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Abstract: In this paper, we present a novel prescribed-time fault-tolerant control method for
a class of nonlinear systems with time-varying unmodeled actuator faults. Non-affine actuator
failures and uncertain control direction can be addressed in a universal control framework,
where any prior information about faults is not required in control design. We show that, with
the proposed control scheme, the system trajectory can converge to a user-defined residual-set
within prescribed settling time. The requirements on pre-assigned rapidity and accuracy can
be simultaneously satisfied, leading to the settling time and convergence set only determined
by fewer user-defined parameters rather than approximation errors, which is fundamentally
different from conventional finite/fixed-time control. Simulation and experiment results are
provided to validate the effectiveness of the proposed controller.

Keywords: adaptive control, prescribed-time stability, unmodeled actuator fault, fault-tolerant
control, nonlinear systems.

1. INTRODUCTION

Compared with asymptotic control, finite-time control
provides a new control framework to obtain an estimable
settling time. Because of more superior performance (i.e.,
convergence speed, robustness, and accuracy) than tradi-
tional asymptotic control, corresponding definitions Bhat
and Bernstein (2000); Yu et al. (2005); Shen and Xia
(2008); Zheng et al. (2011); Hu and Jiang (2018) and appli-
cations Wang et al. (2018); Van et al. (2017); Li and Wang
(2013); Yang et al. (2015) have been extensively studied
in the field of finite-time control. However, the settling
time is dependent on system initial values, which indicates
that the settling time cannot be obtained once the initial
values are unknown or sensitive to external noise. To deal
with this issue, as an extended concept, fixed-time stability
Polyakov (2012) was proposed to address the dependence
of settling time on initial conditions, and thus triggered
increasing subsequent researches Polyakov et al. (2015);
Chen and Li (2018); Wang et al. (2019); Yang et al. (2017);
Zuo et al. (2018); Ŕıos et al. (2017). By adjusting design
parameters, the system trajectory under fixed-time control
is driven to converge to a given set within predefined
? This research was supported by the National Natural
Science Foundation of China (Grant No. 61673239, 61703228);
Science and technology project of Shenzhen (Grant No.
JCYJ20160428182227081, JCYJ20160301100921349); Science
and Technology Planning Project of Guangdong Province (Grant
No. 2017B010116001). (Corresponding author: Zhang Chen)

time subject to control parameter constraints. It is noted
that, however, the settling time follows the restriction
of design parameters, and thus cannot be user-defined
arbitrarily though it is independent on initial conditions.
In addition, the so-called finite-time or fixed-time is often
the estimated bound of the actual settling time, which is
larger or far larger than the actual one. Featured by user-
defined settling time, prescribed-time stability Sánchez-
Torres et al. (2015); Fraguela et al. (2012) was proposed
recently for nonlinear system stabilization to realize that
the system trajectory was ensured to strictly converge
to zero within prescribed time Song et al. (2017); Wang
et al. (2019); Song et al. (2019), which achieved a higher
accuracy compared to finite/fixed-time control. However,
in terms of energy consumption, the convergence accuracy
is required to satisfy the predefined requirement, rather
than the excessive precision in practice. Limited by sensor
accuracy and actuator output, user-defined convergence
accuracy is more practical so that the aforementioned
methods would obtain limited performance. To the best
knowledge of the authors, there is no work aiming at
dealing with such issue.

Moreover, a premise that all actuators work properly is
widely utilized in the fore-mentioned literature. However,
external disturbances and systems uncertainties are in-
evitable for practical control systems such that actuators
are vulnerable to various faults. A classic fault-tolerant
control method is to estimate the boundary of partial
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loss of actuator effectiveness via universal approximation
approaches, such as fuzzy-logic systems (FLSs). The un-
known disturbance of state and input was discussed in
Li and Yang (2016), where the lumped uncertainty was
approximated by FLSs. With Takagi-Sugeno fuzzy mod-
els, an actuator-fault compensation control strategy Jiang
et al. (2010) was developed for attitude control systems.
Modeled as both loss of effectiveness and lock-in-place,
actuator faults existing in large-scale and stochastic non-
linear systems were compensated in Tong et al. (2014a,b),
respectively. However, there exist the following two is-
sues in the mentioned control methods. (1) These adap-
tive control schemes will become ineffective when dealing
with unmodeled nonlinear faults augmented by states and
control input. (2) In spite of bounded states realized in
the aforementioned approaches, the convergence set is de-
pendent on the approximation error. The above analysis
indicates that the fault-tolerant control with respect to
a more general actuator-fault form is more challenging,
and there has not been no work discussing prescribed-time
convergence in the framework of fault-tolerant control.

Motivated by the above discussion, we present a new
prescribed-time control method for a class of nonlinear
systems with unknown disturbances, uncertain control di-
rection and non-affine actuator faults. We show that, with
the developed control scheme, the prescribed-time conver-
gence of the tracking error into a user-defined residual-set
is guaranteed.

The remainder of this paper is organized as follows. Sec.
2 introduces the definition of practically prescribed-time
stability and the corresponding property. Sec. 3 gives the
prescribed-time fault-tolerant control strategy. In Sec. 4
simulation and experiment results show the effectiveness
of the proposed controller, followed by the conclusion in
Sec. 5.

2. PRELIMINARIES

2.1 Time-varying piece-wise function

To achieve prescribed-time stabilization, we introduce a
time-varying scaling piece-wise function as follows

ς(t) =

{
exp (α (t0 + T − t))− 1, t ∈ [t0, t0 + T )

1− tanh (α (t− t0 − T )) , t ∈ [t0 + T,+∞)
(1)

where exp(·) and tanh(·) represent the exponential and
hyperbolic tangent function, respectively. T denotes the
prescribed settling time such that T ≥ Ts > 0, in which Ts
represents the time consuming of signal transmission and
processor computing. α is a user-defined positive constant.
t0 stands for the initial time. Note that ς(t) is piece-wise
monotonically decreasing to zero. In addition, the time
derivative of ς(t) can be obtained as below

ς̇(t) =

{
−α (ς(t) + 1) , t ∈ [t0, t0 + T )

α
[
(1− ς(t))2 − 1

]
, t ∈ [t0 + T,+∞)

(2)

which indicates that ς̇† , |ς̇(t)| is continuous at t = t0 +T ,
and then the smooth property of ς(t) is available.

2.2 Practically prescribed-time stability

Definition 1. (Sánchez-Torres et al. (2015); Fraguela et al.
(2012)) Consider a class of nonlinear systems

ẋ(t) = f(x(t), t) (3)

where x(t) ∈ U0 ⊂ Rn is the system state and f :U0 ×
R+ → Rn is a continuous-differential function. The origin
of (3) is prescribed-time stable (PTS) if it is fixed-time
stable and the settling time T is artificially designed such
that Ts ≤ T ≤ Tmax < +∞.

Definition 2. (Wang et al. (2020)) The origin of (3) is
called to be practically prescribed-time stable (PPTS) if
‖x(t)‖ ≤ ε for t ≥ t0 +T , where ε and T are pre-specified,
and Ts ≤ T ≤ Tmax < +∞.

Lemma 1. (Wang et al. (2020)) If there exists a positive-
definite continuous-differential function V (x(t), t) : Rn ×
R+ → R+ and scalars b > 0, c ≥ 0, 0 ≤ η < +∞ such that

V̇ ≤ −bV − 2
ς̇†

ς
V +

η

ς
+ c, (4)

then the trajectory of the system (3) is PPTS with D =
{x |V (x) ≤ η/α} holding for t ≥ t0 + T .

Remark 1. The prescribed settling time and convergence
domain are simultaneously available in Lemma 1, which
extends the concept of PTS. In addition, with η = 0, c = 0,
we have D = {x |V (x) ≤ 0}, leading to x = 0 for t ∈ [t0 +
T,+∞). Thus, the origin of system (3) is PTS. Therefore,
PTS is a special case of PPTS, which is more universal to
carry out stability analysis and control synthesis.

Remark 2. For the finite-time stabilization issue of sys-
tems with unknown disturbance, practically finite-time
stability Shen and Xia (2008) and finite-time uniformly ul-
timately boundedness Hu and Jiang (2018) were proposed
to give a parameter-dependent convergence set. However,
the convergence domain is dependent on the upper-bound
of disturbances. By contrast, the residual set in Lemma
1 can be uniform, only dependent on two user-defined
parameters rather than upper-bound of disturbances.

3. PRACTICALLY PRESCRIBED-TIME
CONTROLLER DESIGN

We consider a class of nonlinear systems with parametric
and non-parametric uncertainties, and unmodeled actua-
tor faults

ẋi(t) = Bi(x̄i(t), t)xi+1(t) + θT
i (t)fi(t) + hi(x̄i(t), t),

i = 1, 2, ..., n− 1,

ẋn(t) = dnBn(x̄n(t), t)ϕ(u(t), x̄n(t))

+ θT
n (t)fn(t) + hn(x̄n(t), t),

(5)

where xi(t) ∈ Rm is the state vector; Bi(x̄i(t), t) ∈
Rm×m is the unknown gain function with x̄i(t) =

[x1(t)
T
, ..., xi(t)

T
]
T

; θT
i (t) ∈ Rm×p is the unknown time-

varying function while fi(t) ∈ Rp×1 is known nonlinear
function vector; hi(x̄i(t), t) is the unknown non-parametric
disturbance, and ϕ(u(t), x̄n(t)) : Rm × Rnm → Rm is
the control input with unmodeled actuator faults. dn ∈
{−1, 1} denotes the unknown control direction.

Assumption 1 (Jin (2017)). There exist upper and lower
bounds for the unknown gain function, that is γ

i
≤

‖Bi(x̄i(t), t)‖ ≤ γ̄i , i = 1, 2, ..., n, where γ
i

and γ̄i are
unknown constants.

Assumption 2 (Jin (2019)). The unknown functions θi(t)
and hi(x̄i(t), t) are bounded such that ‖θi(t)‖ ≤ θ̄i,
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‖hi(x̄i(t), t)‖ ≤ h̄i, i = 1, 2, ..., n, where θ̄i and h̄i are
unknown constants.

Assumption 3 (Zhang and Guay (2003)). ∂ϕ(u,x̄n)
∂u 6= 0

and there exist unknown positive constants such that
π ≤ ‖∂ϕ(u, x̄n)/∂u‖ ≤ π̄ and π? ≤ ‖ϕ(u, x̄n)‖ ≤ π̄?.
Remark 3 : Since the measured states are subject to specific
physical range, Assumptions 1-2 are rational in accord
with practical applications. The conventional assumption
that unknown gain functions are symmetric is relaxed in
(5). Different from conventional actuator faults discussed
in Jiang et al. (2010); Tong et al. (2014a,b); Jin (2017,
2019), the nonlinear and non-affine fault with respect to
control input and states is considered in this paper, which
is a more general form including saturation and dead-zone
nonlinearity Hu et al. (2008).

Define the desired state variable as xid(t) ∈ Rm , which
is bounded, continuous, and differentiable up to the n-th
order, and the tracking error is represented by ei(t) =
xi(t) − xid(t). The control objective can be stated as
follows. For the nonlinear system (5), design the control
scheme to achieve that the tracking error converges into a
prescribed range within prescribed time.

We present the design procedure by back-stepping ap-
proach, which consists of n steps. For brevity, the argu-
ment presented in (t) and (x̄i(t), t) will be omitted later.

Step 1 : Define z1 = e1 and z2 = x2 − ρ1, where ρ1 is the
virtual stabilizing function to be designed later. The time
derivative of z1 gives

ż1 = B1 (z2 + ρ1) + θT
1 f1 + h1 − ẋ1d. (6)

Define Vz1 = 1
2z

T
1 z1. Taking the time-derivative of Vz1 and

substituting (6) into it yield

V̇z1 = zT
1 B1z2 + zT

1 B1ρ1 + zT
1 θ

T
1 f1 + zT

1 h1 − zT
1 ẋ1d. (7)

Note that in (7), we have

zT
1 θ

T
1 f1 ≤ ‖z1‖ θ̄1 ‖f1‖ < ε1θ̄1 + θ̄1

zT
1 z1f

T
1 f1√

zT
1 z1fT

1 f1 + ε2
1

, (8)

zT
1 h1 ≤ ‖z1‖ h̄1 < ε1h̄1 + h̄1

zT
1 z1√

zT
1 z1 + ε2

1

, (9)

where εi > 0 is a small positive constant for i = 1, 2, ..., n.

Substituting (8)-(9) to (7) yields

V̇z1 ≤ zT
1 B1z2 + zT

1 B1ρ1+zT
1 Θ1ξ1 − zT

1 ẋ1d + ε1(θ̄1 + h̄1),
(10)

where Θ1 =
[
θ̄1Im, h̄1Im

]
, ξ1 =

[
zT1 f

T
1 f1√

zT1 z1f
T
1 f1+ε21

,
zT1√

zT1 z1+ε21

]T

,

Im is the m-dimensional identity matrix.

For the third term on the right side of (10), one has

zT
1 Θ1ξ1 < ε1Θ̄1 + Θ̄1

zT
1 z1ξ

T
1 ξ1√

zT
1 z1ξT

1 ξ1 + ε2
1

, (11)

where ‖Θ1‖ < Θ̄1 with Θ̄1 being an unknown constant.

Define the Lyapunov function candidate as

V1 = Vz1 +
1

2σΘ̄1

˜̄Θ2
1 +

γ
1

2σβ1

β̃2
1 , (12)

where ˜̄Θi = Θ̄i − ˆ̄Θi, β̃i = βi − β̂i, and 1/γ
i

= βi

for i = 1, 2, ..., n − 1. ˆ̄Θi and β̂i are the estimation
value of Θ̄i and βi, respectively. σΘ̄i

and σβi
are designed

parameters. Taking derivative of (12) with respect to time
and introducing (10)-(11) into it yield

V̇1 ≤ zT
1 B1z2 + zT

1 B1ρ1 + Θ̄1
zT

1 z1ξ
T
1 ξ1√

zT
1 z1ξT

1 ξ1 + ε2
1

− zT
1 ẋ1d + ε1(θ̄1 + h̄1 + Θ̄1) +

1

σΘ̄1

˜̄Θ1
˙̄̃
Θ1 +

γ
1

σβ1

β̃1
˙̃
β1.

(13)

Design the virtual stabilizing function as

ρ1 = − β̂2
1z1ρ̄

T
1 ρ̄1√

β̂2
1z

T
1 z1ρ̄T

1 ρ̄1 + ε2
1

(14)

with

ρ̄1 = ˆ̄Θ1
z1ξ

T
1 ξ1√

zT
1 z1ξT

1 ξ1 + ε2
1

− ẋ1d

+

(
k1 +

ς̇†

ς

)
z1 −

η

ς

z1

‖z1‖2 + ε2
1

(15)

where k1 and η are positive tunable parameters.

Note that the following inequality holds

zT
1 B1ρ1 ≤ −γ1

β̂2
1z

T
1 z1ρ̄

T
1 ρ̄1√

β̂2
1z

T
1 z1ρ̄T

1 ρ̄1 + ε2
1

≤ ε1γ1
− γ

1
zT

1 β̂1ρ̄1.

(16)

Therefore, with (13)-(16), we have

V̇1 ≤ zT
1 B1z2 − γ1

zT
1 β̂1ρ̄1 + Θ̄1

zT
1 z1ξ

T
1 ξ1√

zT
1 z1ξT

1 ξ1 + ε2
1

− zT
1 ẋ1d −

1

σΘ̄1

˜̄Θ1
˙̄̂
Θ1 −

γ
1

σβ1

β̃1
˙̂
β1 + c1

(17)

where c1 = ε1

(
θ̄1 + h̄1 + Θ̄1 + γ

1

)
.

Construct the adaptive laws as below

˙̄̂
Θ1 = σΘ̄1

[
zT

1 z1ξ
T
1 ξ1√

zT
1 z1ξT

1 ξ1 + ε2
1

− ˆ̄Θ1

]
, (18)

˙̂
β1 = σβ1

[
zT

1 ρ̄1 − β̂1

]
. (19)

Then, substituting (15) into (17) and applying (18)-(19)
yield

V̇1 ≤ zT
1 B1z2 −

(
k1 +

ς̇†

ς

)
zT

1 z1 +
η

ς

+ ˜̄Θ1
ˆ̄Θ1 + γ

1
β̃1β̂1 + c1

= zT
1 B1z2 − 2

(
k1 +

ς̇†

ς

)
V1 +

η

ς
+ k1

(
1

σΘ̄1

˜̄Θ2
1

+
γ

1

σβ1

β̃2
1

)
+
ς̇†

ς

(
1

σΘ̄1

˜̄Θ2
1 +

γ
1

σβ1

β̃2
1

)
+ ˜̄Θ1

ˆ̄Θ1 + γ
1
β̃1β̂1 + c1.

(20)

Note that the following inequality holds
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˜̄Θ1
ˆ̄Θ1 = ˜̄Θ1(− ˜̄Θ1 + Θ̄1)

≤ − ˜̄Θ2
1 +

1

2
˜̄Θ2

1 +
1

2
Θ̄2

1

= −1

2
˜̄Θ2

1 +
1

2
Θ̄2

1.

(21)

Let σΘ̄1
= σβ1

= 2k1 + 2α
(

1
ς(t) + 1

)
, then we have from

(21) that

k1

σΘ̄1

˜̄Θ2
1 +

ς̇†

ς

1

σΘ̄1

˜̄Θ2
1 + ˜̄Θ1

ˆ̄Θ1

≤
˜̄Θ2

1

σΘ̄1

(
k1 +

α(1 + ς(t))

ς(t)

)
− 1

2
˜̄Θ2

1 +
1

2
Θ̄2

1

=
1

2
Θ̄2

1.

(22)

And in the same manner with (21)-(22), we have

k1

γ
1

σβ1

β̃2
1 +

ς̇†

ς

γ
1

σβ1

β̃2
1 + γ

1
β̃1β̂1 ≤

β1

2
. (23)

Let c̄1 = c1 + 1
2 Θ̄2

1 + β1

2 , by employing (20)-(23), and then
one can obtain

V̇1 ≤ zT
1 B1z2 − 2k1V1 − 2

ς̇†

ς
V1 +

η

ς
+ c̄1. (24)

Step i(i = 2, 3, ..., n − 1) : Define zi+1 = xi+1 − ρi, where
ρi is the virtual stabilizing function to be designed later.
The time derivative of zi gives

żi = Bizi+1 +Biρi + θT
i fi + hi − ρ̇i−1 (25)

where

ρ̇i−1 =

i−1∑
j=1

∂ρi−1

∂xj

(
Bjxj+1 + θT

j fj + hj
)

+$i (26)

with

$i =

i−1∑
j=1

∂ρi−1

∂β̂j

˙̂
βj +

i−1∑
j=1

∂ρi−1

∂ ˆ̄Θj

˙̄̂
Θj

+

i−1∑
j=1

∂ρi−1

∂x
(j−1)
1d

x
(j)
1d +

i−1∑
j=1

∂ρi−1

∂ς(j−1)
ς(j).

(27)

Define Vzi = 1
2z

T
i zi. Taking the derivative of Vzi and

combining it with (25) give

V̇zi =zT
i Bizi+1 + zT

i Biρi + zT
i θ

T
i fi + zT

i hi − zT
i $i

− zT
i

i−1∑
j=1

∂ρi−1

∂xj

(
Bjxj+1 + θT

j fj + hj
)
.

(28)

Similarly with (8)-(9), we have

zT
i θ

T
i fi ≤ ‖zi‖ θ̄i ‖fi‖ < εiθ̄i + θ̄i

zT
i zif

T
i fi√

zT
i zif

T
i fi + ε2

i

(29)

zT
i hi ≤ ‖zi‖ h̄i < h̄iεi + h̄i

zT
i zi√

zT
i zi + ε2

i

(30)

and

− zT
i

i−1∑
j=1

∂ρi−1

∂xj
Bjxj+1

≤
i−1∑
j=1

γ̄j
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

‖xj+1‖2√
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

‖xj+1‖2 + ε2
i

+

i−1∑
j=1

εj γ̄j ,

(31)

− zT
i

i−1∑
j=1

∂ρi−1

∂xj
θT
j fj

≤
i−1∑
j=1

θ̄j
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

‖fj‖2√
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

‖fj‖2 + ε2
i

+

i−1∑
j=1

εj θ̄j ,

(32)

− zT
i

i−1∑
j=1

∂ρi−1

∂xj
hj

≤
i−1∑
j=1

h̄j
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

√
‖zi‖2

∥∥∥∂ρi−1

∂xj

∥∥∥2

+ ε2
i

+

i−1∑
j=1

εj h̄j .

(33)

Similarly with (10)-(11), we have

V̇zi ≤zT
i Bizi+1 + zT

i Biρi + zT
i Θiξi − zT

i $i

+

i∑
j=1

εj
(
θ̄j + h̄j

)
+

i−1∑
j=1

εj γ̄j
(34)

where Θi =
[
θ̄1Im, h̄1Im, γ̄1Im, ..., θ̄iIm, h̄iIm, γ̄iIm

]
, and

ξi =

 zT
i

∥∥∥∂ρi−1

∂x1

∥∥∥2

‖f1‖2√
‖zi‖2

∥∥∥∂ρi−1

∂x1

∥∥∥2

‖f1‖2 + ε2
i

,
zT
i

∥∥∥∂ρi−1

∂x1

∥∥∥2

√
‖zi‖2

∥∥∥∂ρi−1

∂x1

∥∥∥2

+ ε2
i

,

zT
i

∥∥∥∂ρi−1

∂x1

∥∥∥2

‖x2‖2√
‖zi‖2

∥∥∥∂ρi−1

∂x1

∥∥∥2

‖x2‖2 + ε2
i

, ...,
zT
i f

T
i fi√

zT
i zif

T
i fi + ε2

i

,

zT
i√

zT
i zi + ε2

i

, 0, ..., 0

]T

.

For the third term on the right side of (34), we have

zT
i Θiξi < εiΘ̄i + Θ̄i

zT
i ziξ

T
i ξi√

zT
i ziξ

T
i ξi + ε2

i

(35)

where ‖Θi‖ < Θ̄i, and Θ̄i is an unknown constant. Define
the Lyapunov function candidate for Step i

Vi = Vzi +
1

2σΘ̄i

˜̄Θ2
i +

γ
i

2σβi

β̃2
i . (36)

Then, the time-derivative of (36) becomes

V̇i ≤ zT
i Bizi+1 + zT

i Biρi − zT
i $i

+ Θ̄i
zT
i ziξ

T
i ξi√

zT
i ziξ

T
i ξi + ε2

i

+

i∑
j=1

εj
(
θ̄j + h̄j

)
+

i−1∑
j=1

εj γ̄j + εiΘ̄i +
1

σΘ̄i

˜̄Θi
˙̄̃
Θi +

γ
i

σβi

β̃i
˙̃
βi.

(37)
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Design the virtual stabilizing function as

ρi = − β̂2
i ziρ̄

T
i ρ̄i√

β̂2
i z

T
i ziρ̄

T
i ρ̄i + ε2

i

(38)

with

ρ̄i = ˆ̄Θi
ziξ

T
i ξi√

zT
i ziξ

T
i ξi + ε2

i

+

(
ki +

ς̇†

ς

)
zi −$i (39)

where ki is a positive tunable parameter for i = 1, 2, ..., n.

Note that the following inequality holds

zT
i Biρi ≤ −γi

β̂2
i z

T
i ziρ̄

T
i ρ̄i√

β̂2
i z

T
i ziρ̄

T
i ρ̄i + ε2

i

≤ εiγi−γiz
T
i β̂iρ̄i. (40)

From (37)-(40), one can obtain

V̇i ≤ zT
i Bizi+1 − γiz

T
i β̂iρ̄i − zT

i $i + Θ̄i
zT
i ziξ

T
i ξi√

zT
i ziξ

T
i ξi + ε2

i

+ ci −
1

σΘ̄i

˜̄Θi
˙̄̂
Θi −

γ
i

σβi

β̃i
˙̂
βi

(41)

where ci =
i∑

j=1

εj
(
θ̄j + h̄j + γ̄j

)
+ εiΘ̄i.

Construct the adaptive laws as

˙̄̂
Θi = σΘ̄i

[
zT
i ziξ

T
i ξi√

zT
i ziξ

T
i ξi + ε2

i

− ˆ̄Θi

]
, (42)

˙̂
βi = σβi

[
zT
i ρ̄i − β̂i

]
. (43)

By (42)-(43) and further simplification, (41) becomes

V̇i ≤ zT
i Bizi+1 − 2

(
ki + 2

ς̇†

ς

)
Vi + ki

(
1

σΘ̄i

˜̄Θ2
i +

γ
i

σβi

β̃2
i

)
+
ς̇

ς

(
1

σΘ̄i

˜̄Θ2
i +

γ
i

σβi

β̃2
i

)
+ ˜̄Θi

ˆ̄Θi + γ
i
β̃iβ̂i + ci.

(44)

Let σΘ̄i
= σβi

= 2ki + 2α
(

1
ς(t) + 1

)
for i = 2, ..., n,

similarly with (22)-(23), then we have

V̇i ≤ zT
i Bizi+1 − 2kiVi − 2

ς̇†

ς
Vi + c̄i (45)

where c̄i = ci + 1
2 Θ̄2

i + βi

2 .

Step n: Note that zn = xn−ρn−1, and the time derivative
of zn can be expressed as

żn =B̄nϕ(u, x̄n) + θT
n fn + hn

−
n−1∑
j=1

∂ρi−1

∂xj

(
Bjxj+1 + θT

j fj + hj
)
−$n

(46)

where $n =
n−1∑
j=1

∂ρi−1

∂β̂j

˙̂
βj +

n−1∑
j=1

∂ρi−1

∂ ˆ̄Θj

˙̄̂
Θj +

n−1∑
j=1

∂ρi−1

∂x
(j−1)

1d

x
(j)
1d +

n−1∑
j=1

∂ρi−1

∂ς(j−1) ς
(j); B̄n = dnBn. Define Vzn = 1

2z
T
n zn. Since

∂ϕ(u, x̄n)/∂u 6= 0, we can derive B̄n
∂ϕ(u,x̄n)

∂u 6= 0. Then by
the differential mid-value theorem, there exist u1 and u2

such that

ϕ(u, x̄n) = ϕ(u1, x̄n) + κ(u2, x̄n)(u− u1), (47)

where κ(u2, x̄n) = ∂ϕ(u,x̄n)
∂u |u=u2 ; u1 is the control input

in some operating point of interest; u2 = col{u2i} ∈
Rm, in which u2i ∈

[
min{u1i, ui},max{u1i, ui}

]
. Then

substituting (46)-(47) into V̇zn and further simplification
yield

V̇zn ≤ zT
n B̄nκ(u2, x̄n)u+ zT

n B̄n(ϕ(u1, x̄n)− κ(u2, x̄n)u1)

+ zT
nΘnξn − zT

n$n +

n∑
j=1

εj
(
θ̄j + h̄j

)
+

n−1∑
j=1

εj γ̄j .

(48)

From the Assumption 3, it follows that zT
n B̄nϕ(u1, x̄n) ≤

1
2z

T
n zn+ 1

2

∥∥B̄n∥∥2 ‖ϕ(u1, x̄n)‖2 ≤ 1
2z

T
n zn+ 1

2 γ̄
2
n(π̄?)2, which

means that (48) is equivalent to

V̇zn ≤ zT
n B̄nκ(u2, x̄n)u− zT

n B̄nκ(u2, x̄n)u1

+
1

2
zT
n zn + zT

nΘnξn − zT
n$n

+

n∑
j=1

εj
(
θ̄j + h̄j

)
+

n−1∑
j=1

εj γ̄j +
1

2
γ̄2
n(π̄?)2

(49)

where Θn =
[
θ̄1Im, h̄1Im, γ̄1Im, ..., θ̄nIm, h̄nIm, γ̄nIm

]
,

and

ξn =

 zT
n

∥∥∥∂ρn−1

∂x1

∥∥∥2

‖f1‖2√
‖zn‖2

∥∥∥∂ρn−1

∂x1

∥∥∥2

‖f1‖2 + ε2
n

,

zT
n

∥∥∥∂ρn−1

∂x1

∥∥∥2

√
‖zn‖2

∥∥∥∂ρn−1

∂x1

∥∥∥2

+ ε2
n

,
zT
n

∥∥∥∂ρn−1

∂x1

∥∥∥2

‖x2‖2√
‖zn‖2

∥∥∥∂ρn−1

∂x1

∥∥∥2

‖x2‖2 + ε2
n

, ...,

zT
n f

T
n fn√

zT
n znf

T
n fn + ε2

n

,
zT
n√

zT
n zn + ε2

n

]T

.

(50)

For the fourth term on the right side of (49), we have

zT
nΘnξn < εnΘ̄n + Θ̄n

zT
n znξ

T
n ξn√

zT
n znξ

T
n ξn + ε2

n

(51)

where ‖Θi‖ < Θ̄i, and Θ̄i is an unknown constant. Define
the Lyapunov function candidate for Step n as follows

Vn = Vzn +
1

2σΘ̄n

˜̄Θ2
n +

γ
n
π

2σβn

β̃2
n. (52)

Design the controller as

u = − β̂2
nznū

Tū√
β̂2
nz

T
n znū

Tū+ ε2
n

+ u1 (53)

where βn = 1/πγ
n
, and

ū = ˆ̄Θn
znξ

T
n ξn√

zT
n znξ

T
n ξn + ε2

n

+

(
kn +

ς̇†

ς
+

1

2

)
zn −$n.

(54)

Taking the time derivative of Vn and substituting (49)-(54)
into it yield

V̇n ≤− γnπz
T
n β̂nū+ Θ̄n

zT
n znξ

T
n ξn√

zT
n znξ

T
n ξn + ε2

n

− zT
n$n

− 1

σΘ̄n

˜̄Θn
˙̄̂
Θn −

γ
n
π

σβn

β̃n
˙̂
βn + cn

(55)
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where cn =
n∑
j=1

εj
(
θ̄j + h̄j

)
+
n−1∑
j=1

εj γ̄j + εn(Θ̄n + γ̄nπ̄) +

1
2 γ̄

2
n(π̄?)2. Design the adaptive laws

˙̄̂
Θn = σΘ̄i

[
zT
n znξ

T
n ξn√

zT
n znξ

T
n ξn + ε2

n

− ˆ̄Θi

]
, (56)

˙̂
βn = σβn

[
zT
n ū− β̂n

]
. (57)

Combining (56)-(57) into (55) and further simplification
yield

V̇n ≤ −zT
n

(
kn +

ς̇†

ς

)
zn + ˆ̄Θi

˜̄Θn + γ
n
πβ̂nβ̃n + cn. (58)

By the similar scaling manner with (22)-(23), we have

V̇n ≤ −2knVn − 2
ς̇†

ς
Vn + c̄n (59)

where c̄n = cn+ 1
2 Θ̄2

n+ βn

2 . The above back-stepping design
leads to the theorem as follows.

Theorem 2. For the system with parametric and non-
parametric uncertainties (5), if Assumptions 1-3 hold, the
controller (53) and adaptive laws (18)-(19), (42)-(43), (56)-
(57) are adopted, the system (5) is PPTS with the settling
time T , and the state trajectory is convergent to a compact
set D = {x1 |V1 ≤ η/α}.

Proof. Making use of (59) and Lemma 1, we show that
zn will converge to zero at t = t0 + T , which implies
the prescribed-time performance of zi−1. In an inductive

manner, we can obtain from (24) that V̇1 ≤ −2k1V1 −
2 ς̇
†

ς V1+ η
ς +c̄1, which means V1 ≤ η

α for t ≥ t0+T according
to the PPTS property, as stated in Lemma 1. Note that

Vz1 = 1
2z

T
1 z1 ≤ V1 ≤ η

α , then we have ‖e1‖ ≤
√

2η
α

for t ≥ t0 + T . Thus, the convergence domain follows
D = {x1 |V1 ≤ η/α} since the settling time reaches T ,
and the system trajectory will be kept in the prescribed
convergence domain. The proof is therefore completed.

Remark 4 : Compared to conventional fault-tolerant meth-
ods based on additive and multiplicative fault model Jiang
et al. (2010); Tong et al. (2014a,b); Jin (2017, 2019),
any prior information and dynamics model about actuator
failures are not required in the control design, which forms
a universal fault-tolerant control scheme to address non-
affine nonlinear actuator faults. Furthermore, the conver-
gence set only dependent on two predefined parameters is
realized via employing the scaling piece-wise function in
the framework of PPTS, which is substantially different
from that determined by estimation errors of faults.

4. SIMULATION AND EXPERIMENT

4.1 Simulation on wing rock motion with faults

To validate the effectiveness of the proposed prescribed-
time control scheme, the model Song et al. (2017) of wing
rock motion for airplanes flying at high angle of attack
is considered in the presence of time-varying and high-
frequency uncertainty, and random external disturbance

ẋ1 = x2

ẋ2 = θ1 + (θ2 + ∆θ2)x1 + (θ3 + ∆θ3)x2

+ (θ4 + ∆θ4) |x1|x2 + θ5 |x2|x2 + dϕ(u(t), x̄n(t)) + θ6

(60)
where x1 and x2 stand for the roll angle and rate, respec-
tively. θk(k = 1, 2..., 5) denote the nominal wind-tunnel pa-
rameters, while ∆θk(k = 2, 3, 4) represent the time-varying
uncertainty. The nominal part is set as θ1 = θ2 = θ3 = 1,
θ4 = 2, θ5 = 3, and θ6 is the random disturbance subject to
Gaussian distribution N(2, 1). In addition, the uncertain
part is set as below: ∆θ2 = cos(t)− 1, ∆θ3 = 2 sin(t)− 1,
∆θ4 = 10 sin(100t), ϕ(u) = (1 + 0.1 sin(0.2t))u, d = 1.
The control parameters are selected as α = 2, k1 = 20,
and k2 = 20. u1 = u(0) = 0. The control objective is to
track the reference signal x1d = 0rad, x2d = 0rad/s within
prescribed settling time and residual set. We consider the
following three cases with different initial conditions to
show the prescribed-time property of the proposed control
scheme.

Case 1: x1(t0) = 1rad, x2d = −1rad/s;

Case 2: x1(t0) = −0.95rad, x2d = 0.1rad/s;

Case 3: x1(t0) = 0.5rad, x2d = −0.2rad/s;

where t0 = 0s. The prescribed settling time and conver-
gence domain are set as T = 3s and η = 0.5, respectively.
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Fig. 1. The response of x1 under different initial conditions.
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Fig. 2. The response of x2 under different initial conditions.

Figs. 1-2 show the response of the roll angle driven
by the prescribed-time control scheme (53) with T =
3s. The prescribed-time convergence performance with
respect to different initial conditions is guaranteed. Besides
the prescribed-time property, convergence accuracy can be

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3892



0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

-1

-0.5

0

0.5

1

x
1
 (

ra
d
)

x
1d

x
1
 (Case1,T=3s)

x
1
 (Case2,T=2s)

x
1
 (Case3,T=1s)

Fig. 3. The response of x1 under different prescribed time.
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Fig. 4. The response of x2 under different prescribed time.

guaranteed (i.e., |x1| ≤ 2.5 × 10−3, |x2| ≤ 5.6 × 10−3,
t > 3s) even in the presence of high-frequency disturbance,
uncertainties and actuator faults. To further demonstrate
the prescribed-time property, we consider the case in which
the settling time is set as T = 1, 2, 3s with different
initial conditions, respectively, as illustrated in Figs. 3-
4. As seen in Fig. 3, the settling time can be uniformly
pre-specified with the guaranteed prescribed convergence
domain, which is illustrated in Table 1.

4.2 Experiment on three-DOF tele-robot system

The tele-robot system for the experiment, consisted of two
three-DOF manipulators, is developed (see Fig. 5), where
each degree of freedom is actuated by DYNAMIXEL MX-
106R powered by a 12V DC battery. RS485 standard is
used for asynchronous serial communication (Baud rate
up to 4.5Mbps). The encoder, mounted to the shaft of
motor side, is AS5045 Rotary Sensor, which is a 12-bit
rotary position sensor for absolute angular measurement
and with a PWM output over a full turn of 360o. An
additive fault between 0 and 15Nm is applied in the right-
side robot. The tracking response of master-slave tele-
robot system is depicted in Fig. 6, where qm1 and qs1
represent the joint position of the first joint of the master
(right side) and slave (left side), respectively. Limited by
the page length, only the response of the first joint position
is illustrated. It shows that, under the proposed controller,
the PPTS performance and robustness against random
actuator faults are ensured within prescribed settling time,
namely T = 3s.

Fig. 5. The tele-robot plant.
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Fig. 6. Tracking response of the first joint.

5. CONCLUSION

In this paper, the prescribed-time tracking problem of a
class of nonlinear systems subject to external disturbances
and actuator faults is investigated. An adaptive fault-
tolerant control scheme is developed to achieve practi-
cally prescribed-time convergence, featured by user-defined
settling time and residual-set. Unknown non-affine faults,
system uncertainties, external disturbances, and control
direction can be addressed in a unified control framework.
Detailed results have been presented to show the superior
performance of the proposed method.
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