
Filterless Least-Squares Based Adaptive
Stochastic Continuous-Time Nonlinear Control ?

Wuquan Li ∗ Miroslav Krstic ∗∗

∗ School of Mathematics and Statistics Science, Ludong University,
Yantai 264025 China (e-mail: sea81@126.com).

∗∗Department of Mechanical and Aerospace Engineering, University of
California, San Diego, La Jolla, CA 92093 USA

(e-mail:krstic@ucsd.edu).

Abstract: In continuous-time system identification and adaptive control, the least-squares
parameter estimation algorithm has always been used with regressor filtering, in order to avoid
using time-derivatives of the measured state. Filtering adds to the dynamic order of the identifier
and affects its performance. We solve the problem of filterless least-squares-based adaptive
control for stochastic strict-feedback nonlinear systems with an unknown parameter in the drift
term. The novel ingredient in our least-squares identification is that the update law for the
parameter estimate is not a simple integrator but it also incorporates a feedthrough effect,
namely, the parameter estimator is of relative degree zero (rather than one) relative to the
update function. The feedthrough in the update law is a carefully designed nonlinear function,
which incorporates the integration with respect to state (and not time) of the regressor function,
the purpose of which is to eliminate the need for time-filtering of the regressor. Our backstepping
design of the control law compensates the adverse effect of the noise (the Hessian nonlinear term,
involving the diffusion nonlinearity, in the Lyapunov analysis) on the least-squares estimator.
Such a controller also enables a construction of an single overall Lyapunov function, quadratic in
the parameter error and quartic in the transformed state, to guarantee that the equilibrium at
the origin of the closed-loop system is globally stable in probability and the states are regulated
to zero almost surely.

Keywords: Adaptive control, Stability of nonlinear systems, Lyapunov methods, Stochastic
nonlinear systems, Filterless least-squares.

1. INTRODUCTION

Least-squares is an appealing method to identify unknown
parameters since it can adjust adaptive rates online so
that all parametric estimates converge with approximately
the same speed resulting in performance and robustness
advantages, see for instance Berghuis et al. (1995), Krstic
(2009) and Nguyen (2013).

The least-squares based stochastic adaptive control prob-
lem is first solved in Astrom and Wittenmark (1973) for
single-input single-output systems perturbed by filtered
white noise. For discrete-time stochastic systems, Kumar
and Moore (1982) presents a weighted least-squares ap-
proach in parameter estimation where the weightings are
selected according to a stability measure and guided by
a global convergence theory; Chen and Guo (1986, 1991)
study the convergence rate of least-squares identification
for autoregressive moving average with exogenous input
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(ARMAX) models. For continuous-time stochastic sys-
tems, Zhang and Caines (1996) uses least-squares based
switching control strategies to reduce the computational
load; Gao and Pasik-Duncan (1997) establishes the sta-
bility of first-order linear systems by using the weighted
least-squares algorithm without involving any excitations;
Duncan et al. (1999) modifies the weighted least-squares
algorithm by using a random regularization to ensure that
the family of estimated models are uniformly controllable
and observable. It should be emphasized that all the above-
mentioned results on the least-squares based adaptive
control of stochastic systems, are all focused on linear
systems. However, as demonstrated by Khalil (2002), most
physical systems have nonlinear terms of one sort or an-
other. Therefore, it is imperative to study the least-squares
identification and adaptive control of stochastic nonlinear
systems.

Motivated by the above observations, we study the least-
squares identification and adaptive control of stochastic
strict-feedback nonlinear system with an unknown param-
eter in the drift term. Specifically, we consider a class of
stochastic nonlinear systems described by

dxi = xi+1dt, i = 1, · · · , n− 1, (1)

dxn = (u+ ϕT1 (x)θ)dt+ ϕT2 (x)dω, (2)
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where x = (x1, . . . , xn)T ∈ Rn and u ∈ R are the system
state and control input. The functions ϕ1 : Rn → Rp

and ϕ2 : Rn → Rr are locally Lipschitz continuous in x,
ϕ1(0) = 0, ϕ2(0) = 0. θ ∈ Rp is an unknown parameter. ω
is an r-dimensional independent standard Wiener process
defined on the complete probability space (Ω,F ,Ft, P )
with a filtration Ft satisfying the usual conditions (i.e.,
it is increasing and right continuous while F0 contains all
P -null sets).

We provide in this paper three novel contributions:

(1) We propose a new least-squares identification scheme
in this paper. On the one hand, although our identifica-
tion scheme is motivated by Krstic (2009), the stochastic
character of the studied systems makes the least-squares
estimation scheme in Krstic (2009) inapplicable in this
paper. The main reason is that the estimator in Krstic
(2009) will produce uncontrollable Hessian terms by using
Itô’s formula. To overcome this difficulty, we propose a
new least-squares estimator by introducing weighted terms
equipped with design parameters. By suitably selecting
these estimator parameters, the controller can be endowed
with the ability to deal with these Hessian terms; On the
other hand, the least-squares estimator in this paper is also
essentially different from that in stochastic continuous-
time linear system Gao and Pasik-Duncan (1997) and
Duncan et al. (1999) where the differential dx of the system
state x is required to be measurable in the parameter
estimation procedure. In this paper, the information of
dx is not used in the estimators.

(2) We design a new adaptive controller. Specifically, the
controller designed in this paper not only can deal with
the Hessian terms produced by the least-squares estimator
and the system itself to guarantee that the equilibrium at
the origin of the closed-loop system is globally stable in
probability, but also have the ability to make the least-
squares estimator converge.

(3) In this paper, by introducing weighted terms with
design parameters, we guarantee the estimator to have the
property of convergence. This approach is different from
that in Duncan et al. (1999), which uses a slowly increasing
function as the weighted term in the estimator, and from
that in Gao (1996), which uses excitation conditions to
ensure convergence.

The remainder of this paper is organized as follows. In
Section 2, we first construct a least-squares estimator for
system (1)-(2). Then we design an adaptive controller in
Section 3, which follows in Section 4 with the stability
analysis of the closed-loop system. We finally end our
paper with some concluding remarks in Section 5.

2. PARAMETER ESTIMATION

Define

h(x1, · · · , xn) =
(
xn +

n−1∑
j=1

kjxj

)2
ϕ1(x1, · · · , xn), (3)

where k1, · · · , kn−1 are parameters to be designed later.

For system (1)-(2), we design a parameter estimator as

α̇=−ΓhϕT1 α− Γ

n−1∑
i=1

xi+1

xn∫
0

∂h(x1, · · · , xn−1, σ)

∂xi
dσ

−1

2
Γ
∂h

∂xn
|ϕ2|2 − Γhu, (4)

Γ̇ =−
(
xn +

n−1∑
j=1

kjxj

)2
Γϕ1ϕ

T
1 Γ,Γ(0) = ΓT (0) > 0, (5)

θ̂= α+ Γ

xn∫
0

h(x1, · · · , xn−1, σ)dσ. (6)

From (4) and (6) we have

α̇= ΓhϕT1 Γ

xn∫
0

h(x1, · · · , xn−1, σ)dσ

−Γ

n−1∑
i=1

xi+1

xn∫
0

∂h(x1, · · · , xn−1, σ)

∂xi
dσ

−1

2
Γ
∂h

∂xn
|ϕ2|2 − Γh(u+ ϕT1 θ̂), (7)

by which and (5)-(6) we obtain

dθ̂= ΓhϕT1 (θ − θ̂)dt+ ΓhϕT2 dw. (8)

Denote θ̃ = θ − θ̂, from (8) we have

dθ̃=−ΓhϕT1 θ̃dt− ΓhϕT2 dw. (9)

From (5) we have

dΓ−1(t)

dt
=
(
xn +

n−1∑
j=1

kjxj

)2
ϕ1ϕ

T
1 , Γ−1(0) > 0, (10)

which means that Γ−1(t) is a positive definite matrix and
Γ−1(t) ≥ Γ−1(0).

Defining Vθ̃ = θ̃TΓ−1θ̃, from (3), (5) and (9)-(10) we get

LVθ̃ =−2
(
xn +

n−1∑
j=1

kjxj

)2
θ̃Tϕ1ϕ

T
1 θ̃ + θ̃T ˙(Γ−1)θ̃

+
(
xn +

n−1∑
j=1

kjxj

)4
Tr{ϕ2ϕ

T
1 Γϕ1ϕ

T
2 }

≤−
(
xn +

n−1∑
j=1

kjxj

)2
θ̃Tϕ1ϕ

T
1 θ̃

+
(
xn +

n−1∑
j=1

kjxj

)4
Tr{ϕ2ϕ

T
1 Γ(0)ϕ1ϕ

T
2 }. (11)

Remark 1. A novel least-squares estimator is proposed in
(3)-(6), in which the time derivatives from the parametric
model is absorbed into the parameter estimator and thus
the need for filtering is removed. Although this kind of
estimator design is motivated by Krstic (2009) for deter-
ministic systems, the estimator in (3)-(6) is substantially
different from that in Krstic (2009). In fact, the estimator
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in Krstic (2009) is inapplicable for stochastic system (1)-

(2). Specifically, when the term
(
xn +

∑n−1
j=1 kjxj

)2
is

deleted from Γ̇ in (5) and is removed from h(x1, · · · , xn)
in (3), (4), (6), the estimator in this paper immediately
reduces to the parameter estimator used in Krstic (2009).
In this case, (11) becomes

LVθ̃ ≤−θ̃
Tϕ1ϕ

T
1 θ̃ + Tr{ϕ2ϕ

T
1 Γ(0)ϕ1ϕ

T
2 }. (12)

The Hessian term Tr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 } in (12) can neither

be damped by the negative term −θ̃Tϕ1ϕ
T
1 θ̃ nor be dealt

with by the controller due to the lack of weighted function-
s. To solve this difficult problem, we first introduce the ter-

m
(
xn+

∑n−1
j=1 kjxj

)2
into the estimator (3)-(6), then suit-

ably choose the design parameters k1, · · · , kn−1 by using
the controller gains α1, · · · , αn−1 designed in the next sub-
section. In this way, the Hessian term Tr{ϕ2ϕ

T
1 Γ(0)ϕ1ϕ

T
2 }

can be dealt with by the controller. More details are in the
next two subsections.

3. ADAPTIVE CONTROL DESIGN

In this subsection, we design an adaptive controller for
system (1)-(2) step by step.

Step 1. Define V1 = 1
4ξ

4
1 , ξ1 = x1, then we have

LV1 = ξ31(x2 − x∗2) + ξ31x
∗
2. (13)

Choosing

x∗2 = −c1ξ1 , −ξ1α1, (14)

which substitutes into (13) yields

LV1 = −c1ξ41 + ξ31(x2 − x∗2), (15)

where c1 > 0 is a design parameter and α1 = c1.

Deductive Step. Assume that at step k, there are a
proper and positive definite Lyapunov function Vk(ξ̄k) and
a set of virtual controllers x∗s+1 = −ξsαs, ξs = xs − x∗s,
s = 2, · · · , k, such that

LVk ≤ −
k∑
i=1

(ci − aik)ξ4i + ξ3k(xk+1 − x∗k+1), (16)

where ak,k = 0, αs and as−1,k are positive constants,
s = 2, · · · , k.

Let ξk+1 = xk+1 − x∗k+1. Noting that ξk+1 = xk+1 +∑k
s=1 αk · · ·αsxs, we have

dξk+1 =

(
xk+2 +

k∑
s=1

αk · · ·αsxs+1

)
dt. (17)

At step k + 1, choosing Vk+1 = Vk + 1
4ξ

4
k+1 and noting

xs+1 = ξs+1− ξsαs, s = 1, · · · , k, from (16)-(17) we obtain

LVk+1 ≤−
k∑
i=1

(ci − aik)ξ4i + ξ3kξk+1 + ξ3k+1xk+2

+ξ3k+1

k∑
s=1

αk · · ·αs(ξs+1 − ξsαs). (18)

By Young’s inequality (eq.(2.253) in Krstic et al. (1995))
we get

ξ3kξk+1 ≤ ak,k+1,1ξ
4
k +

27

256
a−3k,k+1,1ξ

4
k+1, (19)

k∑
s=1

αk · · ·αsξs+1ξ
3
k+1 ≤

k−1∑
s=1

as+1,k+1,2ξ
4
s+1

+

(
αk +

k−1∑
s=1

3

4
(4as+1,k+1,2)−

1
3 (αk · · ·αs)

4
3

)
ξ4k+1, (20)

−
k∑
s=1

αk · · ·αs+1α
2
sξsξ

3
k+1 ≤

k∑
s=1

as,k+1,3ξ
4
s

+

k∑
s=1

3

4
(4as,k+1,3)−

1
3 (αk · · ·αs+1α

2
s)

4
3 ξ4k+1, (21)

where ak,k+1,1, a2,k+1,2, · · ·, ak+1,k+1,2, a1,k+1,3, · · ·,
ak,k+1,3, are arbitrary positive constants.

Denoting

a1,k+1 = a1k + a1,k+1,3, (22)

ai,k+1 = aik + ai,k+1,2 + ai,k+1,3, i = 2, . . . , k − 1, (23)

ak,k+1 = akk + ak,k+1,1 + ak,k+1,2 + ak,k+1,3, (24)

and substituting (19)-(24) into (18) yields

LVk+1 ≤ −
k∑
i=1

(ci − ai,k+1)ξ4i + ξ3k+1(xk+2 − x∗k+2)

+ ξ3k+1x
∗
k+2 +

(
αk +

27

256
a−3k,k+1,1

+

k−1∑
s=1

3

4
(4as+1,k+1,2)−

1
3 (αk · · ·αs)

4
3

+

k∑
s=1

3

4
(4as,k+1,3)−

1
3 (αk · · ·αs+1α

2
s)

4
3

)
ξ4k+1. (25)

Choosing the virtual controller

x∗k+2 =−ξk+1

(
ck+1 + αk +

27

256
a−3k,k+1,1

+

k−1∑
s=1

3

4
(4as+1,k+1,2)−

1
3 (αk · · ·αs)

4
3

+

k∑
s=1

3

4
(4as,k+1,3)−

1
3 (αk · · ·αs+1α

2
s)

4
3

)
,−ξk+1αk+1, (26)

with which (25) can be rewritten as

LVk+1 ≤ −
k+1∑
i=1

(ci − ai,k+1)ξ4i + ξ3k+1(xk+2 − x∗k+2),(27)

where ck+1 > 0 is a design parameter and ak+1,k+1 = 0.

Step n. Defining ξn = xn + ξn−1αn−1, by (1), (2) and
(26) we have
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dξn =
(
u+ ϕT1 (x)θ +

n−1∑
i=1

αn−1 · · ·αixi+1

)
dt

+ϕT2 (x)dω. (28)

Choosing Vn = 1
4

∑n
i=1 ξ

4
i , from (28) we obtain

LVn ≤−
n−1∑
i=1

(ci − ai,n−1)ξ4i + ξ3n−1ξn

+ξ3n

(
u+ ϕT1 (x)θ +

n−1∑
i=1

αn−1 · · ·αixi+1

)
+

3

2
ξ2n|ϕ2|2. (29)

By Young’s inequality we have

ξ3n−1ξn ≤ an−1,n,1ξ4n−1 +
1

4

(
4

3
an−1,n,1

)−3
ξ4n, (30)

where an−1,n,1 is any positive constant.

Since ϕ2(0) = 0, ϕ2(x) can be written as ϕ2 = xTϕ20(x),
then we get

3

2
ξ2n|ϕ2|2

≤ 3

2
ξ2n(x21 + · · ·+ x2n)|ϕ20|2

≤ 3ξ2n(ξ21 + ξ22 + ξ21α
2
1 + · · ·+ ξ2n + ξ2n−1α

2
n−1)|ϕ20|2

≤ ξ2n(ξ21 + ξ22 + · · ·+ ξ2n)ϕ21

≤
n−1∑
i=1

ai,n,2ξ
4
i +

( n−1∑
i=1

1

4ai,n,2
ϕ2
21 + ϕ21

)
ξ4n, (31)

where ai,n,2 is any positive constant and ϕ21(x) is a
nonnegative function.

Substituting (30)-(31) into (29) we get

LVn ≤ −
n−1∑
i=1

(ci − ai,n)ξ4i

+ξ3n

(
u+ ϕT1 (x)θ +

n−1∑
i=1

αn−1 · · ·αixi+1

)

+

[
ϕ21 +

1

4

(
4

3
an−1,n,1

)−3
+

n−1∑
i=1

1

4ai,n,2
ϕ2
21

]
ξ4n, (32)

where

ai,n = ai,n−1 + ai,n,2, i = 1, . . . , n− 2, (33)

an−1,n = an−1,n−1 + an−1,n,1 + an−1,n,2. (34)

Choosing the actual controller as

u=−ξn
(

2 + ϕ21 +
1

4

(4

3
an−1,n

)−3
+

n−1∑
i=1

1

4ai,n,2
ϕ2
21 + 2Tr{ϕ2ϕ

T
1 Γ(0)ϕ1ϕ

T
2 }
)

−ϕT1 θ̂ −
n−1∑
i=1

αn−1 · · ·αixi+1, (35)

and substituting (35) into (32) yields

LVn ≤−
n−1∑
i=1

(ci − ai,n)ξ4i − 2ξ4n + ξ3nϕ
T
1 θ̃

−2ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }. (36)

4. STABILITY ANALYSIS

The first theorem below gives the stability results of the
plant (1)-(6).

Theorem 1. Consider the closed-loop system consisting of
the plant (1)-(6) and the controller (35). If the parameters
ki in (3) and ci in (26) are selected as

ki =

n−i∏
j=1

αn−j , i = 1, · · · , n− 1, (37)

ci = ai,n + 1, i = 1, · · · , n− 1, (38)

then the following conclusions hold:

1) The closed-loop system has an almost surely unique
solution on [0,+∞);

2) The equilibrium x = 0, θ̃ = 0 is globally stable in
probability;

3) lim
t→+∞

x(t) = 0 a.s..

Proof. From the controller design process developed in
the last subsection we have

ξn = xn +

n−1∑
i=1

xi

n−i∏
j=1

αn−j

 . (39)

By (37) and (39), (11) can be rewritten as

LVθ̃ ≤−ξ
2
nθ̃
Tϕ1ϕ

T
1 θ̃ + ξ4nTr{ϕ2ϕ

T
1 Γ(0)ϕ1ϕ

T
2 }. (40)

Substituting (38) into (36) we have

LVn ≤−
n∑
i=1

ξ4i − ξ4n + ξ3nϕ
T
1 θ̃

−2ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }. (41)

Choosing V = Vn + Vθ̃, from (40-(41) we get

LV ≤−
n∑
i=1

ξ4i − ξ4n + ξ3nϕ
T
1 θ̃ − (ξnϕ

T
1 θ̃)

2

−ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }

=−
n∑
i=1

ξ4i −
3

4
(ξnϕ

T
1 θ̃)

2 − ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }

−
(
ξ2n −

1

2
ξnϕ

T
1 θ̃

)2

. (42)

By (42) and Theorem 2.1 in Deng et al. (2001), that
conclusions 1)-2) hold and

lim
t→+∞

n∑
i=1

ξ4i = 0 a.s.. (43)

By (43) and the definitions of ξi we have
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lim
t→+∞

x(t) = 0 a.s., (44)

which means that conclusion 3) holds.

The following lemma provides a basic property of the
least-squares identification algorithm (3)-(6), which plays
an essential role in the verification of convergence of the
estimator. Due to the page limit, we omit its proof here.

Lemma 1. For the parameter estimator (3)-(6) with
(37), using the controller (35) satisfying (38), we have∫ +∞
0

(ξnϕ
T
1 θ̃)

2ds < +∞ a.s..

Based on Lemma 1, we get the main results on the
convergence of least-squares identification scheme (3)-(6).

Theorem 2. Using the controller (35) with (38), the
parameter estimator (3)-(6) and (37) has a convergence

property, i.e., θ̂(t) converges almost surely to a finite
vector-valued random variable θ0.

Proof. From (3), (5), (9) and (37) we have

Γ̇ =−ξ2nΓϕ1ϕ
T
1 Γ, Γ(0) = ΓT (0) > 0, (45)

dθ̃=−Γξ2nϕ1ϕ
T
1 θ̃dt− Γξ2nϕ1ϕ

T
2 dw. (46)

By (46) we obtain

θ̃(t) = θ̃(0)−
t∫

0

Γξ2nϕ1ϕ
T
1 θ̃ds−M2(t), (47)

where

M2(t) =

t∫
0

Γξ2nϕ1ϕ
T
2 dw. (48)

From (45) we get

t∫
0

ξ2nΓϕ1ϕ
T
1 Γds = Γ(0)− Γ(t) ≤ Γ(0), (49)

which means that

t∫
0

|ξnΓϕ1|2ds≤ Tr{Γ(0)}. (50)

It follows from (50) and Lemma 1 that∣∣∣∣∣∣
+∞∫
0

Γξ2nϕ1ϕ
T
1 θ̃ds

∣∣∣∣∣∣
≤

+∞∫
0

|Γξ2nϕ1ϕ
T
1 θ̃|ds

≤

 +∞∫
0

|ξnΓϕ1|2ds

1/2 +∞∫
0

(ξnϕ
T
1 θ̃)

2ds

1/2

< +∞ a.s.. (51)

For any r ≥ 0, defining the stopping time

σr = inf{t ≥ 0 : |θ̃|+ |x| ≥ r}. (52)

Obviously, σr → +∞ almost surely as r → +∞.

From (42) and (52) we have

E


t∧σr∫
0

ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }ds


≤ V (0)− EV (t ∧ σr) ≤ V (0). (53)

For (53), firstly set r → +∞ then set t → +∞, using
Fatou’s lemma, we get

E


+∞∫
0

ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }ds

 ≤ V (0). (54)

On the other hand, noting that Γ−1(0) > 0 we obtain

t∫
0

ξ4nTr{ϕ2ϕ
T
1 Γ(t)ϕ1ϕ

T
2 }ds

=

t∫
0

ξ4n|ϕ2|2Tr{ϕT1 Γ(t)ϕ1}ds

=

t∫
0

ξ4n|ϕ2|2Tr{ϕT1 Γ(t)Γ−1(t)Γ(t)ϕ1}ds

≥ λmin{Γ−1(0)}
t∫

0

ξ4n|ϕ2|2|Γ(t)ϕ1|2ds. (55)

From (5) we know 0 < Γ(t) ≤ Γ(0), then we have

t∫
0

ξ4nTr{ϕ2ϕ
T
1 Γ(t)ϕ1ϕ

T
2 }ds

≤
+∞∫
0

ξ4nTr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 }ds. (56)

By (54)-(56) we get

E


t∫

0

ξ4n|ϕ2|2|Γ(t)ϕ1|2ds


≤ 1

λmin{Γ−1(0)}
V (0) < +∞. (57)

By (57) and Fubini’s theorem, we have

E


t∫

0

|Γ(t)ξ2nϕ1ϕ
T
2 |2ds


=

t∫
0

E
{
|Γ(t)ξ2nϕ1ϕ

T
2 |2
}
ds

≤
t∫

0

E
{
ξ4n|ϕ2|2|Γ(t)ϕ1|2

}
ds
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= E


t∫

0

ξ4n|ϕ2|2|Γ(t)ϕ1|2ds


< +∞. (58)

Therefore, M2(t) defined in (48) is a continuous martin-
gale.

From (57)-(58) we get

sup
t≥0

E|M2(t)|2 ≤ 1

λmin{Γ−1(0)}
V (0) < +∞. (59)

By Doob’s martingale convergence theorem, we obtain

lim
t→+∞

M2(t) =M01, (60)

where M01 is a a random variable satisfying E|M01|2 <
+∞.

By (47), (51) and (60) we get

lim
t→+∞

θ̂(t) = θ0 a.s., (61)

where θ0 is a vector-valued random variable.

Remark 2. In this paper, by introducing the term
(
xn +∑n−1

j=1 kjxj

)2
into the estimator (3)-(6), we develop a new

least-squares identification scheme. The weighted term(
xn +

∑n−1
j=1 kjxj

)2
has the following advantages:

(1) From the proof of Theorem 1, we find that this weight-

ed term can make the Hessian term
(
xn +

∑n−1
j=1 kjxj

)4
·

Tr{ϕ2ϕ
T
1 Γ(0)ϕ1ϕ

T
2 } in (11) be easily dominated by the

controller (35).

(2) From the proof of Theorem 2, it is obviously that this
weighted term plays an important role in the convergence
of the estimator (3)-(6). In fact, as demonstrated by
Proposition 2 in Nassiri-Toussi and Ren (1994), even for
stochastic linear systems, if there is no any weighted term

in the least-squares algorithms, the boundedness of θ̂ can
hardly be guaranteed, much less the convergence.

5. CONCLUDING REMARKS

In this paper we have studied the least-squares identifi-
cation and adaptive control for stochastic strict-feedback
nonlinear systems with an unknown parameter in the drift
term. The designed controller guarantees that the equilib-
rium at the origin of the closed-loop system is globally
stable in probability and the states are regulated to zero
almost surely. By suitably selecting the estimator param-
eters, we prove that the proposed least-squares estimator
is convergent.

For the least-squares based adaptive control of stochastic
nonlinear systems, many important issues are still open
and worth investigating, such as the adaptive controls for
more general stochastic systems shown in Li et al. (2020).
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