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1. INTRODUCTION

Primal-dual dynamics belong to the class of continuous-
time gradient based algorithms for real-time solution of
convex optimization problems (Arrow et al., 1958). The
need for fast, efficient and architecturally simple compu-
tational methods in resource constrained and in critical
infrastructure systems has made the primal-dual dynamics
approach a method of choice (Ma and Elia, 2015; Stegink
et al., 2015). As a result, the primal-dual dynamics ap-
proach has attracted significant research interest seeking
to establish provable stability and robustness guarantees
(Feijer and Paganini, 2010; Cherukuri et al., 2016; Nguyen
et al., 2018; Qu and Li, 2019), and to develop mechanisms
for hardware circuit realization (Kose, 1956; Vichik et al.,
2016; Levenson and Adegbege, 2016; Skibik and Adegbege,
2018) and for embedding such computational methods in
closed loop as a dynamic controller (Jokic et al., 2009;
Nicotra et al., 2018; Yoshida et al., 2019).

For equality constrained convex optimization problems,
the corresponding primal-dual dynamics can be inter-
preted as the feedback interconnection of a gradient sys-
tem and a linear integral controller (Ishizaki et al., 2016;
Adegbege, 2019). Such interpretation has been exploited
for output regulation of a class of nonlinear problems
with convex properties (Jayawardhana et al., 2007; Ste-
gink et al., 2015). However, for problems with inequality
constraints, additional nonlinearity must be introduced
at the input of the gradient system to account for the
violation of the inequality constraint. To address this, pre-
vious works have focused on reformulating the primal-dual
dynamics has a projected dynamical system Cherukuri
et al. (2016) or as a switched system (Feijer and Paganini,
2010; Kosaraju et al., 2018) and invoking tools from hy-
brid control to establish stability. Others have employed
a proximal-like Lagrangian reformulation of the problem,
and then establishing stronger stability results using non-
diagonal Lyapunov functions (Qu and Li, 2019; Ding and
Jovanović, 2019). In Adegbege (2020), an artificial switch-
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ing element is introduced at the input of the controller to
counter the effect of the input nonlinearity and to enforce
the optimality of the equilibrium condition of the modified
primal-dual dynamics.

In this work, we adopt a different approach. We inter-
pret the primal-dual dynamics within the context of anti-
windup control systems (Mulder et al., 2001; Gomes da
Silva Jr et al., 2014). We consider the interconnection
without input nonlinearity as the nominal control loop
for which a suitable linear controller has already been
designed. The controller ensures that the equilibrium point
of the primal-dual dynamics is the optimal solution of
a corresponding equality constrained convex optimization
problem. Then an antiwindup augmentation is incorpo-
rated into the closed loop to account for the effect of
the input nonlinearity. This additional augmentation is
constructed such that the input-output passivity of the
nominal interconnection is preserved while the equilibrium
point solves the original inequality constrained convex
optimization problem. By proper characterization of the
input nonlinearity, asymptotic stability and convergence of
the augmented system can be established using the notion
of shifted passivity (Van der Schaft, 2000; Monshizadeh
et al., 2019) and employing Lyapunov function similar to
those in standard antiwindup control literature (Mulder
et al., 2001).

The paper is structured as follows. In section 2, we provide
the mathematical background necessary for setting up the
proposed modified primal-dual dynamics and we introduce
the notion of shifted passivity for constrained gradient
dynamics. In section 3, we state our main result and
contribution. We show that with antiwindup augmenta-
tion, a corrective signal is injected into the loop such that
the modified interconnected system recovers the shifted-
passivity property of the nominal closed loop. Global
asymptotic stability of the equilibrium then follows from
applying classical invariance principle. Finally in section
4, we provide a computational example to illustrate the
effectiveness of the proposed approach to solving nonlinear
optimization problems arising in model predictive control.
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2. MATHEMATICAL PRELIMINARIES AND
PROBLEM SETUP

2.1 Constrained Gradient Dynamics

We consider the gradient system

ẋ = −∇f(x) + gT v (1a)

y = gx (1b)

where f(x) is a continuously differentiable strongly convex
function that maps from Rn to R and ∇f(x) denotes the
gradient vector defined as [∇f(x)]i = (∂f) (∂xi). The
constant matrix g ∈ Rn → Rm is assumed to be full row-
ranked. The vectors v ∈ Rm+ (nonnegative orthant) ⊂ Rm
and y ∈ Rm are respectively the system input and the
output.

The task is to construct an appropriate controller for (1)
such that the equilibrium point x∗ is globally asymptot-
ically stable and corresponds to the optimum solution of
the convex optimization problem:

min
x
f(x) (2a)

subject to gx ≥ w (2b)

where w ∈ Rm may be time dependent. The classical
gradient method for solving (2) involves the construction
of the Lagrangian function:

L(x, λ) = f(x) + λT (w − gx) (3)

where λ ∈ Rm+ is the vector of Lagrangian multipliers
associated with the inequality constraint (2b), and then
followed by the saddle-point dynamics (Feijer and Pa-
ganini, 2010; Cherukuri et al., 2016):

ηxẋ = −∇xL(x, λ) = −∇f(x) + gTλ (4a)

ηλλ̇ = [∇λL(x, λ)]+λ = [w − gx]+λ ; (4b)

where ηx and ηλ are time constants for the x and λ
trajectories respectively, and [P ]+λ denote the positive
projection of P to ensure that λ remains in Rm+ . It is
typically defined elementwise as:

[Pi]
+
λ =

{
Pi ; λi > 0 or Pi > 0

0 ; otherwise.
(5)

The presence of projection such as (5) in the primal-
dual dynamics (4) renders the gradient flow discontinuous
with associated implementation issues (Qu and Li, 2019).
By proper characterization of the input nonlinearity, we
avoid the use of projection while ensuring feasibility at
equilibrium.

2.2 Input Nonlinearity Characterization

We define the input nonlinearity v = φ(u) with

φ(u) =


φ1(u1)
...

φm(um)

and φi(ui) =

{
ui ui ≥ 0

0 ui < 0
(6)

to capture the satisfaction or the violation of the con-
straint. We also define a complementary nonlinearity

ψ(u) =


ψ1(u1)
...

ψm(um)

and ψi(ui) =

{
ui ui < 0

0 ui ≥ 0
(7)

such that ψ(u) + φ(u) = u. As constructed, the nonlin-
earity φ(·) satisfies φ(0) = 0, and the incremental sector
condition (Desoer and Vidyasagar, 1975):

(v − v∗)T ((u− u∗)− (v − v∗)) ≥ 0 (8)

for all u, u∗, v, v∗ satisfying v = φ(u) and v∗ = φ(u∗).

When φi(ui) = ui for all i, the gradient system (1) is
unconstrained and we say the nonlinearity is inactive. We
will subsequently take advantage of this characterization
to establish global asymptotic stability for the primal-dual
dynamics.

2.3 Linear Controller

It is well known that the problem of regulating nonlinear
problems of the form (1) to a non-zero equilibrium x∗

requires integral control (Jayawardhana et al., 2007). Here
we consider the proportional-integral controller:

ξ̇ = KI(w − y) (9a)

u = ξ + (w − y) (9b)

where KI is diagonal positive definite matrix. The integral
part of the controller ensures that at equilibrium, the
equality constraints y∗ = gx∗ = w holds. To handle
inequality constraints, the integral controller must be
modified to guarantee gx∗ ≥ w at equilibrium. We will
explore this in section 3.

2.4 Shifted Passivity As Input-Output Property

As we are interested in the forced equilibrium of the
constrained gradient dynamic, we rely on the concept of
shifted passivity (Van der Schaft, 2000; Monshizadeh et al.,
2019). Suppose we define the equilibrium condition of the
gradient system (1) as

E = {(x∗, v∗) ∈ Rn × Rm+ | ∇f(x∗)− gT v∗ = 0} (10)

with the corresponding output as y∗ = gx∗, shifted
passivity is defined in terms of the input v − v∗ and the
output y − y∗ of the incremental model

ẋ = −(∇f(x)−∇f(x∗)) + gT (v − v∗), (11a)

y − y∗ = g(x− x∗) (11b)

for a fixed (x∗, v∗).

Definition 1. The gradient system (1) is exponentially
shifted passive (resp. shifted passive) if for a fixed
(x∗, v∗) ∈ E and a corresponding y∗ = gx∗, there exists
a positive semidefinite function Vx(x− x∗) such that:

V̇x = (∇Vx)T ẋ ≤ −εVx + (v − v∗)(y − y∗) (12)

with a scalar ε > 0 (resp. ε = 0) for all (x, v) ∈ Rn × Rm+ .

Lemma 2. Suppose (x∗, v∗) ∈ E is fixed for the gradient
system (1) with a strongly convex f(x) and a full row-
ranked g. Then the gradient system is exponentially shifted
passive with the storage function

Vx(x− x∗) =
1

2
(x− x∗)T (x− x∗). (13)

Proof. By strong convexity of f(x), the following mono-
tonicity property (Boyd and Vandenberghe, 2004)

(x− x∗)T (∇f(x)−∇f(x∗)) ≥ δ(x− x∗)T (x− x∗) (14)
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holds for a positive constant δ. Since (x∗, v∗) ∈ E and g is
full-row ranked, it follows that (cf. (Simpson-Porco, 2018,
corollary 3.6), (Ishizaki et al., 2016, lemma 3)):

v∗ = (ggT )−1g∇f(x∗) and x∗ = ∇f−1(gT v∗) (15)

and thus, x∗ and v∗ are uniquely defined. Evaluating the
derivative of Vx along (1) gives:

V̇x =− (x− x∗)T (∇f(x)−∇f(x∗)) + (x− x∗)T gT (v − v∗)
≤− δ(x− x∗)T (x− x∗) + (y − y∗)T (v − v∗) (16)

=− εVx + (y − y∗)T (v − v∗) (17)

with ε = 2δ. Condition (17) is exactly the definition of
exponentially shifted passivity.

It is well known that for linear systems, passivity implies
shifted passivity for any forced equilibrium (Jayawardhana
et al., 2007). For the proportional-integral controller (9),
the equilibrium condition for a fixed w is (y∗ = w, u∗ = ξ∗)
and hence the incremental form is given by

ξ̇ = −KI(y − y∗), (18a)

u− u∗ = (ξ − ξ∗)− (y − y∗). (18b)

It is straightforward to show that with the storage function

Vk(ξ − ξ∗) =
1

2
(ξ − ξ∗)K−1I (ξ − ξ∗), (19)

the controller satisfies the following shifted passivity con-
dition with respect to −(y − y∗) and (u− u∗):

V̇k = −(y − y∗)T (u− u∗)− (y − y∗)T (y − y∗) (20a)

≤ −(y − y∗)T (u− u∗). (20b)

For static nonlinearity (6), we define the following notions
of shifted passivity (Monshizadeh et al., 2019).

Definition 3. The nonlinear map v = φ(u) with 0 = φ(0)
and satisfying v∗ = φ(u∗) is output shifted passive (resp.
shifted passive) if the following inequality holds

0 ≤ (u− u∗)T (v − v∗)− ρ(v − v∗)T (v − v∗) (21)

for scalar ρ > 0 (resp. ρ = 0) for all (u, v) ∈ Rm × Rm+ .

3. CONSTRAINED PRIMAL-DUAL DYNAMICS AS
FEEDBACK INTERCONNECTION

We follow the two step antiwindup design approach (Mul-
der et al., 2001; Gomes da Silva Jr et al., 2014) where a
nominal controller is first constructed ignoring the input
nonlinearity i.e. setting φ(u) = u and then an antiwindup
augmentation is introduced to account for the effect of the
input nonlinearity in closed loop.

3.1 Ignoring Input Nonlinearity-Nominal Interconnection

For the nominal interconnection, we ignore the input
nonlinearity such that the output of the linear controller
(9) is coupled directly to the gradient system (1) with
v = u. The resulting interconnection becomes:

ẋ = −∇f(x) + gTu, y = gx (22a)

ξ̇ = KI(w − y) (22b)

u = ξ + (w − y) (22c)

where w can be considered an exogenous input. This is
illustrated in Fig. 1. At equilibrium, we have

0 = −∇f(x∗) + gTu∗, (23a)

0 = w − gx∗ (23b)

Fig. 1. Closed-Loop Interconnection with Linear Control

This is exactly the Karush Kuhn Tucker (KKT) optimality
condition for the equality constrained optimization prob-
lem (Bertsekas, 2014):

min
x
f(x), (24a)

subject to gx = w. (24b)

To study the stability of the equilibrium point (x∗, ξ∗), we
express (22) in incremental form relative to (x∗, ξ∗, u∗, y∗)
where u∗ and y∗ = gx∗ are the corresponding points
satisfying the equilibrium condition (23), and then employ
the concept of shifted-passivity (Van der Schaft, 2000).

Defining the displacement variables x̂ = x−x∗, ξ̂ = ξ−ξ∗,
û = u − u∗ and ŷ = y − y∗, the incremental form of (22)
is obtained as:

ẋ = −(∇f(x)−∇f(x∗)) + gT û, ŷ = gx̂ (25a)

ξ̇ = −KI ŷ, û = ξ̂ − ŷ (25b)

We state the following result.

Proposition 4. Consider the closed-loop system compris-
ing the feedback interconnection of the gradient dynamics
(1) and the proportional-integral controller (9) with v = u.
Suppose that f(x) is strongly convex and that g is full
row ranked. Then the equilibrium point (x∗, ξ∗) is globally
asymptotically stable. Moreover x∗ is the optimal solution
of (24).

Proof. We consider the Lyapunov function candidate

V = Vx + Vk =
1

2
x̂T x̂+

1

2
ξ̂TK−1I ξ̂. (26)

By construction V > 0 for all x 6= x∗ and ξ 6= ξ∗.
Evaluating the derivative of V along the trajectories of
the incremental model (25) yields:

V̇ =− x̂T (∇f(x)−∇f(x∗)) + ŷT û− ûT ŷ − ŷT ŷ (27a)

≤− εV − ŷT ŷ ≤ 0. (27b)

Note the first inequality follows from the exponential
shifted passivity of the gradient dynamics and the shifted
passivity of the controller. Since V is radially unbounded,
all solution trajectories must be bounded (Wassim and
Chellaboina, 20008). Define the invariant set M =

{(x̂, ξ̂) ∈ Rn × Rm|V = 0}. Observe that the first term
of (27b) vanishes only when x = x∗ and by continuity
argument x̂ ≡ 0 → ŷ ≡ 0. It then follows from (25b)

that ξ is uniformly continuous and hence lim
t→∞

ξ̂ = 0.

So the largest invariant set contained in M is the equi-
librium point (x∗, ξ∗). We therefore conclude asymptotic
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Fig. 2. Closed-Loop Interconnection with Control Aug-
mentation

stability from the LaSalle invariance principle (Khalil,
2002). Global asymptotic stability follows from the radial
unboundedness of V . Finally, since the equilibrium point
(x∗, ξ∗) is globally asymptotic stable, the KKT condition
(23) has a unique solution (x∗, u∗ = ξ∗) and hence x∗ must
be the unique optimal solution of (24).

3.2 Accounting for Input Nonlinearity-Antiwindup Control
Augmentation

In the presence of input nonlinearity, the gradient system
is no longer guaranteed to be shifted passive and hence
the stability argument of Proposition 4 no longer holds.
To counteract the effect of the input nonlinearity, we
modify the controller by incorporating an antiwindup
compensation in the form of a static feedback around the
nonlinearity as follows (Gomes da Silva Jr et al., 2014):

ẋ = −∇f(x) + gT v, y = gx, (28a)

ξ̇ = KI(w − y) +KI(v − u), v = φ(u), (28b)

u = ξ + (w − y). (28c)

Using the complementary nonlinearity q = ψ(u) as defined
in (7), the augmented interconnection can be restructured
as depicted in Fig. 2. As shown, the effect of the control
augmentation is to inject corrective signal q into the con-
troller whenever u < 0. However for u ∈ Rm+ , the corrective
signal q = 0, and the interconnection recovers the nominal
closed loop system of Fig. 1. We show subsequently that
the antiwindup augmentation restores the shifted passiv-
ity of the gradient system and the controller, and hence
asymptotic stability of the equilibrium can be established
using similar augment of Proposition 4.

At equilibrium, we have

0 = −∇f(x∗) + gT v∗, (29a)

0 ≥ w − gx∗, 0 ≤ v∗, v∗T (w − gx∗) = 0. (29b)

This is exactly the KKT optimality condition for the in-
equality constrained optimization problem (2) (Bertsekas,
2014). Expressing (28) in incremental form gives:

ẋ = −(∇f(x)−∇f(x∗)) + gT v̂, ŷ = gx̂ (30a)

ξ̇ = −KI ŷ −KI q̂, û = ξ̂ − ŷ (30b)

where v̂ = φ(u)− φ(u∗) and q̂ = ψ(u)− ψ(u∗).

We now state our main result.

Proposition 5. Consider the closed-loop system (28) com-
prising the feedback interconnection of the gradient dy-
namics (1) with v = φ(u) and the augmented nonlin-
ear controller (28b)-(28c) controller. Suppose that f(x) is
strongly convex and that g is full row ranked. Then the
equilibrium point (x∗, ξ∗) is globally asymptotically stable.
Moreover x∗ is the optimal solution of (2).

Proof. We employ the candidate Lyapunov function

V = Vx + Vk + Vψ (31)

where Vx and Vk are as defined in (13) and (19) respec-
tively, and Vψ is introduced to account for incremental sec-
tor boundedness of the complementary nonlinearity ψ(·)
and it is specified as (cf. Mulder et al. (2001)):

Vψ =

m∑
i=1

∫ t

0

(qi(τ)− q∗i ) ((ui(τ)− u∗i )− (qi(τ)− q∗i )) dτ.

Note that Vψ is nonnegative, Vx > 0 for all x̂ 6= 0 and

Vk > 0 for all ξ̂ 6= 0, so we have V > 0 for all (x̂ 6= 0, ξ̂ 6= 0).

Since x̂ ≡ 0⇒ ŷ ≡ 0 and (ŷ ≡ 0, ξ̂ ≡ 0)⇒ û ≡ 0⇒ q̂ ≡ 0,
we also have V (0, 0) = 0.

Evaluating the derivate of V along the incremental model
(30) gives:

V̇ = −x̂T (∇f(x)−∇f(x∗)) + ŷT û− ŷT q̂
−ûT ŷ − ŷT ŷ − ûT q̂ − ŷT q̂ + q̂T û− q̂T q̂

(32a)

= −x̂T (∇f(x)−∇f(x∗))− (ŷ + q̂)T (ŷ + q̂) (32b)

≤ −εVx − (ŷ + q̂)T (ŷ + q̂) ≤ 0. (32c)

Observe that the first inequality is due to the exponential
shifted passivity of the map û → (ŷ + q̂) and the shifted
passivity of the map −(ŷ + q̂)→ û.

To establish asymptotic stability we follow similar route

as in the proof of Proposition 4. Let M = {(x̂, ξ̂) ∈ Rn ×
Rm|V = 0}. Observe that Vx vanishes only at x̂ = 0. Also,
the second term in (32c) vanishes when ŷ = −q̂. But as

x̂ ≡ 0 ⇒ ŷ ≡ 0 and (ŷ ≡ 0, ξ̂ ≡ 0) ⇒ û ≡ 0 ⇒ q̂ ≡ 0, the
largest invariant set inM in the equilibrium point (x∗, ξ∗).
Asymptotic stability follows from the LaSalle invariance
principle. Since V is a global Lyapunov function, we
conclude global asymptotic stability of the equilibrium
point.

4. NUMERICAL EXAMPLE

To illustrate the utility of the proposed approach to
optimization problem arising in model predictive control
(MPC) (Maeder et al., 2009), we consider a continuous-
time system with the following dynamics:

ẋp(t) = (a− 1)xp(t) + xu(t) + d(t), a < 1 (33)

yp(t) = xp(t) (34)

where xp ∈ R is the plant state, xu ∈ R is the control
input which must satisfy the constraint xu ≥ 0 and d ∈ R
is an input disturbance. Suppose the output yp is to track
a zero reference with zero offset at steady state. To achieve
this, we employ linear offset-free model predictive control
(Maeder et al., 2009). First, we discretized the plant using
forward difference approximation and a sampling time of
1 second to obtain

xp[k + 1] = axp[k] + xu[k] + d[k], a < 1 (35)

yp[k] = xp[k] (36)
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and we adopt the following unity prediction horizon model
predictive control:

min
xu[0]

(xu[0]− xtu)2 + (xp[1]− xtp)2 (37a)

subject to xu[0] ≥ 0, (37b)

xp[1] = axp[0] + xu[0] + d[0], (37c)[
a− 1 1

1 0

] [
xtp
xtu

]
=

[
−d[0]

0

]
, (37d)

xp[0] = x̂p[k], d[0] = d̂[k], (37e)

where xtp and xtu are the steady-state targets enforced by

(37d), and x̂p[k] and d̂[k] are the observed values at the
current time instant. The MPC can be reduced to the
following quadratic program (QP) problem that has to be
solved at every time instant:

min
xu[0]

2xu[0]2 + 4

(
d[0] +

1

2
axp(0)

)
xu[0]

+ constant terms

(38a)

subject to xu[0] ≥ 0 (38b)

The QP has a closed-form solution

x∗u[k] =


−d̂[k]− 1

2
ax̂p[k] −d̂[k]− 1

2
ax̂p[k] ≥ 0

0 −d̂[k]− 1

2
ax̂p[k] < 0

(39)

Using the proposed continuous-time solver, we obtain the
controller dynamics without antiwindup augmentation as:

[
ẋu
ξ̇

]
=



[
−5 1

−ki 0

] [
xu
ξ

]
−
[
4

0

]
(d̂(t) +

1

2
ax̂p(t))

for σ(ξ − xu) = ξ − xu,[
−4 0

−ki 0

] [
xu
ξ

]
−
[
4

0

]
(d̂(t) +

1

2
ax̂p(t))

for σ(ξ − xu) = 0,

(40)

and with antiwindup augmentation as:

[
ẋu
ξ̇

]
=



[
−5 1

−ki 0

] [
xu
ξ

]
−
[
4

0

]
(d̂(t) +

1

2
ax̂p(t))

for σ(ξ − xu) = ξ − xu,[
−4 0

0 −ki

] [
xu
ξ

]
−
[
4

0

]
(d̂(t) +

1

2
ax̂p(t))

for σ(ξ − xu) = 0.

(41)

Note that (40) and (41) correspond to (22) and (28)
respectively and that the equilibrium conditions of (41)
solve the QP problem (38) for fixed plant and disturbance
estimates. As seen in (41), the effect of the antiwindup
augmentation is to decouple the xu and the ξ dynamics
whenever σ(ξ − xu) = 0 holds.

For zero offset tracking, we construct a continuous-time
observer of the form:

˙̂xp(t) = (a− 1)x̂p(t) + xu(t) + d̂(t) + Lx(yp(t)− x̂p(t))
˙̂
d(t) = Ld(yp(t)− x̂p(t))

where we have incorporated a constant input disturbance
model. The observer gains Lx and Ld are chosen as:[

Lx
Ld

]
=

[a
2
1

]
(43)
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Fig. 3. Output [xp(t)]: solver with antiwindup (solid-
black), solver without antiwindup (Dashed-blue), and
solver with closed-form solution (Dotted-red)

to ensure that the observer is stable and also to ensure
that the observer dynamics are faster than that of the
plant. The resulting controller dynamics with antiwindup


˙̂xp
˙̂
d
ẋu
ξ̇

 =




a

2
− 1 1 1 0

−1 0 0 0

−2a −4 −5 1

0 0 −ki 0



x̂p
d̂

xu
ξ

+


a

2
1

0

0

 yp
for σ(ξ − xu) = ξ − xu
a

2
− 1 1 1 0

−1 0 0 0

−2a −4 −4 0

0 0 0 −ki



x̂p
d̂

xu
ξ

+


a

2
1

0

0

 yp
for σ(ξ − xu) = 0

(44)

shows that integral action is restored for the case when
σ(ξ − xu) = 0. Note that we already establish global
asymptotically stability for the solver dynamics for fixed

input but here we allow for time varying d̂(t) and x̂p(t).
Figs. 3 through 5 show respectively the output, the input
and the Lagrangian responses for the plant when coupled
with three different solver dynamics: the primal-dual dy-
namics with and without antiwindup compensation, and
the closed form solver connected to an observer (used as
a benchmark). A step disturbance is introduced at simu-
lation time t = 50 to demonstrate the zero-offset tracking
property of the different schemes as well as the effective-
ness of the observer. As seen, both dynamics performed
fairly well as compared to the benchmark.

REFERENCES

Adegbege, A.A. (2019). Incrementally passive primal-
dual dynamics for real-time optimization. In American
Control Conference, 1767–1772.

Adegbege, A.A. (2020). Nonlinear control of gradient
dynamics with shifted passivity. European Control
Conference (To appear).

Arrow, K.J., Hurwicz, L., and Uzawa, H. (1958). Stud-
ies in Linear and Non-linear Programming. Stanford
University Press, California.

Bertsekas, D.P. (2014). Constrained optimization and
Lagrange multiplier methods. Academic press.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5602



0 10 20 30 40 50 60 70 80

Time

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
C

o
n

tr
o

l 
In

p
u

t

Fig. 4. Input [xu(t)]: solver with antiwindup (solid-black),
solver without antiwindup (Dashed-blue), and solver
with closed-form solution (Dotted-red)

0 10 20 30 40 50 60 70 80

Time

-0.1

-0.05

0

0.05

0.1

0.15

0.2

L
a

n
g

ra
n

g
e

 M
u

lt
ip

lie
r

Fig. 5. Lagrange [ξ(t)]: solver with antiwindup (solid-
black) and solver without antiwindup (Dashed-blue)

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press, New York.

Cherukuri, A., Mallada, E., and Cortés, J. (2016). Asymp-
totic convergence of constrained primal–dual dynamics.
Systems & Control Letters, 87, 10–15.

Desoer, C. and Vidyasagar, M. (1975). Feedback Systems:
Input-Output Properties. Academic Press, Inc., Orlando,
FL, USA.
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