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Abstract: The dynamics of wheel slip plays an important role in generation of traction forces,
responsible for driving a ground vehicle. It is important to take these dynamics into account
while designing control laws, in order to ensure stability of the autonomous vehicle. In this
paper, the longitudinal and lateral slip dynamics are modeled and incorporated in the vehicle
model. The key contribution of this paper is the design of a nonlinear hierarchical controller to
address the trajectory tracking problem in presence of combined longitudinal and lateral slip
dynamics. A Lyapunov based analysis is used to guarantee stability of the closed-loop system.
Simulation results are provided to demonstrate the efficacy of the proposed controller.

1. INTRODUCTION

The study of autonomous ground vehicles has attracted
significant attention in recent years. Particularly, control
design is an important aspect of research related to both,
autonomous ground vehicles as well as wheeled mobile
robot platforms. Typical problems in this context are
trajectory tracking and path tracking. The trajectory
tracking problem involves design of control laws such that
a time parameterized reference (i.e., a planned geometric
path with associated timing law) is tracked, while the
path tracking problem requires the vehicle to converge to
and follow a path without any timing law (Aguiar and
Hespanha (2007)).

Often, the longitudinal (cruise control) and lateral con-
trol (automated lane-keeping) aspects of path or trajec-
tory tracking problem are separately discussed (Rajamani
(2011)), where only the longitudinal slip dynamics is con-
sidered for longitudinal control and only the lateral slip dy-
namics for lateral control. The lateral controller is designed
under the constant longitudinal velocity assumption, for
which a linearized model of vehicle is obtained. Similarly,
a nonlinear lateral controller is designed in Jiang and As-
tolfi (2018), with the assumption of constant longitudinal
velocity. However, this assumption may not be reasonable
for the path tracking or the trajectory tracking problem,
particularly when longitudinal slip is also present. Without
the assumption of a constant longitudinal velocity, the
nonlinear coupling between the longitudinal and lateral
vehicle dynamics complicates the design of a stabilising
controller.

A hierarchical adaptive controller for path tracking prob-
lem involving autonomous vehicles is adopted in (Chen
et al. (2015)), which involves decoupling of high-level dy-
namics vehicle motion from the low-level dynamics of slip.
Although there has been considerable research on the path

tracking/lane following problem involving autonomous ve-
hicles, few results exist that address the trajectory tracking
problem. Unfortunately, the control design for the path
tracking problem does not trivially extend to the trajec-
tory tracking case, since the trajectory tracking problem
additionally requires to follow a timing law (Aguiar and
Hespanha (2007)).

A non-linear model predictive controller is proposed for
controlling an autonomous vehicle in (Falcone et al. (2007);
Quirynen et al. (2018)), considering longitudinal as well as
lateral slip dynamics. While there is a significant amount
of literature involving MPC based techniques to solve
the trajectory tracking problem in presence of combined
longitudinal and lateral slip, there is almost no attempt
to solve this problem in the framework of Lyapunov based
stability analysis, to the best of the authors’ knowledge.

Introducing the slip dynamics yields a unique coupled
structure of combined vehicle dynamics, which causes dif-
ficulties in designing both feedback linearization as well as
pure backstepping based strategies. The nonlinear, cou-
pled and switched nature of the wheel slip dynamics leads
to further challenges in control design. The key contribu-
tion of this paper is the design of a nonlinear hierarchical
controller to address the trajectory tracking problem for
an autonomous vehicle, in presence of longitudinal as well
as lateral slip dynamics, followed by a rigorous Lyapunov
based stability analysis.

2. DYNAMIC MODEL OF VEHICLE

2.1 Vehicle Body Model

A rear wheel drive electric vehicle is considered in this
study and the dynamics of the vehicle are modeled using
the ‘bicycle model’ (Margolis and Asgari (1991)) given by
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Fig. 1. Vehicle Model in Inertial and Non-Inertial Frames

Fig. 2. Tyre Model for Longitudinal Slip

mv̇x = mvyψ̇ + ΣFx (1)

mv̇y = −mvxψ̇ + ΣFy (2)

Iψ̈ = ΣM (3)

where vx,vy are the vehicle linear velocities and ΣFx
and ΣFy are the net forces along x and y directions,
respectively, ΣM is the net moment about the vertical
axis, m is the mass of the vehicle and I is its moment
of inertia about the vertical axis, and ψ̇ is the yaw rate.
The sideslip angle β represents the direction of resultant
velocity of the vehicle and is defined as

β = tan−1
vy
vx

(4)

The resultant velocity of the vehicle is given by

v = ||v|| =
√
vx2 + vy2 (5)

Fig. 1 shows the vehicle model in inertial (X−Y ) and non-
inertial (X ′−Y ′, X ′′−Y ′′) frames. The resultant velocity
v makes an angle θ = β + ψ with the the X-axis of the
inertial frame. The velocity in inertial (X − Y ) frame is
given by [

ẋ
ẏ

]
= v

[
cos θ
sin θ

]
(6)

where (x, y) is the position of centre of mass of the vehicle.

2.2 Tyre Model

For a tyre of radius r, rotating with angular velocity ω
and moving with velocity vlong as shown in Fig. 2, the slip
ratio λ is defined as (Rajamani (2011))

λ =


rω − vlong

rω
rω ≥ vlong andω, vlong 6= 0

rω − vlong
vlong

rω < vlong andω, vlong 6= 0
(7)

Considering the wheel coordinate axes (Xwheel − Ywheel)
as shown in Fig. 3, the force exerted by the wheel may
be represented as Fwheel = [Flong Flat]

T and the wheel
velocity may be represented as vwheel = [vlong vlat]

T ,
where vlong and vlat denote the longitudinal and lateral
components of the wheel’s velocity. For the rear tyre,
vlong = vx, since the rear tyre always remains aligned with
the longitudinal axis of the vehicle.

Fig. 3. Tyre’s Force, Velocity and Slip Angle α

Fig. 4. Free Body Diagram of Vehicle

The force exerted by the tyre, Fwheel, is given by Pacejka’s
tyre model (Bakker et al. (1987); Rajamani (2011); Falcone
et al. (2007)). For the sake of simplicity, it is desirable to
restrict the slip ratio in the region |λ| ≤ λ̄, where the
longitudinal force-slip ratio relationship is almost linear,
so the longitudinal force may be expressed as (Rajamani
(2011))

Flong = Cxλ (8)

where Cx is called the longitudinal stiffness of the tyre.
Similarly, the lateral or cornering force exerted by the tyre
depends on a quantity called ‘slip angle’. The slip angle α,
as shown in Fig. 3, is defined as Rajamani (2011)

α = tan−1
vlat
vlong

(9)

For |α| ≤ ᾱ, the lateral force-slip angle relationship
is almost linear. In this case, the lateral force may be
expressed as Rajamani (2011)

Flat = −Cyα (10)

2.3 Vehicle Dynamics

A free body diagram of the vehicle is illustrated in Fig.
4, where Faero = Cdvx

2 is the aerodynamic drag force,
Flong1,Flong2 are the longitudinal forces exerted by the two
rear tyres and Flat1, Flat2, Flat3, Flat4 are the lateral forces
exerted by the corresponding tyres shown in the figure.
The longitudinal and lateral forces exerted by each tyre
may be found using (8) and (10). Since the vehicle is a
rear-wheel drive, only the rear wheel’s longitudinal forces
are considered in Fig. 4. Considering the bicycle model, the

slip angle for each rear wheel is : α3, α4 = −(
vy−bψ̇
vx

) , and

for each front wheel is : α1, α2 = δ − (
vy+aψ̇
vx

). The lateral

force exerted at each wheel (Flat1, Flat2, Flat3, Flat4) may
be evaluated by substituting the corresponding wheel’s slip
angle in (10).

Combining the vehicle body model and the tyre model,
assuming small value of steering angle (δ), evaluating
slip ratio and slip angle at each wheel and finding the
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Fig. 5. Block diagram of the proposed nonlinear hierarchical trajectory tracking control system

corresponding tyre forces, the equations of motion for the
autonomous vehicle are obtained as

v̇x = vyψ̇ − Cdvx2 +
2Cx
m

λ (11)

v̇y = −vxψ̇ +
2(b− a)Cy

m

ψ̇

vx
− 4Cy

m
β +

2Cy
m

δ (12)

ψ̈ =
2Cya

I
δ +

2Cy(b− a)

I
β − 2Cy(a2 + b2)

I

ψ̇

vx
(13)

ω̇ =
1

J
(T − rCxλ) (14)

where Cd is the coefficient of aerodynamic drag, δ is the
steering angle input, T is the torque input to each wheel,
J is the moment of inertia of the wheel.

Differentiating (4) with respect to time yields

β̇ =
vxv̇y − vy v̇x
v2x + v2y

(15)

Differentiating (7) with respect to time and substituting
(11) and (14) yields

λ̇ =



− 1

vx

[
(1− λ)(vyψ̇ −

Cd
m
v2x +

2Cx
m

λ)

+
Cxr

2

J
λ(1− λ)2

]
+

r

Jvx
(1− λ)2T λ ≥ 0

− 1

vx

[
(1 + λ)(vyψ̇ −

Cd
m
v2x +

2Cx
m

λ)

+
Cxr

2

J
λ

]
+

r

Jvx
T λ < 0

(16)

Although the right hand side of (16) is a switching func-
tion, it is still continuous. Equations (11), (12), (13) and
(16) comprise the plant dynamics for control design.

Remark 1. The slip ratio dynamics in (16) are jerk-level
i.e. one order higher than the acceleration-level dynamics
in (11), so it is reasonable to use acceleration v̇x as
feedback for the control design.

Assumption 1. vx ≥ vmin > 0. This also implies from
(4) that β 6= π

2 .

Assumption 2. Slip ratio |λ| ≤ λ̄ and slip angle |α| ≤ ᾱ,
so that the longitudinal force-slip ratio and lateral force-
slip angle relationship are linear.

Assumption 1 is required for controllability of the system.
A similar condition is also encountered in (Oriolo et al.

(2002)), where a singularity may arise in the controller,
when a wheeled mobile robot attains zero velocity. As-
sumption 2 implies that (8) and (10) hold.

3. CONTROL DESIGN

3.1 Objective

For the given reference model :

ẋr = vr cos θr (17)

ẏr = vr sin θr (18)

θ̇r = wr (19)

with vr(t) ≥ vmin > 0 for all time t, the objective is for
q = [x y θ]T to track qr = [xr yr θr]

T .

Assumption 3. Reference speed vr(t) and reference yaw
rate wr(t) are bounded.

3.2 Hierarchical Control Design Procedure

A nonlinear hierarchical controller is proposed as illus-
trated in Fig. 5; the outer loop kinematic controller assigns
a desired linear velocity vc and angular velocity θ̇c based
on position error feedback, which are then fed into the
lateral and longitudinal subsystems. The lateral subsystem
involves an angular velocity controller, which assigns the
steering angle input δ, while the longitudinal subsystem
involves a cascade with two loops. The outer loop linear
velocity controller of the longitudinal subsystem assigns
the desired slip ratio λd, which is then used by the inner
loop slip ratio controller to generate the torque input T .

The tracking error in vehicle frame is given by

eq = R(qr − q) =

[
e1
e2
e3

]
=

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

[xr − xyr − y
θr − θ

]
(20)

where e3 ∈ [−π, π], since it is the orientation error. Then
the orientation tracking problem may also be expressed as
the problem of regulating sin( e32 ) to 0. In order to find the
kinematics, differentiating (20) with respect to time yields

ėq =

 θ̇e2 + vr cos e3
−θ̇e1 + vr sin e3

wr

− [1 0
0 0
0 1

] [
v

θ̇

]
(21)
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Step 1 : Auxilliary Velocity (Kinematic) Control Inputs

The auxilliary velocity inputs stabilising (21) are defined
as Kanayama et al. (1990)[

vc
θ̇c

]
,

[
vr cos e3 + k1e1

wr + k2vre2 + k3 sin e3

]
(22)

with k1, k2, k3 > 0. The error e4 for the virtual linear
velocity control is defined as

e4 , v − vc (23)

After substituting (22) and (23) in (21), the following
expression for ėq is obtained

ėq =

 θ̇e2 − k1e1 − e4
−θ̇e1 + vr sin e3
−k2vre2 − k3 sin e3

 (24)

Considering the following Lyapunov function candidate

V1 = k1(e21 + e22) + 2
k1
k2

(1− cos e3) (25)

The time derivative of V1 after substituting (24) is found
to be

V̇1 = −2k21e
2
1 − 2

k1k3
k2

sin2 e3 − 2k1e1e4 (26)

A virtual control for θ̇c was not considered here because
it is possible to perfectly track θ̇c, which gets clear in the
subsequent analysis. For this purpose, an error variable eθ̇
is introduced for θ̇c,

eθ̇ = θ̇ − θ̇c (27)

Since the right hand side of (27) contains θ̇, an expression

for θ̇ is obtained by differentiating θ = β +ψ with respect
to time and substituting (15),

θ̇ = β̇ + ψ̇ =
vxv̇y − vy v̇x
v2x + v2y

+ ψ̇ (28)

since the right hand side of (28) contains v̇y, which is
related to the steering angle control input δ in (12). At
this stage, δ is designed as

δ =
m

2Cy
(uay + vxψ̇)− (b− a)

ψ̇

vx
+ 2β (29)

where uay is a control term yet to be designed. Substituting
(29) in (12) yields

v̇y = uay (30)

Since it is desirable to design uay such that the remaining
terms get cancelled in (28), uay is designed as

uay =
vy v̇x
vx

+
v2x + v2y
vx

uβ (31)

where uβ is a control term yet to be designed. Substituting
(31) in (15) yields

β̇ = uβ (32)

Designing uβ as

uβ = −ψ̇ + θ̇c (33)

yields θ̇ = θ̇c, and therefore eθ̇ = 0.

Step 2 : Regulating e4

The time derivative of e4 from (23), is

ė4 = v̇ − v̇c = ar + e5 − v̇c (34)

where ar is the virtual control for acceleration and e5 is
the corresponding backstepping error, defined as

e5 , v̇ − ar (35)

The virtual control for v̇, stabilizing (34) in subsequent
analysis, is

ar = v̇c − k4e4 + 2k1k4e1 (36)

with k4 > 0, where v̇c is obtained after differentiating (22)
with respect to time.

v̇c = v̇r cos e3 − vr ė3 sin e3 + k1ė1 (37)

At this stage, consider the following Lyapunov function
candidate

V2 = V1 +
1

2k4
e24 (38)

The time derivative of V2 after substituting (36), (37) and
(35) is expressed as

V̇2 = −2k21e
2
1 − 2

k1k3
k2

sin2 e3 − e24 +
1

k4
e4e5 (39)

Step 3: Regulating e5

Since e5 involves v̇ in (35), it is required to find v̇, so (5) is
differentiated with respect to time and (4) is substituted
in the resultant expression. Then

v̇ = v̇x cosβ + v̇y sinβ (40)

Substituting (11) in (40) yields

v̇ = (vyψ̇ − Cdvx2 +
2Cx
m

λ) cosβ + v̇y sinβ

= (vyψ̇ − Cdvx2 +
2Cx
m

(uλ + eλ)) cosβ + v̇y sinβ

(41)

where uλ is the virtual control for λ and eλ is the
corresponding backstepping error, defined as

eλ = λ− uλ (42)

At this stage, uλ is designed as

uλ =
m

2Cx
(Cdv

2
x − vyψ̇ +

1

cosβ
(−v̇y sinβ + ar)) (43)

Substituting (43) in (41), and the resultant expression in
(35) yields

e5 =
2Cx
m

eλ cosβ (44)

The time derivative of e5, obtained after differentiating
(44) with respect to time is

ė5 =
2Cx
m

ėλ cosβ − 2Cx
m

eλβ̇ sinβ (45)

In order to find ėλ, (42) is differentiated with respect to
time.

ėλ = λ̇− u̇λ (46)

Since (46) contains λ̇ on the right hand side, it may be

recalled from (16), that λ̇ depends on the wheel torque
T , which is the actual control term. Since (16) consists
of a switching function, the wheel torque input T is also
designed appropriately as a switching function, to cancel
the switching terms.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6421



T =



Jvx
r(1− λ)2

[
uλ̇ +

1

vx

(
(1− λ)(vyψ̇

−Cd
m
v2x +

2Cx
m

λ) +
Cxr

2

J
λ(1− λ)2

)]
λ ≥ 0

Jvx
r

[
uλ̇ +

1

vx

(
(1 + λ)(vyψ̇

−Cd
m
v2x +

2Cx
m

λ) +
Cxr

2

J
λ
)]

λ < 0

(47)
where uλ̇ is a control term yet to be designed. It may be
observed that the expression for T in (47) is continuous, if
uλ̇ is continuous. In order to find the closed loop dynamics,
substituting (47) in (16) yields

λ̇ = uλ̇ (48)

The closed loop dynamics in (48) does not involve any
switching term. Substituting (48) in (46), and the resultant
expression along with (32) in (45) gives

ė5 =
2Cx
m

(uλ̇ − u̇λ) cosβ − 2Cx
m

eλuβ sinβ (49)

At this stage, uλ̇ is designed as

uλ̇ = u̇λ + eλuβ tanβ − k5e5 −
m

2Cx cosβ
e4 (50)

where k5 > 0. Since the right hand side in (50) contains
u̇λ, an expression for u̇λ needs to be found. Substituting
(36) in (43) gives

uλ =
m

2Cx
(Cdv

2
x−vyψ̇+

1

cosβ
(v̇c−k4e4 +2k1k4e1)) (51)

Differentiating (51) with respect to time, and substituting
(32), yields

u̇λ =
m

2Cx

[
2Cdvxv̇x − v̇yψ̇

+
1

cos2 β

(
(v̈c − k4e4 + 2k1k4ė1) cosβ

−(v̇c − k4e4 + 2k1k4e1)uβ sinβ
)] (52)

The right hand side of (52) contains v̈c, which is obtained
by differentiating (37) with respect to time

v̈c = v̈r cos e3−2v̇r ė3 sin e3−vr ë3+k1ė1−vr ė32 cos e3+k1ë1
(53)

Substituting (37) and (53) in (52) gives

u̇λ =
m

2Cx

[
2Cdvxv̇x − v̇yψ̇ +

1

cos2 β

(
(v̈r cos e3

−2v̇r ė3 sin e3 − vr ë3 + k1ė1 − vr ė32 cos e3 + k1ë1

−k4e4 + 2k1k4ė1) cosβ − (v̇r cos e3 − vr ė3 sin e3

+k1ė1 − k4e4 + 2k1k4e1)uβ sinβ
)]

(54)

where the expressions for ë1 and ë3 are obtained after
differentiating (24) as follows

ë1 = (ẇr + k2v̇re2 + k2vr ė2 + k3ė3 cos e3)e2+

(wr + k2vre2 + k3 sin e3)e2 − k1e1 − ė4
(55)

ë3 = −k2v̇re2 − k2vr ė2 − k3ė3 cos e3 (56)

These expressions along with (24) can be back-substituted
into (54), and the required control input T may be ob-
tained after further back-substituting u̇λ in (54) and then
back-subsituting the resultant expression for uλ̇ into (47).

For analysing stability of the closed loop system, the ex-
pression for ė5, found after substituting (50) in (49), is

ė5 = −2Cx
m

k5e5 cosβ − e4 (57)

At this stage, consider the following Lyapunov function
candidate

V3 = V2 +
1

2k4
e25 (58)

The expression for time derivative of V3, obtained after
differentiating (58) is

V̇3 = V̇2 −
2Cx
mk4

k5e
2
5 cosβ − e4e5

k4
(59)

Substituting the expression for V̇2 from (39) into (59),

V̇3 = −2k21e
2
1 − 2

k1k3
k2

sin2 e3 − e24 −
2Cx
mk4

k5e
2
5 cosβ (60)

It may be recalled at this stage, that cosβ > 0, since
β ∈ (−π/2, π/2). From (60), V̇3 is negative semi-definite,
implying that the error vector e = [e1 e2 e3 e4 e5]T is
bounded. Since e is bounded, it may be observed from (24),

(34), (37) and (57) that ||e|| and ||ė|| ∈ L∞, so V̈3 ∈ L∞.

Hence V̇3 is uniformly continuous, and since V3 is lower
bounded and V̇3 is negative semi-definite, by Barbalat’s
lemma, it follows that V̇3 → 0. Thus from the right hand
side of (60), it follows that [e1 e3 e4 e5]T → 0.

The orientation error derivative ė3 is uniformly continuous
as ë3 = −k2v̇re2 − k2vr ė2 − k3ė3 cos e3 ∈ L∞, because
of the fact that ||e|| and ||ė|| ∈ L∞, and vr ∈ L∞
according to Assumption 4. Using Barbalat’s lemma, it
follows that ė3 → 0. This implies with the use of (24) that
ė3 = −k2vre2 − k3 sin e3 → 0. Since e3 → 0 and vr > 0, it
follows that e2 → 0. Thus e = [e1 e2 e3 e4 e5]T → 0.

4. SIMULATION RESULTS

The control design procedure explained in Section III was
implemented in Simulink. The simulation considered a
Formula Style Rear-Wheel Drive Electric Car, used for
Formula Student competitions. The vehicle parameters
were considered as : m = 280, I = 85, Cd = 0.8, a =
1.2, b = 0.8, Cx = 30000, Cy = 20000, r = 0.235, J =
0.4 The following controller parameters were used in the
simulation : k1 = 50, k2 = 2, k3 = 30, k4 = 10, k5 =
0.5. A hyperbolic tangent shaped lane change reference
trajectory was considered for the simulation.

Fig. 6 (a) shows the actual and desired trajectories, 6 (b)
the longitudinal tracking error, 6 (c) the lateral tracking
error, 6 (d) the angular error, 6 (e) the torque input
and 6 (f) the steering angle input. It is evident from the
simulation results, that the reference trajectory is tracked
and all the tracking and backstepping errors converge to
zero.

5. CONCLUSION

A nonlinear hierarchical trajectory tracking controller is
proposed, for an autonomous ground vehicle with com-
bined longitudinal and lateral wheel-slip dynamics. The
stability of the closed-loop system is guaranteed using
Lyapunov analysis, and simulation results are provided to
demonstrate the efficacy of the controller. In this paper, it
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Fig. 6. (a)Desired and Actual Trajectories, (b) Longitudinal Tracking Error, (c) Lateral Tracking Error, (d) Angular
Tracking Error, (e) Torque Input and (f) Steering Input from the simulation result

is assumed that slip ratios and slip angles lie in a bounded
region such that they have a linear relationship with the
traction forces. It is also assumed that the longitudinal
velocity is greater than some positive constant, in order to
avoid singularity. The future goal of this work is to design
a controller, such that the longitudinal velocity remains
constrained to be greater than some positive constant, the
slip ratios and the slip angles are kept bounded in the
desired region, and the controller is robust to parametric
uncertainty.
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