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Abstract: In integrated circuit manufacturing industry, etch process is a complex nonlinear
batch process. Al stack etch is the penultimate layer of dry etch. Based on the specific steps
of the recipe, it has the multiphase characteristic and the can exhibit significantly different
behaviors over different phases. However, conventional fault detection methods cannot effectively
monitor Al stack etch process due to nonlinear and multiphase characteristics. Moreover, they
are usually modeled by normal process data. In Al stack etch process, fault process data can
be obtained from the datalog of equipments. In order to utilize these data, a novel nonlinear
fault detection method called fault-related multistage principal polynomial analysis (FMPPA)
is proposed in this work. FMPPA is efficient to deal with nonlinearity of the multiphase batch
process. Furthermore, it can make full use of fault data by decomposing original feature space
into three subspaces. FMPPA is applied to monitoring the Al stack etch process. Simulation
results demonstrate that FMPPA is superior to other methods.

Keywords: Fault detection, principle polynomial analysis, nonlinear multiphase characteristic,
Al stack etch process.

1. INTRODUCTION

The integrated circuit manufacturing industry is commit-
ted to producing chips with high technology and acces-
sional value which is the inevitable choice of any semi-
conductor enterprise. Etch process is a crucial section in
chip manufacturing, which significantly affects the chips
quality and yield (Cherry and Qin (2006); Zhang et al.
(2019); He and Wang (2011); Zhou et al. (2015)). Fault
detection has been a useful tool to reduce inferior products
and improve equipment productivity. Principal component
analysis (PCA) is one of the basic multivariate statis-
tical methods (Dong and Qin (2018); Ge (2013); Guo
et al. (2020)).For batch processes, Some modified PCA
approaches have been proposed, among which multiway
PCA (MPCA) model is the most widely used (Wise et al.
(1999); Smilde et al. (2001); Peres et al. (2019)). However,
MPCA-based approaches assume that the process is lin-
ear, which restricts their applications to nonlinear batch
processes.

In order monitor nonlinear batch processes, several non-
linear methods have been reported (Ge et al. (2011); Jiang
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and Yan (2018)). Fault detection can be considered as a
one-class classification problem, Ge et al. (2011) developed
a multiway support vector data description (MSVDD)
model for batch processes. Jiang and Yan (2018) proposed
a parallel PCACKPCA monitoring scheme for nonlinear
fault detection. The core concept of kernel-based meth-
ods is that the nonlinear relationship among variables in
the original space is most likely to be linear after kernel
mapping(Apsemidis et al. (2020)). However, the possibility
that the intrinsic nonlinear geometry structure of data may
reside on a manifold is not explicitly considered by kernel-
based methods. In addition, the kernel mapping may not
be a volume-preserving map, kernel-based methods cannot
guarantee invertibility of the transform (Laparra et al.
(2014)).

Al stack etch process is a typical multiphase batch process,
that means different steps of its recipe can be regarded as
different phases(Undey and Cinar (2002)). Thus, the above
multiway models are difficult to reveal the process changes
from phase to phase, as it takes the entire batch process
as a single object(Lu et al. (2010)). In consideration of
multiphase as an inherent nature of Al stack etch process,
each phase has its own underlying characteristics and
the process can exhibit diverse behaviors over different
phases. It is desirable to develop a multiphase model that
can reflect the inherent process phase nature to improve
the process understanding and monitoring efficiency. In
the Al stack etch process, process data are recorded
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in the datalog of equipments and experienced process
engineers can distinguish fault process data from normal
process data. For some specific faults, if fault process
data are available and used for model development, more
meaningful directions may be extracted for fault detection
which can improve monitoring sensitivity.

To address the above mentioned problems, a novel non-
linear fault detection method based on fault-related mu-
tiphase principal polynomial analysis (FMPPA) is devel-
oped. Two contributions this work are summarized as
follows:

(1) A multiphase principal polynomial analysis (MPPA)
model is constructed in different phases which learns a low-
dimensional data representation from process data based
on a sequence of principal polynomials. Compared with
MPCA, MPPA describes the process data by replacing the
straight line with curves in each phase which can capture
nonlinear and multiphase characteristics of the process.

(2) A fault detection method based on FMPPA is proposed
which can make the best use of fault process data by de-
composing the original feature space into three subspaces
and make the model more sensitive to specific faults.

The rest of this paper is organized as follows. Section 2
gives a brief introduction of PPA. In Section 3, a nonlinear
fault detection method based on FMPPA is proposed. In
Section 4, the proposed method is applied to an Al stack
etch process, and its application results are compared with
other methods. Conclusions and some outlooks are made
in Section 5.

2. THE BASIC PRINCIPLES OF PRINCIPAL
POLYNOMIAL ANALYSIS

Principle polynomial analysis (PPA) is a nonlinear feature
extraction algorithm which was proposed by (Laparra
et al. (2014)). PPA can not only extract the nonlinear
structure of data, but also has advantages of low complex-
ity, volume-preservation, and invertibility. As a general
form of PCA, its intrinsic idea is to model the directions of
maximal variance by means of curves, instead of straight
lines (see Fig. 1 in Zhang et al. (2018)). Given a data set
X0 ∈ Rm×n, where m denotes the number of variables,
n denotes the number of samples. PPA can be seen as a
sequential transform to calculate the principal polynomial
components:

(
X0

)
→

(
T1

X1

)
→

(
T1

T2

X2

)
· · · →


T1

T2

...
Tm−1
Xm−1


Ti = pT

i Xi−1
Xi = PT

i Xi−1 − M̂i

(1)

where Xi is the residual derived from the ith step, Ti

is the projection of Xi−1 onto the unit norm vector
pi ∈ R(m−i+1)×1, Pi ∈ R(m−i+1)×(m−i) consists of m −
i orthogonal column vectors, M̂i is an estimation of
the conditional mean. A polynomial function is used to
calculate M̂i at each step:

M̂i=WiVi (2)

where Wi ∈ R(m−i)×(di+1) is the polynomial coefficient
matrix, Vi ∈ R(di+1)×n is the Vandermonde matrix, di is
the degree of the polynomial function. Then, Wi can be
calculated by least squares method as follows

Wi=
(
PT
i Xi−1

)
V†i (3)

where † stands for the pseudoinverse operation. Then,
based on the minimum information loss criterion, the cost
function for pi measuring the dimensionality reduction
error can be written as follows:

pi = argminE
[∥∥PT

i Xi−1 −WiVi

∥∥2
2

]
s.t. PT

i Pi = I(m−i)×(m−i)
PT
i pi = ∅

Wi=
(
PT
i Xi−1

)
V†i

(4)

There are two ways to optimize the above loss function, the
PCA-based and gradient descent-based method. However,
both methods have their own limitations. The solution
of PCA-based method is suboptimal, and the gradient
descent-based method has higher computational burden.
For simplicity, the PCA-based method is used in this work.

3. NONLINEAR FAULT DETECTION BASED ON
FAULT-RELATED MULTIPHASE PRINCIPAL

POLYNOMIAL ANALYSIS

In this section, MPPA model is first developed, which
is a powerful nonlinear feature extraction technique for
multiphase processes. Then, a novel nonlinear process
monitoring method based on FMPPA is proposed.

3.1 Multiphase principal polynomial analysis

Al stack etch process is a representative nonlinear batch
process. Chips are produced wafer by wafer, that means
the process data is a three-order tensor X ∈ RI×J×K ,
where I is the number of wafers, J is the number of
process variables, and K is the number of samples in
each wafer. Because the three-order tensor cannot be
directly by PPA mode, they should be first unfolded
into a two-order matrix. Zhang and Li (2018) proposed
a multiway principal polynomial analysis method to solve
this problem. However, Al stack etch process is typically
conducted in a series of steps called multiple phases with
significantly different underlying behaviors. It is ill-suited
for multiphase Al stack etch process, as it takes each wafer
data as a whole, which is difficult to reveal the changes of
process correlation from phase to phase. Thus, a MPPA
model is developed to reflect the inherent phase nature in
this paper. The phase division is based on the recipe of
Al stack etch, that means each step of the recipe can be
regarded as a phase. The schematic of the transformation
technique from a three-order tensor to a series of two-order
matrices is shown in Fig. 1.

Assuming X̃c is the transformed two-order matrix of the
cth phase, and before constructing MPPA model, X̃c

should be first normalized:

Xc =
X̃c − X̃c

std
(
X̃c

) (5)

where X̃c, std
(
X̃c

)
, and Xc are the mean, standard

deviation, and preprocessed data of X̃c. Then, the PPA
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Fig. 1. Illustration of the transformation technique

model is performed on Xc. The ith principal polynomial
component (PPC) can be obtained as follows:

Tc,i = pT
c,iXc,i−1

Xc,i = PT
c,iXc,i−1 −Wc,iVc,i

(6)

where pc,i, Pc,i, Wc,i, and Vc,i are model parameters.

Let Tc = [Tc,1,Tc,1, . . .Tc,p]
T

denotes the PPC matrix,
where p is the number of retained PPCs. For process
monitoring, two novel statistics T 2

c and SPEc are derived
in the principal polynomial subspace (PPS) and residual
subspace (RS), respectively:

T 2
c = TT

c Λ−1c Tc

SPEc =
∥∥∥Xc − X̂c

∥∥∥2
= (Xc −PcTc)

T
(Xc −PcTc)

(7)

where Λc is the covariance matrix of PPCs, X̂c is the
reconstructed measurement of Xc. The threshold of T 2

c
and SPEc can be defined as:

T 2
α ∼

p (Nc − 1)

Nc − p
Fα (p,Nc − p)

SPEα ∼ gχ2
h,α g =

s

2µ
, h =

2µ2

s2

(8)

where T 2
α follows a scaled F -distribution with p and Nc−p

degrees of freedom, Nc = ncI is the number of samples
in the cth phase of all wafers, SPEα follows a chi-squared
distribution with h degrees of freedom at signification level
α, g is a weighted parameter, µ and s2 are the estimated
mean and variance of SPEc Qin et al. (2017).

3.2 Nonlinear process monitoring based on fault-related
Multiphase principal polynomial analysis

During the Al stack etch process, some specific faults may
occur in the chamber, and the fault data will be recorded
by sensors. Compared with massive normal data, a small
amount of fault data may contain more abnormal informa-
tion of the process. If they are used in the offline modeling,
the model sensitivity will be greatly improved. Based on
the analysis of MPPA, a nonlinear process monitoring
method based on FMPPA is discussed in this subsection.
The original feature space of MPPA consists of two sub-
space (PPS and RS). As an extension of MPPA, the PPS
of FMPPA are further divided into fault-related parts and
fault-unrelated parts, namely fault-related principal poly-
nomial subspace (FPPS), unrelated principal polynomial
subspace (UPPS). The details of FMPPA are as follows:

Assuming that Xf ∈ RIf×J×Kf is a certain fault data
collected from Al stack etch process. FPPA is performed
on both X and Xf . Take the cth phase for example, the
normal data Xc can be decomposed by FPPA as follows:

Xc=X̂c + Ec=PcTc + Ec (9)

where X̂c is the estimation of Xc, Pc is the load matrix, Ec
is the residual part. Then the fault data Xfc is projected
on Pc:

Tfc = PT
c Xfc

X̂fc = PcTfc
(10)

where X̂fc is the estimation of Xfc, Tfc is the PPC matrix

of Xfc. Perform FPPA on X̂fc with Rf PPCs:

X̂fc = PfcrTfcr + Efc (11)

where Rf = rank (Tfc), the subscript fcr denotes fault-
related part in the cth phase. The directions with largest
fault variances in FPPA monitoring subspace are decom-
posed in this way.

Project X̂c on Pfcr, namely Tcr = PT
fcrX̂c. In order to

find the changes between normal and fault data, a ratio
vector is defined as follows:

RT (i) =
var (Tfcr (i))

var (Tcr (i))
i = 1, 2, . . . , Rf (12)

where var(•) is denotes the variance of scores, Tfcr (i) and
Tcr (i) are the ith column of Tfcr and Tcr, respectively.
Then the values of RT are arranged in descending order.
The first value represents the direction along which the
largest changes from normal condition to faulty condition
are revealed. The threshold of RT (i) is 1. Keep the di-
rections with values of larger than 1 which are the fault-
related directions. Assume Pck is the fault-related load
matrix which is composed of fault-related directions ex-
tracted from Pfcr. Then fault-related and fault-unrelated
score matrix can be calculated as follows:

Tck = PT
ckX̂c

Tco = PT
coX̂co = PT

co

(
X̂c −PckTck

) (13)

where X̂co is fault-unrelated estimation of Xc, Pck is
the fault-unrelated load matrix. Based on FMPPA, the
original data space of Xc can be decomposed into tree
subspace by FMPPA algorithm:

Xc=X̂ck + X̂co + Ec
=PckTck + PcoTco + Ec

(14)
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In order to detect faults, the T 2 and SPE statistics are
calculated as follows:

Tck
2 = TT

ckΛ−1ck Tck

Tco
2 = TT

coΛ
−1
co Tco

SPE∗c =
∥∥∥Xc − X̂ck − X̂co

∥∥∥2
= (Xc −PckTck −PcoTco)

T
(Xc −PckTck −PcoTco)

(15)
where Λck and Λco represent the covariance matrix of fault-
related PPCs and fault-unrelated PPCs, respectively. The
thresholds of corresponding statistics can be calculated
referring to (8).

In summary, flowchart of FMPPA is shown in Fig. 2 and
the procedures are illustrated as follows:
(1) Off-line modeling
Step 1: Normal data X and fault data Xf are collected.
Step 2: The phases are divided based Al stack etch recipe.
Step 3: The FMPPA monitoring model is established in
each phase.
Step 4: The thresholds of Tck

2, Tco
2, and SPE∗c are calcu-

lated in each phase.
(2) On-line monitoring
Step 5: New test data Xnew is collected for online moni-
toring.
Step 6: Xnew is divided into certain phases referring to the
Al stack etch recipe.
Step 7: The Tck

2, Tco
2, and SPE∗c statistics of each phase

are calculated based on FMPPA model.
Step 8: The faulty condition is detected if the statistics
exceed the corresponding thresholds.

4. CASE STUDY ON AL STACK ETCH PROCESS

In this section, Al stack etch process data is used to
validate the effectiveness of the proposed method. The
simulation results were compared with MPCA and SVDD.

4.1 Al stack etch process

In integrated circuit manufacturing industry, the etch pro-
cess is a highly sophisticated nonlinear process, which
significantly affects the wafer quality. This work was fo-
cused on an Al stack etch process performed on the Lam
9600 TCP etch tool. The Al stack etch is the penultimate
layer of dry etch, and its processing purpose is to etch Al
/Cu/TiN/oxide stack with plasma. The processing recipe
consist of 6 steps. The first two are for gas flow and
pressure stabilization. Step 3 is a brief plasma ignition
step. Step 4 is the main etch of the Al layer terminating
at the Al endpoint, with step 5 acting as the over-etch
for the underlying TiN and oxide layers. Step 6 vents the
chamber. In this work, Steps 4 and 5 are considered as
Phase 1 and Phase 2. The process variables used in this
work are shown in Table 1.

4.2 Simulation and analysis of the proposed method

In this subsection, two test datasets with 100 samples
(50 samples from Phase 1 and 50 samples from Phase 2)
are introduced to verify FMPPA. In order to illustrate
the feasibility and effectiveness of FMPPA, the proposed
method is compared with MPCA and MSVDD. Table 2
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Fig. 2. Flowchart of FMPPA

Table 1. Machine state variables used for fault
detection

No. Variable description No. Variable description

1 BCl3 flow 10 RF power
2 Cl2 flow 11 RF impedance
3 RF bottom power 12 TCP tuner
4 Endpoint A detector 13 TCP phase error
5 Helium pressure 14 TCP impedance
6 Chamber pressure 15 TCP top power
7 RF tuner 16 TCP load
8 RF load 17 Vat valve
9 Phase error

shows the fault detection rates (FDRs) of MPCA, MSVDD
and FMPPA. Obviously, FMPPA has the highest FDRs in
both Case 1 and Case 2. The simulation results show that
FMPPA outperforms the other two methods.

Case 1: in the first test dataset, a time-varying fault occurs
in the 10th variable, i.e., RF power. There is a drift shift
at the 35th sample and then the process returns to normal
from 75th sample. The monitoring results of MPCA are
shown in Fig. 3 (a). T 2 and SPE statistics can detect the
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Table 2. Detection rates of MPCA, MSVDD,
and FMPPA

Case No.
MPCA MSVDD FMPPA

T 2 SPE D Tck
2 Tco

2 SPE∗
c

Case 1 0.8750 0.8250 0.9250 0.9750 0 0.9500
Case 2 0.6625 0.6875 0.8250 0.9625 0 0.9500

fault at the 40th and 42nd sample, respectively. The delay
time is about 5 to 7 sample intervals. Meanwhile, SPE
statistic has many false alarm samples before the fault
occurrence. The FDRs of both statistics are lower than
90%. Fig. 3 (b) shows the monitoring result of MSVDD.
The time-varying fault can be detected at the 38th sample.
There are four false alarm samples in D statistic. The
monitoring results of FMPPA is shown in Fig. 3 (c).
Instead of a fixed threshold, the thresholds of FMPPA
are varied in different phases. Compared with MPCA and
MSVDD, Tck

2 and SPE∗c statistics can detect the fault
earlier and have fewer false alarms. Tco

2 statistic is under
the threshold since this statistic reflects the fault-unrelated
parts. From Fig. 3, it can be concluded that FMPPA can
effectively detect the time-varying fault and eliminate false
alarms when the process is under normal condition.

Case 2: in the first test dataset, a step fault occurs in the
15th variable, i.e., TCP top power, from the 21st sample
until the end of the process. The monitoring results are
shown in Fig. 4. MPCA cannot effectively detect this
fault. Both T 2 and SPE statistics have lots of missing
alarms in Phase 1 as shown in Fig. 4 (a). They go beyond
the thresholds from around the 45th sample with a time
delay of 25 sample intervals. The monitoring result of
MSVDD is presented in Fig. 4 (b). There are still many
missing alarms since the fault occurrence, even though the
detection rate is higher than MPCA. Fig. 4 (c) shows the
monitoring result of FMPPA. Evidently, the monitoring
performance of the proposed method is much better than
that of MPCA and MSVDD. It has the highest FDR in
Tck

2 and SPE∗c statistics. FMPPA can detect the fault
with a time delay less than five sampling times. The
aforementioned simulation results and analyses demon-
strate that FMPPA has superior monitoring performance
for Al stack etch process with nonlinear and multiphase
characteristics.

5. CONCLUSION

In this paper, a novel nonlinear fault detection method
based on FMPPA is proposed for Al stack etch process.
The proposed method can detect faults more accurately
and reduce false alarm rate with the following actions.
Firstly, taking advantages of Al stack etch recipe, the
process can be divided into different phase. Then fault
data are utilized to extract fault information, and original
space are further divided into three monitoring subspaces
in each phase. Finally, the proposed method is applied to
the Al stack etch process and compared with other process
monitoring methods. The simulation results significantly
demonstrate that MPCA and MSVDD have more false
alarms and the monitoring performance of FMPPA is more
sensitive to specified faults. However, the phase division of
the proposed method is based on knowledge (Al stack etch
recipe), which is unsuitable for industrial processes with
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Fig. 3. Fault detection results of Case 1: (a) MPCA, (b)
MSVDD, (c) MPPA

unknown mechanism. The phase division method based on
data-driven will be studied in the future.
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