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Abstract: This paper addresses the design of satellite maneuvers for the inertia estimation.
The experiment design is an important step in system identification, since the choice of the
excitation signal has a great influence on the precision of the parameter estimates. In order to
design an optimal maneuver, the proposed method uses a cubic B-spline representation of the
trajectory. The optimized maneuver is obtained through minimization of a functional based on
the Fisher information matrix. The optimization process considers the physical constraints due
to the saturation of the actuators. The effectiveness of the generated trajectory is evaluated via
Monte Carlo simulations using the model of a satellite-type platform. Moreover, the optimized
maneuver has been also tested on a real platform in a zero-gravity experiment where, due to the
limited duration of the tests, the achievement of the maximum excitation is of great importance.

Keywords: Experiment Design, Aerospace, Satellites, Parameter Estimation, Flight Dynamics
Identification

1. INTRODUCTION

An accurate model of spacecraft dynamics is necessary
in order to guarantee a correct and fast control of the
system. Many satellite parameters, such as inertia matrix
and actuator alignment vectors, cannot be reliably esti-
mated on ground. Therefore, several methods have been
proposed in the literature in order to accurately estimate
the parameter from the telemetry data (e.g. Norman et al.
(2011); Yoon et al. (2017); Nainer et al. (2019)).

In the estimation process, one of the most important step
is the experiment design. It consists in generating signals
that well excite the system in order to obtain data with
the highest information content. Several works studied the
optimal excitation problem (Goodwin and Payne (1977);
Armstrong (1989); Walter and Pronzato (1990); Frances-
chini and Macchietto (2008)), however, its application to
the satellite parameter estimation is very recent. Weiss
et al. (2015) propose a receding horizon optimization of
the null motion in order to better estimate the reaction
wheel alignments. In Sekhavat et al. (2009) the authors
minimize the condition number of the regressor matrix to
design the maneuver. Another approach is shown in Zhai
et al. (2017), where a performance index similar to the
condition number is used to optimize the maneuver to
better estimate the satellite inertia matrix.

Even if the literature on satellite experiment design is quite
limited, some related works can be found in the robotic
field. Robot dynamics presents indeed many similarities
with the rotational dynamics of satellites. Therefore many
of these works can be easily adapted to the spacecraft case.
In (Gautier and Khalil (1992)), the authors propose an

optimization based on a linear combination of the condi-
tion number and the equilibrium of the set of equations
that generate the parameters. In (Swevers et al. (1997)), a
D-optimality criterion on the Fisher information matrix
is used, and the maneuvers are represented as a finite
Fourier series, thus significantly reducing the number of
parameters to be processed. A similar approach, still based
on the finite Fourier representation, is proposed in (Park
(2006)). In (Calafiore et al. (2001)), a genetic algorithm
is used to determine excitation trajectories that minimize
either the condition number of the regression matrix or
the logarithmic determinant of the Fisher information
matrix. A different maneuver parametrization is presented
in (Rackl et al. (2012)), where B-splines are used. The
cost function was based on a combination of the condition
number and the sum of the joint torques (the latter term
was included in order to improve the signal-to-noise ratio).

In this work, the experiment design problem for a small
platform simulating a satellite behavior is considered.
Since the platform is tested on a zero-G flight (Evain
et al. (2019)), only very short maneuvers can be performed.
For this main reason, a cubic spline parametrization is
used since it allows for a fast and accurate derivative
computation and oversampling. Different cost functions
based on the Fisher information matrix are tested and
compared. A prefilter is used in the experiment design
process in order to tackle the non-ideality coming from
the non-white noise source. The estimation improvements
due to the maneuver design are demonstrated via Monte
Carlo simulation and on a zero-G test on the real platform.

The paper is structured as follows. In Section 2, the
satellite-platform dynamics is described as well as the
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overall experiment design problem. The choice of the ma-
neuver parametrization is shown in Section 3. In Section
4, the Fisher information based functionals are described,
which include also the actuator constraints. Finally, the
numerical simulations and the zero-G experiment results
are presented in Section 5.

2. SATELLITE PLATFORM DYNAMICS AND
PROBLEM STATEMENT

For testing purposes, we consider a satellite-type platform
(Fig. 4), however, this work can be adapted to any satellite.
The platform is equipped with a gyroscope for the angular
velocity measurements and it uses 6 control moment gyros
(CMGs) to generate the torque for the attitude control.
The rotational dynamics in the body reference frame can
be described by the Euler’s equations (Sidi (1997)):

M(t)− ω(t)×hC(t) = Jω̇ + ω(t)×J ω(t) , (1)

with

ω(t)× =

[
0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

]
, (2)

where M(t) ∈ R3×1 is the sum of the torques generated by
the CMGs, J ∈ R3×3 is the inertia matrix of the platform,
ω(t) = [ωx(t), ωy(t), ωz(t)]

T ∈ R3×1 is the satellite
angular rate, and hC(t) is the total angular momentum
of the 6 CMGs. The torque M(t) is directly related to

their angular momentum derivative: M(t) = −ḣC(t). The
inertia J is a symmetric and positive definite matrix with
the following form

J =

[
J11 J12 J13
J12 J22 J23
J13 J23 J33

]
. (3)

The measurements ω(tk) of the angular velocity are as-
sumed to be corrupted by a noise ω̃(tk) as

ω(tk) = ω(tk) + ω̃(tk) , (4)

where ω̃x ∼ ω̃y ∼ ω̃z ∼ N(0, σ2). The drift term, typical
of gyroscope sensors, has not been considered here since,
due to the short experiment time (around 5 s), its effect
would be negligible.

For the experiment design purpose, the 6 independent
parameters of the inertia matrix are put into a vector:
θ = [J11 , J22 , J33 , J23 , J13 , J12]T and (1) is rewritten as
a linear function of the inertia parameters

M(t)− ω(t)×hC(t) =
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)
θ , (5)

where the function Γ(·) is defined as

Γ(ω) =

[
ωx 0 0 0 ωz ωy
0 ωy 0 ωz 0 ωx
0 0 ωz ωy ωx 0

]
. (6)

Considering (4), (5) can be rewritten as function of the
measured angular velocity ω

M(t)− ω(t)×hC(t)︸ ︷︷ ︸
y(t)

=
(

Γ(ω̇(t)) + ω(t)×Γ(ω(t))
)

︸ ︷︷ ︸
ψ(t)

θ + ν(t) ,

(7)
where the term ν(t) ∈ R3×1 collects the overall noise effect.

We are now interested in the following problem: Suppose
we have an unbiased and consistent estimator for θ, find

the excitation profile ω(t) that minimizes the variance of

the estimate θ̂.

The experiment design presents three main steps

(1) choose a suitable representation of the reference pro-
file to be optimized,

(2) build a functional to be minimized while including
the system constraints,

(3) select and apply an optimization solver.

3. MANEUVER PARAMETERIZATION

As it will be shown in the next section, the cost function
to be minimized depends on the angular rate ω(t). Al-
though also the torque M(t) could be used to defined the
maneuver, its use would become more complex. Several
possible parametrizations exist for the representation of
the reference profile ω(t). The simplest solution consists in
optimizing a finite set of equispaced points of the maneu-
ver, and interpolate a curve through them (Swevers et al.
(1997)). Another approach consists in using a finite Fourier
representation as in (Swevers et al. (1997); Park (2006)).
With this parametrization the number of optimization
parameters is significantly reduced and the derivative
can be computed analytically, however the Fourier based
representation is less flexible with respect to maneuver
constraints. For example, in (Park (2006)), in order to
guarantee predetermined initial and final conditions of the
maneuver, a low order polynomial is added to the Fourier
representation.

In this work, a cubic B-spline parametrization, similar
to (Rackl et al. (2012)), is selected in order to make
use of its interesting properties. Since in this work just
short maneuvers are considered, the number of parameters
required for this representation remains comparable with
the ones of other less flexible methods. Splines are piece-
wise polynomials with pieces that are smoothly connected
together. The joining points of the polynomials are called
knots. An important property is that, in case of splines
with uniform (and unit) knot spacing, we have

sp(t) =
∑
k

ckβ
n(t− k) . (8)

This means that a spline sp(t) can be expressed as a sum
of integer shifts of a B-spline of degree n, denoted as
βn. A B-spline βn is a symmetrical bell-shaped function
obtained from a (n + 1)-fold convolution of a rectangular
pulse β0. Thanks to the representation defined in (8),
each spline is defined by its sequence of coefficients ck,
which has the useful structure of a discrete signal even
though the underlying model is continuous. Another inter-
esting property of the splines is the so called convex hull
property (Schumaker (2007)). This means that the curve
lies in the convex hull defined by its control points. This
property will be exploited in order to check the respect of
the constraints also at intermediate points without inter-
polating the function values (if the control points respect
the constraints, the whole curve will do). This choice leads
to a theoretically conservative maneuver, but as it can be
seen in Fig. 1, the allowed range has been widely exploited.
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4. EXPERIMENT DESIGN

4.1 Fisher Information Matrix Based Experiment Design

The problem of finding good excitation trajectories is
quite common in the field of parameter identification and
different approaches have been presented in the literature.
In system identification, an optimal design, in combination
with an unbiased estimator, allows to minimize the vari-
ance of the estimates. An optimized experiment requires a
lower number of runs (or shorter runs) to achieve a suffi-
cient estimation precision. Intuitively, data with higher in-
formation content with respect to the parameters to be es-
timated should yield more precise estimates. This concept
is represented by the Fisher information matrix (Goodwin
and Payne (1977)), which is a measure of the amount of
information that a measured variable x provides on the
unknown parameter θ. It is formally defined as

I(θ) = E[∇θ log(p(x|θ))∇θ log(p(x|θ))T ] , (9)

or equivalently by

I(θ) = −E[∇2
θ log(p(x|θ))] , (10)

where p(x|θ) is the probability of the observed variable x
for a given value of θ. In case of a linear regression model

y = ψ θ + e , (11)

where y ∈ Rn×1, θ ∈ Rm×1, ψ ∈ Rn×m and e ∈ Rn×1 is
a zero mean vector of independent identically distributed
random variables with covariance matrix σ2I, it can be
easily demonstrated that the Fisher information is given
by (Ljung (1999), Ch.7 and Ch.13)

I(θ) =
ψTψ

σ2
. (12)

The Fisher information matrix is related to the Cramer-
Rao lower bound (Kay (1998); Young (2011)). The
Cramer-Rao inequality states that, for any unbiased es-
timator for θ, we have

V ar(θ̂) ≥ I(θ)−1 . (13)

The maximization of the Fisher information corresponds
therefore to the minimization of the lower bound of the
variance of the estimates.

Given N measurements, the least squares (LS) solution is

θ̂LS = (ΨTΨ)−1ΨTY , (14)

where

Y =


y(t1)
y(t2)

...
y(tN )

 , Ψ =


ψ(t1)
ψ(t2)

...
ψ(tN )

 , (15)

and its parameter estimate has variance

V ar(θ̂) = σ2(ΨTΨ)−1 . (16)

The Fisher information matrix, being the sum of the
individual matrices, is given by

I(θ) =
ΨTΨ

σ2
, (17)

and it is therefore the inverse of the Fisher information. In
the satellite application, the regressor ψ(ω) is correlated
with the noise ν, and therefore a least squares method
would yield biased estimates (Jun et al. (2010)). To obtain
consistent parameter estimates, an instrumental variable
(IV) method can be used (Söderström and Stoica (1983),

Young (2011), Nainer et al. (2019)). For the basic IV, the
analyical solution is given by

θ̂ = (ZTΨ)−1ZTY , (18)

where Z is an instrument, that should be correlated
with the regressor Ψ and uncorrelated with the noise ν.
Given (11), the IV parameter variance is

V ar(θ̂IV ) = σ2(ZTΨ)−1ZTZ(ΨTZ)−1 . (19)

Considering that the optimal instrument Z is the noise-
free version of Ψ, (19) can be well approximated as

V ar(θ̂IV ) ' σ2(ZTZ)−1 , (20)

and therefore, optimizing a functional based on (16) or (17)
is effective also if the IV method is used. As a result, in
the simple regression model (11), an optimal experiment
design should maximize (17) or equivalently minimize (16).

Most of the design strategies that can be found in the
literature have as objective the minimization of some

functional ρ(V ar(θ̂)). Among them, the most common
criteria are (Walter and Pronzato (1990))

D-optimality: This optimality criterion requires to max-
imize the determinant of ΨTΨ. Since the determinant
is the product of the eigenvalues, which is inversely
proportional to the product of the axes of the confidence
ellipsoid, maximizing the determinant is equivalent to

minimize the volume of the confidence ellipsoid of θ̂.
E-optimality: It requires the maximization of the small-

est eigenvalue of the Fisher information matrix, equiv-
alent to maximizing the minimum eigenvalue of ΨTΨ.
Geometrically, the E-optimal design minimizes the max-

imum diameter of the confidence ellipsoids of θ̂.
A-optimality: This criterion seeks to minimize the trace

of (ΨTΨ)−1. It results in minimizing the average vari-

ance of the estimate θ̂.
Condition Number Minimization: This optimality cri-

terion minimizes the condition number for inversion of
the matrix ΨTΨ. Since the condition number is not
influenced by a scaling, the cost function must include
a penalty in order to improve the signal to noise ratio.

4.2 Noise Model Correction Filter

Equation (16) assumes that e(t) in (11) is a white noise.
However, in the satellite model (7), the noise term ν(t) can
be well approximated as

ν ' (γ s+ 1) e , (21)

where e is a white noise source, γ is a scalar value and s is
the differential operator (Nainer et al. (2019)). Therefore,
optimizing a functional based on (16) does not generate an
optimal maneuver. A solution consists in prefiltering (7):
a low-pass filter F (s) = 1

γ s+1 is therefore applied to both

sides of (7) to come up with

yf (t) = ψf (t)θ + νf (t) , (22)

where (·)f means that the signal is filtered by F (s).
For this filtered equation, the assumption of white noise
(νf (t) ∼ N(0, σ)) is “approximately” fulfilled. Therefore,
the scheme described in Section 4.1 can now be applied
to (22) and the variance to be minimized becomes

V ar(θ̂) = σ2(ΨT
f Ψf )−1 . (23)
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4.3 Including Physical Constraints in the Cost Function

Considering Section 4.1 and 4.2, the optimization consists
in the minimization of a functional ρ(·) based on one of
the possible criteria. For example, using the D-optimality
criterion, the following cost function can be formulated

ρD = −log
(
det
(
Ψf (ω, ω̇)TΨf (ω, ω̇)

))
. (24)

However, in addition to the minimization of the cost func-
tion, an optimal trajectory must also respect some physical
constraints (e.g. saturation of the platform actuators). A
simple solution consists in treating the system constraints
as soft constraints, and therefore adding some penalty
terms to the functional to be minimized that reach high
values when close to the saturation/physical limits.

First, the actuator constraints should be converted into
state constraints

|MC(t)| ≤Mmax ⇒ |ω̇(t)| ≤ ω̇max , (25)

|hC(t)| ≤ hmax ⇒ |ω(t)| ≤ ωmax . (26)

Once the constraints are defined on ω and ω̇, the full cost
function to be minimized, making use of (23), (25), (26),
has the following form

ωref = arg min
ω

(
ρ
((

Ψf (ω, ω̇)TΨf (ω, ω̇)
))

+ penalty
)
,

(27)
where ρ(·) is a functional that will depend on the opti-
mization criterion and the penalty, containing the phys-
ical limitation and the initial and final conditions of the
maneuver, is defined as

penalty = K1(ω(t1)− ωinitial)6 +K1(ω(tN )− ωfinal)6+

+K2

∑
[Q(ω(tk), ωmax) +Q(−ω(tk),−ωmax)]+

+K3

∑
[Q(ω̇(tk), ω̇max) +Q(−ω̇(tk),−ω̇max)] ,

(28)

with

Q(x, threshold) =

{
0 x ≤ threshold
(x− threshold)6 x > threshold

.

(29)
and where K1, K2 and K3 are some constants to weigh the
different penalty terms. The summation in (28) should be
extended to a thick grid of points in order to ensure that
the constraints are respected for the whole signal. A better
approach is to exploit the spline convex hull property and
extend the summation for the penalty to the spline control
points ωcp,k.

This nonconvex optimization problem can be solved using
one of the available optimization tools. For this work we
used the optimization toolbox from Matlab.

5. NUMERICAL AND EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the maneuver design,
the method is firstly tested via Monte Carlo simulation.
Then, a real experiment is performed on a parabolic flight,
where the platform is commanded with the optimized
maneuver in a zero-G environment typical of a satellite.

5.1 Numerical Simulations

For the numerical simulations, the platform-satellite iner-
tia J was set to
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Fig. 1. Initial reference profile used for the optimization.
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Fig. 2. D-opt maneuver.[
0.022 0 0

0 0.022 0
0 0 0.027

]
[kgm2] , (30)

and the CMGs saturation limits have been set to
MC,x ≤ 0.040Nm

MC,y ≤ 0.040Nm

MC,z ≤ 0.047Nm


hC,x ≤ 0.0210Nms

hC,y ≤ 0.0210Nms

hC,z ≤ 0.0254Nms

. (31)

The initial and final angular velocity for the maneuver
were set equal to zero, while the experiment duration was
set to 5 s. Fig. 1 shows the basic reference profile used
as initial maneuver for the optimization algorithm. The
choice of this initial profile was based on the two main
conditions in order to avoid close to singular regressor: all
three axes should be excited and the maneuvers should
not be the same on different axes. The prefilter was set as

F (s) =
1

γ s+ 1
, (32)

where γ = 0.8. With a posteriori check we have verified
that, with this value of γ, the error νf becomes reasonably
white. Firstly, all the different criteria (see Section 4.1)
have been tested and compared. The main criterion pa-
rameters of the different maneuvers are shown in Table 1,
where it is clearly visible how the optimized maneuvers
have better “criterion” values with respect to the basic
profile. On the other hand, for this particular application,
the different optimization criteria do not yield significantly
different maneuver “properties”.

The practical advantage of the experiment design has been
studied via Monte Carlo simulations, where the satellite
inertia has been estimated both from the basic and the
optimized reference profile. Additionally, also a scaled
version of the basic profile is used in order to have the same
maximum angular velocity ω amplitude compared to the
optimized maneuver (|ωmax| ' 0.3 rad/s). This “scaled”
maneuver (ω∗

ref ) is simply the basic maneuver of Fig. 1

multiplied by 1.5 (ω∗
ref = 1.5 · ωref ). Since there is very
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Table 1. Main parameters for different opti-
mality criteria. The arrows indicate whether a

large ↑ or small ↓ value is better.

min. ↑
eig.value

trace ↓ det. ↑ cond. ↓
number

basic 0.099 21.27 0.0036 3.271

A-opt 1.663 2.431 330.6 1.546

D-opt 1.683 2.434 331.3 1.568

E-opt 1.746 2.528 253.8 1.465

C.N◦-opt 1.532 2.883 115.3 1.426

Table 2. Inertia estimates from the different
reference profiles [10−3kgm2]

J11 J22 J33 J23 J13 J12

basic
avg. 22.24 22.33 27.30 0.14 0.12 0.15
st.d. 1.12 1.67 1.30 1.27 1.01 1.20

scaled
avg. 22.14 22.15 27.15 0.05 0.05 0.05
st.d. 0.67 0.96 0.76 0.74 0.60 0.69

D-opt
avg. 22.12 22.11 27.02 0.04 0.10 0.01
st.d. 0.38 0.33 0.35 0.23 0.24 0.28

true 22.00 22.00 27.00 0.00 0.00 0.00
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Fig. 3. Box plot for the inertia estimate errors. In red the
results from the basic profile, in yellow the ones from
the scaled basic profile, and in blue the D-opt profile.

little difference among the different optimization criteria,
only the D-opt maneuver has been used (Fig. 2) in this
comparison. The noise standard deviation on the angular
velocity measurement was set as σ = 0.025 rad/s for each
of the three axes. As mentioned in Section 4, since the
regressor ψ(ω) is correlated with the noise ν (Jun et al.
(2010)), an IV method has been used to obtain consistent
estimates of the inertia parameters (Nainer et al. (2019)).
The results from a Monte Carlo simulation of 100 runs are
shown in Table 2 and in Fig. 3. The increase of accuracy
with the optimized reference profile is significant as it can
be observed from the much smaller standard deviation in
all the parameter estimates.

5.2 Zero-Gravity Experiment

Experiments have been performed on a real platform
developed by ISAE-SUPAERO and ONERA (Fig. 4).
The platform, named SCRAT-0g, has been tested on a
parabolic flight that simulated a close to zero gravity
environment. The purpose of this experiment was to test a
satellite attitude controller on a platform which simulates
a real satellite. The test has been repeated a few times,
collecting the values of angular rate (from the gyroscope)
and actuator angular momentum (generated by the 6
CMGs) at a sample rate of 16Hz. The gyroscope white

Fig. 4. A picture of the SCRAT-0g platform tested on
a parabolic flight (courtesy of ISAE SUPAERO and
ONERA).
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Fig. 5. Input-Ouput data from the zero-G experiment.

Table 3. Inertia Estimate from zero-G test
J11 J22 J33 J23 J13 J12

θ̂ [10−3kgm2] 20.04 21.26 25.75 0.09 0.04 1.08

θCAD [10−3kgm2] 20.80 20.80 26.00 0 0 0

noise had a standard deviation of σ = 0.095◦/s on each
axis. The experiment was in free floating, therefore, after
the platform release, the unavoidable relative motion with
respect to the airplane caused premature collisions with
the inner walls. Since the final part of the maneuver was
unusable, it was necessary to truncate the data. For the
inertia estimation, 5 experiment data have been used, with
a duration that varied from 2 s up to around 4 s. The
input-output data of the longest achieved experiment is
shown in Fig. 5. As for the simulation case, the inertia
has been estimated by an instrumental variable method
with a prefilter to deal with the derivatives in the system
equation and its effect on the noise. The final inertia has
been computed as a weighted average of the 5 different
estimates (Ljung (1999), Ch.14):

θ̂ = P

n∑
i

(
P (i)

)−1
θ̂(i) , P =

( n∑
i

(
P (i)

)−1
)−1

, (33)

where θ̂(i) is the i-th inertia estimate and P (i) is its cor-
responding covariance. The weighted average inertia esti-
mates, compared with the values of the CAD (computer-
aided design) model, are shown in Table 3.

In this case we do not have a true value for comparison
as for the simulations, but the inertia estimate is reason-
ably close to the nominal CAD values. Introducing the
estimated parameters in (7), it is possible to do a cross
validation by comparing the total torque (M − ω×hC)
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Fig. 6. Torque cross-validation: measured (solid lines),
“estimated” (dash-dot line).

with their effect on the system (ψ θ̂). This comparison is
depicted in Fig. 6, which shows a good match among the
signals. Both the experiment design and the inertia esti-
mate can be considered satisfactory, especially considering
the very short duration of the experiments.

6. CONCLUSION

In this work we addressed the problem of finding opti-
mal excitation maneuvers for the estimation of satellite
inertia parameters. After a B-spline signal representation
was introduced, a constrained nonlinear optimization was
formulated to generate the excitation maneuver. The per-
formance and practicability of the proposed approach has
been tested both through numerical simulations and in
a real experiment on a parabolic flight. The estimation
results demonstrate the effectiveness of the optimized ma-
neuver. Future works will consider the experiment design
for a typical satellite that allows for longer maneuvers, as
well as the use of null space excitation of the actuators to
better estimate the actuator alignments.
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