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Abstract: In this paper, a light-weighted state-of-charge (SoC) estimator is proposed to ensure
the estimation accuracy as well as significantly reduce the computational effort. Specifically, the
sigma-delta (Σ∆) technique is employed to extract battery SoC under noisy measurements (up
to ± 100mV and 100mA) and validated under different battery aging conditions. Illustrative
results demonstrate that in this circumstance, the proposed estimator presents low sensitivity
to model accuracy and is also suitable for the non-Gaussian noises. Besides, the second-order
Σ∆ estimator is capable of achieving a satisfactory accuracy (RMSEs are all within 1.5% for
different aging batteries), while its computational effort is just 15% of that of the extended
Kalman filter. These features pave a solution to the design of a light-weighted SoC estimator
based on general micro-controller unit, further making the proposed Σ∆ estimator become
suitable for improving the reliability and practicability of battery management especially for
electrical vehicle applications.
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries have been widely utilized
in electrical vehicles (EVs), owing to their superiorities
such as high energy density and low self-discharging rate.
However, the driving distances of existed EVs are still
shorter in comparison with the petrol energy vehicles.
The batteries’ available energy would gradually decrease
during driving operations. All these elements increase the
users’ anxiety of driving distance, further hindering the
wide popularity of EVs. Therefore, to effectively monitor
battery remaining energy and available driving distance, a
compact but reliable battery management system (BMS)
is essential for real EV applications (Liu et al. (2019b)).

Battery state estimation is a preliminary but key function
module to improve the practicability of a BMS (Feng
et al. (2020b)). As a widely utilized factor to reflect the
percentage of the remaining energy/capacity of battery,
accurate state of charge (SoC) estimation is of extreme
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importance in advanced BMS (Dreef et al. (2018); Liu
et al. (2019a); Liu et al. (2020)). For EV applications, such
state information of battery could not only provide the
priori information for driving distance, but also benefit the
charging/heating design and energy management (Ouyang
et al. (2019b,a); Shang et al. (2019a,b); Liu et al. (2018b,
2016b)), further help to relief the user’s anxiety and
guarantee EV could work under reliable condition (Fang
et al. (2014)).

To date, extensive approaches have been proposed to
obtain battery SoC (Hu et al. (2019)). One straightforward
solution is the Coulomb counting approach to directly
calculate SoC in cases that the battery capacity, initial
SoC and current profiles could be precisely captured.
However, due to the inevitable measurement noise and the
variation of battery capacity under different aging cases,
it is generally difficult to online measure these parameters
accurately (Liu et al. (2017)). Therefore, the attempt has
been made to obtain battery SoC information by other
techniques such as battery model and estimator (Lin et al.
(2019)).

With the help of developed observers such as extended
Kalman filter (EKF) (Tang et al. (2016); Liu et al.
(2016a)), unscented Kalman filter (UKF) (He et al.
(2016)), particle fileter(PF) (Tang et al. (2019b)), and H-
Infinity (Yu et al. (2017)), a large amount of estimators
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have been designed to achieve reasonable SoC estimation
of battery based on proper models. For these observer-
based SoC estimation approaches, the computational ef-
fort and memory consuming are key issues to affect their
popularity. In general, engineers tend to use the mature
products that have been verified to be reliable for sev-
eral years to implement their design. The general micro-
controller unit (MCU) may not be always powerful to
support the advanced algorithms such as UKF, PF, ..., for
onboard SoC estimation (Hu et al. (2019)). In such case,
it is also imperative to design a suitable light-weighted
estimator for reducing the computation and memory bur-
dens of MCU especially for real EV applications. How-
ever, the existed light-weighted estimators such as the
Luenberger observer, proportional-integral (PI) observer,
sliding model observer(SMO), V-min EKF (EKF using
simple OCV-R models) still present some limitations.
For instance, original Luenberger observer would be the
most simple model-based observer but the SoC estima-
tion performance is generally poor (Hu et al. (2020)).
The improved gain-switching Luenberger observer and PI
observer could present better performance but the switch-
ing rule and PI parameters are required to be carefully
tuned. For the SMO, there would exist inherent chattering
problem for real-time SoC estimation (Xu et al. (2014)).
For the EKF, the estimation performance still highly relies
on the model accuracy and requires the Gaussian noise
assumption (Tang et al. (2016)). In light of this, how to
design an effective estimator to not only achieve satisfac-
tory estimation accuracy of battery SoC but also present
low computational cost is still an open but challenging
issue.

Based upon the above discussions, driven by the main
purpose to achieve a good trade-off between the estima-
tor’s performance and the corresponding computational
effort, a light-weighted SoC estimator through employing
the sigma-delta (Σ∆) technique is designed in this study.
Experimental results demonstrate that the proposed Σ∆-
based estimator is able to provide satisfactory SoC estima-
tion performance under different battery aging conditions.
In compariosn with the typical EKF, several distinguishing
features can be observed as: 1) Even using a simple battery
OCV-R model, the proposed Σ∆ estimator could achieve
better SoC estimation accuracy under different aging con-
ditions (RMSEs are all within 1.5%), which is enough for
general commercial BMS; 2) The computational effort of
this Σ∆ estimator is just 15% of that of the EKF; 3) This
Σ∆ estimator is an over-sampling based technique, which
could be suitable for non-Gaussian cases; 4) The proposed
estimator presents good robust and is less sensitive to the
model accuracy. These features make the proposed Σ∆-
based estimator become a promising candidate to achieve
light-weighted battery SoC estimation and enhance the
practicability of battery management for EV applications.

2. EXPERIMENTAL PLATFORM AND BATTERY
MODELLING

2.1 Experimental Platform

In order to collect suitable experimental data for battery
light-weighted SoC estimation test, the battery testing
platform with a schematic diagram as shown in Fig. 1 is

utilized in this study. This platform is composed of three
main components including a thermal chamber to set test
temperature, a battery test system to charge or discharge
batteries, and a host PC to control and monitor the
battery experimental process. More detailed information
of this platform can be found in Tang et al. (2019c,a),
which are not repeated here due to space limitations.

Fig. 1. Schematic diagram of battery experimental plat-
form ( Tang et al. (2019c)).

For this test, three SONYVTC5 batteries with a rated
capacity of 2.5Ah are utilized. These batteries’ capacity
present a degradation of 15% after 800 cycles with a
constant current-constant voltage (CCCV) charging and
constant current (CC) discharging cyclic operation from
Tang et al. (2020). To generate different aging states
of these batteries, the selected cells are aged with 100,
500, and 800 cycles, respectively. Under the 25◦C ambient
temperature, the capacities of these three cells (labeled
as #1, #2, and #3) are 2.392Ah, 2.168Ah and 2.056Ah,
respectively.

After setting the experimental platform, the QC/T 897-
2011 A.3 profile has been selected for parameter identifi-
cation, while the FUDS profile has been adopted to test
the SoC estimation performance of the three cells. The
corresponding current and voltage profiles are shown in
Fig. 2.

2.2 Battery modelling

There exists lots of equivalent circuit models with different
levels of accuracy and complexity to capture battery
electrical behaviours (Feng et al. (2020a)). To reflect the
benefits of our proposed SoC estimator, a simple OCV-
R battery model is utilized in this study to describe the
battery dynamics as

OCV = g(x) = a0 + a1 · x+ a2 · x2 + a3 · x3 + a4 · x4
(1)

Vt = f(x, I) = g(x) + I ·R (2)

where Vt is the battery terminal voltage, x stands for the
SoC, R is the resistance, and I is the current, whose value
is defined to be positive when charging the cell.

The battery referenced SoC at time k could be obtained
by typical Coulomb-counting method as

xk = x0 +

τ=k∑
τ=0

ητ · Iτ ·∆T
Cn

(3)
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Fig. 2. Modeling and testing profiles. (a): Modeling current
profile of cell#1. (b): Testing current profile of the
three cells; (c): Modeling voltage profile of cell#1; (d):
Testing voltage profile of the three cells.

where x0 is the battery initial SoC at time 0, ∆T stands
for the sampling interval with the unit of 1 second, Cn
represents the battery’s actual capacity, and η means the
Coulomb efficiency which is treated as 1 in this study.

To identify the parameters of Eq. (1), an offline nonlinear
curve fitting tool provided by Matlab is utilized (Jia-de
(2008)). With the load profile suggested by Q/T 897-2011
standard, the identification result of cell #1 is shown in
Fig. 3. It can be seen that this battery OCV-R model is
able to describe the battery performance with a reasonable
accuracy. However, the modeling error would become
larger than 100mV when the cell gets close to its fully-
discharged state.

Fig. 3. Model identification result.

3. METHODOLOGY

In this section, the proposed Σ∆-based estimator is de-
tailed, followed by a brief introduction of the benchmark-
ing EKF algorithm. To improve the readability of the
paper, the following subsection starts from the description
of the first-order Σ∆ estimator.

3.1 Sigma-Delta estimator

Σ∆ technique is a powerful technique to suppress the
measurement noise based on the oversampling technique
(Dagher et al. (2019)). We first introduce a first-order Σ∆
estimator. The structure of this first-order Σ∆ estimator
is illustrated in Fig. 4. It should be noted that the output
of the comparator is a binary value (0/1). Consequently,
the output of the battery OCV can only be binary. This
process is inherently linear. To fully use the nonlinear
battery model, a low-pass filter as described in (4) is
integrated into the loop. As a result, the input of f(·, ·)
is no longer binary values.

x̂k = x̂k−1 · (1− α) + xk · α (4)

Fig. 4. Structure of the first-order Σ∆ estimator.

Detailed implementation of this first order Σ∆ estimator
can be found in Algorithm 1.

Algorithm 1 First order Σ∆ estimator

1: procedure ẑ1:L = FoSDe(Vt,1:L, I1:L)
2: Initialize x̂10, ẑ0, α1, β, S

1
0 ;

3: for k = 1 : L do
4: v̂1k = f(x̂1k−1, Ik);

5: S1
k = S1

k−1 + (Vt,k − v̂1k);

6: if S1
k > 0 then

7: CM1 = 1;
8: else
9: CM1 = 0;

10: end if
11: x̂1k = x̂1k−1 · (1− α1) + CM1 · α1;
12: ẑk = ẑk−1 · (1− β) + CM1 · β;
13: end for
14: end procedure

Following the above process, the structure of the second-
order Σ∆ estimator for battery SoC estimation can be then
derived, which is shown in Fig. 5. Different from the first-
order one, another Σ∆ part with an integrator, comparator
and low-pass filter is integrated into the structure, further
resulting in another feedback path for the voltage from
model. Detailed implementation of this second order Σ∆
estimator are illustrated in Algorithm 2.

3.2 Benchmarking algorithm

To evaluate the estimation performance of proposed Σ∆
estimator, a standard EKF with the simple battery OCV-
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Fig. 5. Structure of the second-order Σ∆ estimator.

Algorithm 2 Second order Σ∆ estimator

1: procedure ẑ1:L = SoSDe(Vt,1:L, I1:L)
2: Initialize x̂10, x̂

2
0, ẑ0, α1, α2, β, S

1
0 , S

2
0 ;

3: for k = 1 : L do
4: v̂1k = f(x̂2k−1, Ik);

5: S1
k = S1

k−1 + (Vt,k − v̂1k);

6: if S1
k > 0 then

7: CM1 = 1
8: else
9: CM1 = 0

10: end if
11: x̂1k = x̂1k−1 · (1− α1) + CM1 · α1;

12: v̂2k = f(x̂1k, Ik);
13: S2

k = S2
k−1 + (v̂2k − v̂1k);

14: if S2
k > 0 then

15: CM2 = 1;
16: else
17: CM2 = 0;
18: end if
19: x̂2k = x̂2k−1 · (1− α2) + CM2 · α2;
20: ẑk = ẑk−1 · (1− β) + CM2 · β;
21: end for
22: end procedure

R model is also utilized as the benchmarking algorithm.
For paper completenesss, a brief process of EKF is illus-
trated in Algorithm 3. We suggest the authors to refer to
Liu et al. (2018a); Tang et al. (2016) for more details.

Algorithm 3 Extended Kalman filter

1: procedure ẑ1:L = EKF(Vt,1:L, I1:L)
2: Initialize P0,Q,R,A,B,D, ẑ0
3: for k = 1 : L do
4: z−k = A · ẑk−1 + B · Ik;

5: Ck = ∂f
∂x |x=z−k

6: P−
k = A ·P ·AT + Q;

7: Kk = P−
k ·CT

k · (Ck ·P−
k ·CT

k + R)−1;

8: zk = z−k + K · (Vt,k − f(z−K , Ik));

9: Pk = (I−Kk ·C) ·P−
k ;

10: end for
11: end procedure

4. EXPERIMENTAL RESULTS

This section verifies the performance of developed Σ∆
estimator under different battery aging conditions. With
the model built on cell #1, the SoC estimators have been
tested on all three batteries using an FUDS profile.

For the configurations of the first and second order Σ∆
estimator, the initial SoC is set as 60%, which means x̂10 =
x̂20 = ẑ0 = 0.6. The filtering factors are set as α1 = 0.03,
α2 = 0.3, β = 0.005, respectively. The initial value of
integrator is set as: S1

0 = S2
0 = 0. For the algorithm

comparison purpose, the initial SoC of EKF is also set as
60%. Other key parameters of EKF are initialized as P =
0.25, Q = 10−4, R = 25, respectively. To quantitatively
analyse estimators’ performance, three common utilized
indicators including the root-mean-square error (RMSE
[%]), the maximum-absolute error (MAE [%]) and the
operating time (OT [ms]) according to Liu et al. (2019) are
utilized in our study. It should be known that the RMSE
and MAE are calculated from 2000 second to the end of
the test. OT is calculated by Matlab in this study.

After using our developed estimators to estimate battery
SOCs, all estimation results are shown in Fig. 6-8, while
the corresponding performance indicators are illustrated
in Table 1. According to these experimental results, some
observations could be made.

Fig. 6. SoC estimation result of cell #1.

First, although minor chattering problem (about ±1%)
exists, the RMSE and MAE indicators of the second
order Σ∆ observer is competitive to that of the EKF.
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Fig. 7. SoC estimation result of cell #2.

Fig. 8. SoC estimation result of cell #3.

Table 1. Algorithm performance

#1 #2 #3
RMSE MAE OT RMSE MAE OT RMSE MAE OT

EKF 1.71 4.99 534 1.57 3.97 486 1.22 2.92 393
Σ∆-1st 1.70 5.27 24 1.66 5.28 24 1.52 4.60 21
Σ∆-2nd 1.41 3.50 55 1.02 3.91 48 0.84 2.75 43

Quantitatively, the operating time of Σ∆ observer is only
15% of that of the EKF. After convergence process, the
error of the second order Σ∆ observer could be generally
limited to 3%. Here the convergence rates of the proposed
Σ∆ observers are also similar to that of the EKF.

Second, by increasing the order of the Σ∆ observer,
the noise rejection performance could be significantly
improved. However, it should also be noted that the
computational effort of second order Σ∆ observer is almost
twice as that of the first order. In addition, stabilizing the
higher-order Σ∆ observer would be difficult due to the
effects of the series-connected integral part.

Third, although the battery model for the proposed Σ∆
observer is built through using the newest cell, it turns
out to be that the proposed method can still work well at
different battery aging conditions. From Fig. 3, the model
accuracy at low SoC is low. However, the SoC error at the
end of the test is not significantly increased through using
the proposed observers. However, it can be seen from Fig. 6
and 7 that the errors of the EKF algorithm increase to 4%
at the end of the test. This fact implies that the proposed
Σ∆ observer is less sensitive on model accuracy, which, in
turn, indicates the reasonability of using a simple OCV-R
model.

5. FURTHER DISCUSSIONS

A light-weighted Σ∆ estimator framework is proposed
in this study, which brings the benefits to significantly
reduce the computatioanl effort of battery SoC estimation.
According to our obtained observations, several further
discussions can be made as:

First, the proposed estimator is an over-sampling based
technique and does not require the noise to be Gaussian.
The noise rejection performance of the proposed technique
is highly related to the external low-pass filter. In this
article, we only used a simple low-pass filter with the form
of (4), leaving room to the further improvement of the
algorithm performance.

Second, the Σ∆ technique can be improved to PI − ∆
(Tang et al. (2018)) or other types of nonlinear PID
controller, which can further improve the stability of the
higher-order observers.

Third, the battery is a highly nonlinear system. How-
ever, when calculating the integration, the voltage error
obtained at different SoC has the same weight in this
study. By using some weighting factors obtained from the
gradient of the OCV-SoC curve, the weighted integral of
the voltage error is able to stand a chance for improving
the algorithm performance.

6. CONCLUSION

Light-weighted SoC estimator is of extreme importance
for enhancing the practicability and reliability of battery
management. In this paper, a first-order sigma-delta and
second-order sigma-delta estimators are proposed for effec-
tively estimating battery SoC under different aging states.
With up to ± 100mV and 100mA measurement noises,
the proposed estimator presents low sensitivity to model
accuracy. Illustrative results show that the second-order
sigma-delta estimator could achieve satisfactory accuracy
with no more than 1.5% of RMSE for various aging bat-
teries. The most distinguishing feature is that the com-
putational effort of this type of estimator is just 15% of
that of the EKF. This competitive performance make the
proposed sigma-delta estimator become a promising tool
to provide satisfactory SoC estimation accuracy and signif-
icant reduced computational effort for general commercial
BMS, further benefiting the reliability and practicability
of battery management in real EV applications.

In the future, the proposed algorithm will be implemented
by pure analog hardware with the redundant design con-
cept for other battery state estimations, and some other
elements such as the thermal behaviour will also be con-
sidered.
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