The result now follows by noting that by the result of
the regular case, the difference between the number of
roots of aj−2k(s) and a0(s) in the RHP is the number of
sign changes in the sequence a0,0, a1,1, . . . , aj−2k,j−2k and
the difference between the number of roots of an(s) and
aj+1(s) in the RHP is the number of sign changes in the
sequence aj+1,j+1, aj+2,j+2, . . . , an,n.

q.e.d.

Example 2: Consider the polynomial
a(s) = s10 + 2s8 + 4s6 + 6s4 + 2s3 + 4s2 + s+ 1
= (s+ 0.8669± j0.9710)(s− 0.9924± j0.8640)
×(s− 0.1988± j1.1713)(s+ 0.3647± j0.5782)
×(s− 0.0404± j0.7178)

(41)

The Routh array becomes, see (30)

s10 1 2 4 6 4 1
s9 [2 1 0 0 0]
s8 [3/2 4 6 4 1]
s7 [2 1 0 0]
s6 [13/4 6 4 1]
s5 [2 1 0]
s4 [35/8 4 1]
s3 2 1
s2 29/16 1
s1 −3/29
s0 1

(42)

where k = 3 and the number of roots in the right half
plane is
k + v

{
(−1)k (a0,0, a1,1, a2,2, a3,3) , a10,10

}
= 3 + v {−1, 3/29,−29/16,−2, 1} = 3 + 3 = 6

(43)

by the statement of First Singular Case Theorem. Further,

α(s) =
29/16s2 + 1

2s3 + s
, (44)

β(s) =
1

2

(
35/8 + 13/4s2 + 3/2s4 + s6

)
(45)

and

F (s) =
β(s)s

1 + α(s)
. (46)

We show the contour of F (s) in Figs. 2 and 3 as s traces
the Nyquist contour clockwise. We set R = ωmax = 2
in the Nyquist contour, so as to be able to show the full
contour of F (s) in Fig. 3. This R-value is sufficiently large
for the Nyquist contour to enclose all the roots of a(s)
in the RHP for this example. The details of the contour
around the origin are shown in Fig. 2. We have

β̂
(
ω2
)
=

1

2

(
35/8− 13/4ω2 + 3/2ω4 − ω6

)
(47)

and since the leading coefficient is −1/2 < 0, the contour
ends up in the lower half plane as s traces A, according
to the proof of the theorem. It thus encircles the −1 point
k + 1 = 4 times as s traces A, B and C, as seen in Fig.

3. However, as seen in Fig. 2 the contour first enters once
into the upper half plane since β̂

(
ω2
)
has one positive

root at ω2 = 1.4042, crossing into the lower half plane
at s = j

√
1.4042 = j1.1850. While in the upper half

plane it touches the origin at s = j1/
√
2 = j0.7071 since

aj−2k,h(s) = 2s3 + s = 0 for this s-value. As the contour
returns to the origin from the upper half plane when s
traces C, we get a mirror image of the contour of F (s).

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

 > 0 

 < 0

Fig. 2. Example 2. A Nyquist plot of F (s) around the
origin, R = 2. Note the scales on both axis when
compared to Fig. 3.

In summary, F (s) results in k + 1 = 4 encirclements of
−1, as aj+1,j+1

(−1)3aj−2k,j−2k
= − 1

2 . In addition, we have 2 signs
changes below the jump in the Routh array. This results
in 4+2 = 6 roots in the RHP, in agreement with the result
obtained by the First Singular Case Theorem.

5. THE SECOND SINGULAR CASE

Finally, consider the second singular case when the coeffi-
cients in some row of the Routh array all become zero. This
is the only case where there may be roots on the imaginary
axis. Further, it is of interest to determine how many of the
roots on the imaginary axis, if any, are multiple roots. As
noted by Clark (1992), this is necessary in the case when
there are no roots in the RHP, in order to determine accu-
rately, whether the corresponding system is exponentially
stable, marginally stable or polynomially unstable. Hence,
by the Euclidean algorithm, we have for some j > 0,
aj,h(s) ≡ aj+1,l(s) ≡ 0 and thus aj+1(s) ≡ aj+1,h(s) must
be a factor in ai(s) for i = j+1, j+2, . . . , n. Further, since
we assume that an(s) has no zero roots, aj+1(s) must be
an even polynomial with j + 1 = 2k,
i.e., aj+1(s) = aj+1,j+1s

2k + aj+1,j−1s
2k−2 + · · ·+ aj+1,0.
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Fig. 3. Example 2. A Nyquist plot of F (s), R=2.

Furthermore, for the sake of simplicity, we assume ai,i 6=
0, i = j + 1, j + 2, . . . , n.

Following Routh, see also Gantmacher (1959), we now
construct the modified Routh array, replacing the row
of zeros by the derivative of the even polynomial, aj+1(s),
above, and then apply the Euclidean algorithm as before.
If a new row of zeros occurs the process is repeated. This
procedure along with the result (48) below is often referred
to as the Q-method.

Second Singular Case Theorem: The total number of
roots of polynomial (1) in the RHP is equal to

v (a0,0, a1,1, · · · , aj,j , aj+1,j+1, · · · , an,n) (48)

where a0,0, a1,1, · · · , aj+1,j+1 are now the coefficients
of the modified Routh array. The total number of
roots on the imaginary axis is equal to

j + 1− 2v (a0,0, a1,1, · · · , aj+1,j+1) (49)

where j + 1 is the number of the row immediately
above the first zero row and roots with multiplicity
p are counted p times.

Proof: By the same argument as in the regular case, the
difference between the number of roots in the RHP for
an(s) and aj+1(s) is the number of sign changes in the
sequence aj+1,j+1, aj+2,j+2, · · · , an,n. Here we note that
while an(s) may have a root jω, it follows by the same
argument as in the proof of the regular case that jω will
then also be a root of ai(s), i = n− 1, n− 2, . . . , j + 1.
Therefore, we can still apply Cauchy’s theorem to poly-
nomial ratios ai+1(s)

ai(s)
, i = n − 1, n − 2, . . . , j + 1 with the

Nyquist contour, since the factors of jω will cancel out. We

next note that the modified Routh array can be justified by
the following argument. If a(s) is an even polynomial and
aε(s) = a(s+ε) ≈ a(s)+εda(s)/ds as ε→ 0, then a(s) and
aε(s)must have the same number of roots in the RHP for a
sufficiently small positive value of ε. This follows from the
observation that if a(s) has a root on the imaginary axis
then for a positive perturbation ε, such a root will move
into the LHP. Thus, applying the regular Routh algorithm
to a(s) + εda(s)/ds, the first row in the Routh array has
the coefficients of a(s) and the second row the coefficients
of εda(s)/ds, or equivalently of da(s)/ds, since positive
scaling of a row does not affect sign changes in the first
column. Therefore the number of roots of aj+1(s) in the
RHP will be

v (a0,0, a1,1, · · · , aj+1,j+1) (50)

where a0,0, a1,1, · · · , aj+1,j+1 are the coefficients of the
modified array by the same argument as in the regular
case. This concludes the proof of the first result. The
second result follows directly from the fact that roots
of even polynomials are symmetrical with respect to the
imaginary axis.
q.e.d.

In order to determine the number of multiple roots on the
imaginary axis, we observe that the polynomial aj+1(s)
has a multiple root if and only if aj+1(s) and daj+1(s)/ds
have a common factor, i.e., if and only if a second row
of zeros occurs in the modified Routh array. Denote the
polynomial above such a row, i.e., the polynomial whose
roots are the multiple roots of aj+1(s), by aj′+1(s) =

a2k′ (s), j
′
< j.

Second Singular Case Corollary: The total number of
multiple roots on the imaginary axis is equal to

j
′
+ 1− 2v(a0,0, a1,1, . . . , aj′+1,j′+1) (51)

where j
′
+ 1 is the number of the row immediately

above the second zero row in the modified Routh
array and roots of multiplicity p are counted p− 1
times.
Proof: Follows by the same argument as in the proof of the
Second Singular Case Theorem.

Example 3: Consider the polynomial
s12 − 3s11 − 7s10 + 37s9 − 105s8 + 251s7 − 281s6

+171s5 − 88s4 − 248s3 + 288s2 − 208s+ 192
= (s± 1)(s± j)2(s± j2)(s− 2)2(s− 3)(s+ 4).

(52)

The modified Routh array becomes
s
12

1 −7 −105 −281 −88 288 192

s
11 −3 37 251 171 −248 −208

s
10 16

3
−

64

3
−224 −

512

3

656

3
192

s
9

25 125 75 −125 −100

s
8 −48 −240 −144 240 192

s
7

( − 384 −1440 −576 480 )

s
6 −60 −72 180 192

s
5 −

4896

5
−1728 −

3744

5

s
4 576

17

3840

17
192

s
3

4800 4800

s
2

192 192

s
1

( 384 )

s
0

192

(53)
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The rows in parenthesis are the rows of zeros that have
been replaced by the derivative of the polynomial above.
Here we have

v(a0,0, . . . , a12,12) = 4 (54)

and hence there are 4 roots in the RHP based on the First
Singular Case Theorem. Further, the total number of roots
on the imaginary axis is
j + 1− 2v (a0,0, a1,1, · · · , aj+1,j+1) = 8− 2× 1 = 6. (55)

We finally have from Second Singular Case Corollary, that
the number of multiple roots on the imaginary axis is

j
′
+ 1− 2v(a0,0, a1,1, . . . , aj′+1,j′+1) = 2− 2× 0 = 2. (56)

We now consider an example from Pal et al. (1992),
involving both singular cases.

Example 4: Consider the polynomial
s8 + s7 + s6 + s5 + s2 + 1
= (s+ 1.1051± j0.42)(s− 0.7455± j0.4825)
×(s± j)(s+ 0.1404± j0.9421).

(57)

The modified Routh array now becomes where the square
brackets and parentheses have the same meaning as in
(30), (42) and (53)

s8 1 1 0 1 1
s7 1 1 0 0
s6 [ 1 1 0 0 ]
s5 [ 0 0 0 ]
s4 [ 1 1 0 ]
s3 [ 0 0 ]
s2 1 1
s1 ( 2 )
s0 1

(58)

Here k = 2 and the number of roots in the right half plane
is

k + v
{
(−1)k (a0,0, a1,1, a2,2) , a7,7, a8,8

}
= 2 + v

{
(−1)2 (1, 2, 1) , 1, 1

}
= 2 + 0 = 2

(59)

based on the First Singular Case Theorem. Further, we
have from the Second Singular Case Theorem

j + 1− 2v(a0,0, a1,1, a2,2) = 2− 2v(1, 2, 1) = 2 (60)

roots on the imaginary axis.

6. STABILITY

We conclude with observations on stability relevant to
control systems (see e.g. McNamee et. al. (2013)), that
follow directly from the theorems in this paper. We have
exponential stability if and only if we have the regular
case with no sign changes in the first first column of the
Routh array. We have marginal stability if and only if
we have the second singular case with no sign changes
in the first column of the modified Routh array and no
recurring zero row in the modified Routh array. We have
polynomial instability if and only if we have the second
singular case with no sign changes in the first column and a
recurrent zero row in the modified Routh array. Otherwise
we have exponential instability. We note that we started

by eliminating any possible zero root. It is straightforward
to determine the effect of such a root, whether simple or
multiple, on the nature of the stability.
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