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Abstract: Multi-energy systems which bring together different forms of energy, such as
electricity, gas and heat, to coordinate in the process of supply, transmission and consumption
provide much higher flexibility over traditional energy systems in energy utilization. This paper
deals with the economic dispatch problem in multi-energy systems in a distributed manner.
Each agent optimizes its local objective function with regard to local coupled limits and a
global constraint via local communications only. A distributed algorithm is proposed based on
duality analysis and splitting methods.This algorithm adopts a non-linear mapping method to
linearize the nonlinearity arisen from coupling relationship among energy carriers. We show that
the proposed algorithm converges at a nonergodic rate of O( 1k ). Simulations are demonstrated
to show the effectiveness of the algorithm.
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1. INTRODUCTION

Energy crisis and environmental pollution urge the reform
of energy consumption patterns and extensive use of re-
newable energy. Multi-energy systems (MESs) in which
different energy forms, e.g., eletricity, heat, cooling, fuels,
interact with each other optimally at different levels (Man-
carella, 2014) was proposed to overcome the challenge.
MESs promote the overall efficiency of energy use and
provide opportunities for most renewable energy sources
that are needed to cope with the intrinsic intermittency
and uncertainty (Mancarella, 2012; Krause et al., 2011;
Huang et al., 2011).
A basic problem in MESs is the economic dispatch (ED)
problem whose objective is to minimize some total op-
erating cost while meeting some constraints caused by
the supply-demand balance and physical limitations. Nor-
mally the concept of energy hub (EH) which represents
an interface between energy producers and energy com-
sumers is used to model the problem since it can explicitly
describe the coupling relationship among various energy
carriers in the systems. As a fundamental issue of energy
management for MESs, the ED based on EH has been
receiving much attention recently. For example, an ED
problem considering power loss was solved by a particle
swarm optimization (PSO) algorithm in (Beigvand et al.,
2017), while (Shi et al., 2017) used an enhanced PSO
together with two stage stochastic linear programming

This research is partially funded by National Key Research and De-
velopment Program of China (No. 2016YFB0901900), NSF of China
under the grants 61922058, and 61521063, and NSF of Shanghai
Municipality of China under grant 18ZR1419900.

method taking into account uncertain renewable energy
resources.
Note that most existing studies used a centralized infras-
tructure. However, energy resources are normally managed
by different entities in MESs which means privacy protec-
tion should be concerned and a center usually does not ex-
ist. A distributed formulation, where each agent optimizes
its local objective function with regard to the constraints
with local communications between its neighbors to obtain
the global optimal solution, is more appropriate in reality.
In fact, distributed ED has been widely studied in tradi-
tional power systems (Molzahn et al., 2017) which can be
viewed as a special case of MESs where only electricity is
involved in the system. Distributed ED of power systems
is also termed as distributed resource allocation problem
whose optimal solution is attained when the marginal costs
are all equal (Lakshmanan and de Farias, 2008), which
indicates that the consensus method can be employed to
solve the problem. (Ziang Zhang et al., 2011; Zhang and
Chow, 2011) proposed a distributed algorithm to solve ED
in smart grid by viewing the incremental cost of each bus
as a consensus variable. But a centralized leader was still
needed to ensure the global constraint. (Kar and Hug,
2012) used a consensus + innovation framework to remove
the center but a decaying stepsize was needed to guarantee
the convergence. (Yang et al., 2013) proposed an algorithm
based on standard Lambda-Iteration method to overcome
this drawback. However, it could only deal with quadratic
cost functions. (Xu et al., 2019) relaxed the cost function
to be convex, differentiable and Lf -smooth, and proposed
a dual splitting approach with a nonergodic convergence
rate of O( 1k ) based on primal-dual protocol.
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It should be noted that various kinds of energy besides
electricity are coupled together in MESs. This is quite
different from traditional power systems and make dis-
tributed ED in MESs relatively new and difficult. The
coupling relationship among energy carriers brings com-
plex constraints to the optimization problem even with
nonlinear factors which makes the feasible set non-convex.
Distributed methods to solve linear coupling problems are
mostly based on augmented Lagrangian method (ALM)
(Zhang and Zavlanos, 2018) and alternating direction
method of multipliers (ADMM) (Carli and Dotoli, 2020;
Falsone et al., 2019). Nevertheless, none of these can deal
with non-linear equality constraints directly while still
guaranteeing the convergence rate.
In this paper, we consider a distributed ED problem in
MESs. We attempt to eliminate the non-linear part in the
constriants and propose a fully distributed dual splitting
algorithm to solve the problem. The contributions of this
paper can be summarized as follows:

1) First, we give the model of ED in MESs and utlize a
non-linear mapping method to transform the original
objective variables to a convex set, which converts
the problem to linear constrained form. By a proper
transformation of primal functions, we apply the dual
splitting method and propose a fully distributed al-
gorithm. The proposed algorithm only requires com-
munication of dual variable.

2) Second, convergence properties are analyzed under
proper assumptions. We show that the algorithm has
a nonergodic convergence rate of O( 1k ) for general
convex cost functions. Moreover, we give the specific
upper bound of stepsize for convergence.

The rest of this paper is organized as follows. First, a
distributed ED problem in MESs is formulated in Section
2. Then, a distributed algorithm is proposed in Section 3.
Convergence analysis is given in Section 4. In Section 5,
simulations are carried out to show the effectiveness of the
algorithm. Finally, Section 6 concludes this paper.

Notations: We use x =
[
xT
1 xT

2 ... xT
m

]T to denote the
collection of local variables xi. Correspondingly, we denote
by xi,k and xk the generated iterates of xi and x at
time k and ∆ is the difference between two consecutive
vectors, e.g., ∆xk+1 = xk+1 − xk. In addition, we use 1
to denote all-ones column vector, ei is the i-th column
of the identity matrix I, ∂g(x) denotes the subgradient
of g at x, f∗(u) = supv∈domf{∥u, v∥ − f(v)} denotes the
convex conjugate of f and proxτϕ(y) = argminx∈H{ϕ(x)+
1
2τ ∥x− y∥2} is the proximal operator.

2. PROBLEM FORMULATION

2.1 EH Model

In this work, we model the problem based on the EH which
consists of a transformer, a combined heat and power
(CHP) and a furnace. The coupling matrix between its
inputs and outputs can be expressed as:

A =

[
ηe,e ηchp,eα
0 ηchp,hα+ ηg,h(1− α)

]
, (1)

CHP
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Fig. 1. The basic structure of an EH.

where ηe,e, ηchp,e, ηchp,h and ηg,h represent the conversion
efficiency of transformer, CHP (gas-electricity), CHP (gas-
heat) and gas furnace respectively, and 0 < α < 1 is the
dispatch factor of natural gas to be allocated to the CHP.

2.2 Communication Network Model

Viewing each EH as a node, we can model the communi-
cation network by an undirected gragh G = (V, E). Each
edge eij ∈ E indicates that nodes i and j can communi-
cate with each other. Denote the neighbors of node i by
Ni = {j|j ∈ V, eij ∈ E} ∪ {i}. Define a weight matrix
W = (wij)m×m of graph G with wij > 0 if j ∈ Ni and
wij = 0 otherwise.
Assumption 1. Matrix W is symmetric positive definite
and doubly stochastic, i.e., W1 = 1, 1TW = 1T . More-
over, the spectral radius ρ(W − 11T

m ) is less than one.

2.3 ED Problem in MESs

Consider the MES consisting of m EHs each of which
is responsible for the energy supply of a certain area
in collaboration with other EHs. Each EH connects to
the electricity bus as well as the gas pipeline, some of
which have local generators and can purchase natural
gas from local gas companies. The extra electricity and
gas can be transmitted to other EHs. In this paper,
without considering the energy loss, we study the following
economic dispatch problem of minimizing the cost function
C(s) that is the sum of all the electricity generation costs
Ce

i (s
e
i ),∀i and gas purchasing costs Cg

i (s
g
i ),∀i.

min
{s,p,α}

C(s) =

m∑
i=1

(Ce
i (s

e
i ) + Cg

i (s
g
i ))

s.t.

m∑
i=1

si =

m∑
i=1

pi,

Aipi = li,∀i,
si ⪯ si ⪯ si,∀i,
0 ≤ αi ≤ 1,∀i,
pi ⪰ 0,∀i, (2)

where, si =
[
sei sgi

]T
,∀i denotes the local power produced

by the generator and local gas power bought from gas com-
pany, αi,∀i is the local dispatch factor, pi =

[
pei pgi

]T
,∀i

denotes the electricity and gas power that each EH con-
sumes, li =

[
lei lhi

]T
,∀i is the local demand of electricity

and heat power, Ai,∀i is the local coupling matrix defined
by (1), si =

[
sei sgi

]T
,∀i and si =

[
sei sgi

]T
,∀i are lower
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and upper bounds of local generating capacity limit and
local gas power limit.
The objective of this paper is to solve problem (2) in a
distributed approach.

3. DISTRIBUTED ED ALGORITHM VIA DUAL
SPLITTING

In this section, we first use a non-linear mapping method to
convert the problem to a linear constrained form and then
propose a distributed algorithm based on dual splitting
method.

3.1 Linearization of Constraints

Note that Aipi = li of problem (2) is actually a non-linear
equality constraint for each i, since the variables pi and αi

are coupled by referring to (1). This makes the problem
(2) non-convex.
To eliminate the non-linear part, we define a set of non-
linear mappings σi : R → R as σi(x) =

lhi (η
chp,h
i

−ηg,h
i

)x

ηchp,h
i

x+ηg,h
i

(1−x)
, ∀i.

Letting βi = σi(αi),∀i, we can rewrite the local equality
constraints in (2) as

pi = di − βiui, ∀i, (3)
where

di =

[
lei
ηe,ei

lhi

ηg,hi

]T
, ui =

[
ηchp,ei

ηeei (ηchp,hi − ηg,hi )

1

ηg,hi

]T

.

Let Di = [e1 e2 ui] and xi =
[
sei sgi βi

]T . We can
merge the local coupling equalities into the global one and
conclude the constraints as an overall equality term

m∑
i=1

Dixi =

m∑
i=1

di (4)

with the local limits xi ⪯ xi ⪯ xi, where xi =
[
sei sgi βi

]T
and xi =

[
sei sgi βi

]T . From the definition of βi, we have

βi = max

{
ηchp,hi − ηg,hi

ηchp,hi

lhi ,
ηchp,hi − ηg,hi

ηchp,ei

lei

}
, βi = 0.

The problem is turned into a convex one since the equality
constraint (4) together with these new inequality con-
straints forms a convex feasible set and the objective
function has nothing changed.
Encoding di in the initial value of xi, and using an
indicator function gi to denote the regularization term
encoding certain feasible set {xi = (sei , s

g
i , βi)|sei ≤ sei ≤

sei , sgi ≤ sgi ≤ sgi , βi ≤ βi ≤ βi},∀i, the ED problem (2)
can be rewritten as

min ϕ(x) =

m∑
i=1

(fi(xi) + gi(xi))

s.t.

m∑
i=1

Dixi = 0, (5)

where fi(xi) = Ce
i (s

e
i ) + Cg

i (s
g
i ),∀i.

Assumption 2. The function gi is proper, closed and con-
vex, and fi is convex, differentiable and Lfi −smooth, i.e.,

∥∇fi(x
′
i)−∇fi(xi)∥ ≤ Lfi ∥x′

i − xi∥ ,∀i.

3.2 Dual Decomposition

Minimizing ϕ(x) is equivalent to maximizing −ϕ(x). The
global Lagrangian for (5) is given by

L(λ, x) = −ϕ(x) + λT
m∑
i=1

Dixi.

Let yi,∀i be the duplicates of the dual variable shared by
all agents with conditions yi = yj ,∀i, j ∈ V. The dual
problem of (5) can be viewed as a consensus problem as
follows

min φ(y) =

m∑
i=1

φi(yi)

s.t. yi = yj ,∀i, j ∈ V, (6)
where φi(yi) = supxi

{−ϕi(xi) + yTi Dixi},∀i denotes the
local dual funcion and ϕi(xi) = fi(xi) + gi(xi),∀i.

3.3 Algorithm Development

Consider the functions
hi(ξi) = inf

xi,Dixi=ξi
{ϕi(xi)},∀i.

We have
h∗
i (yi) = − inf

yi

{ inf
xi,Dixi=ξi

{ϕi(xi)} − yTi ξi}

= − inf
yi

inf
xi,Dixi=ξi

{ϕi(xi)− yTi ξi}

= − inf
xi

{ϕi(xi)− yTi Dixi},∀i.

Hence hi and φi are conjugates of each other, and it is
easy to see that problem (5) is equivalent to

min H(ξ) =

m∑
i=1

hi(ξi)

s.t.

m∑
i=1

ξi = 0. (7)

To solve the primal-dual problem, inspired by the work
(Xu et al., 2018), we propose the following algorithm:

yi,k+1 = proxτφi

∑
j∈Ni

wijyi,k + τξi,k


ξi,k = ξi,k − 1

τ

yi,k+1 −
∑
j∈Ni

wijyi,k+1

 ,∀i, (8)

where τ > 0 is a certain tuning parameter. Note that the
first update yi,k+1 involves proxτφi

(·), which is computa-
tionally forbidden for nodes. To amend it, we introduce
auxiliary variables zi,∀i as in (Xu et al., 2019). Let zi,k =
proxhi/τ ((

∑
j∈Ni

wijyi,k + τξk)/τ). By Moreau identity
(Bauschke and Combettes, 2011, Th. 14.3) proxτh∗(s) =
s − τproxh/τ (s/τ), we have yi,k+1 =

∑
j∈Ni

wijyi,k +

τ(ξi,k − zi,k). Thus yi,k+1 ∈ ∂h(zi,k). We further relax
it to yi,k+1 ∈ ∂h(zi,k+1) to ease the computation burden.
It follows that

hi(zi)− hi(zi,k+1) ≥ yTi,k+1(zi − zi,k+1),

which indicates that
zi,k+1 ∈ argmin

zi
{hi(zi)− yTi,k+1zi}. (9)
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Algorithm 1: Distributed ED algorithm in MESs
Initialization: set ξi,0 = di, and yi,0, zi,0 arbitrarily
assigned.
Step 1: Node i updates

yi,k+1 =
∑

j∈Ni
wijyj,k + τ(ξi,k −Dixi,k).

Step 2: Node i updates
ξi,k+1 = ξi,k − 1

τ
(yi,k+1 −

∑
j∈Ni

wijyj,k+1).

Step 3: Node i updates
xi,k+1 = proxγgi

(xi,k − γ(∇fi(xi,k)−DT
i (2yi,k+1 − yi,k))).

Step 4: Node i computes
(sei,k+1, s

g
i,k+1

, βi,k+1) = xi,k+1,

αi,k+1 =
η
g,h
i

βi,k+1

(η
g,h
i

−η
chp,h
i

)(βi,k+1−lh
i
)
,

and obtains pi,k+1 through (3).
Step 5: Set k→ k+1 and go to Step 1 until certain
stopping criterion is satisfied.

We use the splitting method mentioned in (Bauschke and
Combettes, 2011) and seek the optimum of zi,k+1 by
solving the augmented counterpart of (9) as

min
zi

{
hi(zi)− yTi,k+1zi +

ϵ

2

∥∥∥ξ̃i,k − zi

∥∥∥2} , (10)

where ξ̃i,k = 2ξi,k − ξi,k−1 and ϵ is the penalty parameter.
We use the definition of hi to write (10) as

inf
zi
{ inf
xi,Dixi=zi

{ϕi(xi)} − yTi,k+1zi +
ϵ

2

∥∥∥ξ̃i,k − zi

∥∥∥2}
= inf

zi
inf

xi,Dixi=zi
{ϕi(xi)− yTi,k+1zi +

ϵ

2

∥∥∥ξ̃i,k − zi

∥∥∥2}
= inf

xi

{ϕi(xi)− yTi,k+1Dixi +
ϵ

2

∥∥∥ξ̃i,k −Dixi

∥∥∥2},
which indicates that (10) is equivalent to finding the
optimum of xi,k+1 by solving

min
xi

{ϕi(xi)− yTi,k+1Dixi +
ϵ

2

∥∥∥ξ̃i,k −Dixi

∥∥∥2}. (11)

We employ the proximal gradient descent method and
obtain
xi,k+1 = proxγgi(xi,k − γ(∇fi(xi,k)−DT

i (2yi,k+1− yi,k))).

Together with the updates of yk+1 and ξk+1, the proposed
algorithm is summarized in Algorithm 1.
Remark 3. Although we use an approximation term to
minimize xi in (11) which requires infinite times to con-
verge to the solution, we will show that the algorithm still
converges when Step 3 runs once per iteration. Step 4
converts variable x to original variables in problem (2).
Remark 4. It is easy to see that the proposed algorithm
can be carried out in a distributed manner in that each
node only requires information from its neighbors at each
iteration. Besides, since the only information communi-
cated directly is the dual variable, the algorithm is privacy
preserved.

4. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of
the proposed algorithm.

At each iteration k, let qk =
[
yTk ξTk xT

k

]T and {qk}k≥0

denote the sequence generated by the proposed algorithm.
Lemma 5. Consider the iterates {ξk}k≥0 generated by the
algorithm. Suppose that Assumption 1 holds, then we have
1T ξk+1 = 1T ξk for all k ≥ 0.

Proof. We write Step 2 in Algorithm 1 as

ξk+1 = ξk − 1

τ
(I −W )yk+1,

where W = W ⊗ Id and d is the dimension of yi.
By Assumption 1, we have 1T ξk+1 = 1T ξk − 1

τ (1
T −

1TW )yk+1 = 1T ξk.

Next, we establish two important lemmas for further anal-
ysis. The proofs can be shown following similar arguements
in (Xu et al., 2019). So we omit the details of the proofs.
Lemma 6. If γ < 2

2τρ+Lf
, then

∥∆qk+1∥2G < ∥∆qk∥2G ,∀k ≥ 0,

where Lf = max{Lfi}, G =

 W 0 −τD
0 τ2Q−1 0

−τDT 0
τ

γ
I

,

Q = (I − W + 11T

m ), ρ = ρ(DTW
−1

D), D =

diag(D1, D2, ..., Dm) and ∥·∥2G = ⟨G·, ·⟩.
Lemma 7. Let S be the optimal set and (y∗, b∗, z∗) ∈ S
be an optimal solution pair to the primal-dual problem.
Given that γ < 1

τρ , we have

∥qk+1 − q∗∥2G − ∥qk − q∗∥2G + ∥∆qk+1∥2G
≤ −2τ ⟨∇f(xk)−∇f(x∗), xk+1 − x∗⟩ ,∀k ≥ 0. (12)

Theorem 8. Suppose Assumptions 1 and 2 hold. If γ <
1

τρ+2Lf
, then the sequence {(yk, xk)}k≥0 generated by

Algorithm 1 will converge to an optimal set {(y∗, x∗)} at
a nonergodic rate of O( 1k ).

Proof. We define the Lyapunov function as
Vk = ∥qk − q∗∥2G − 2τDf (x

∗, xk), (13)
where Df (x, y) = f(x) − f(y) − ⟨∇f(y), x− y⟩. We first
state the decrease of the Lyapunov function at every
iteration k.
Reranging the terms of (12) with the convexity of f taken
into consideration, we can obtain

Vk − Vk+1 ≥ ∥∆qk+1∥2G − 2τDf (xk+1, xk). (14)
By Assumption 2, we have

Df (xk+1, xk) ≤ Lf ∥∆qk+1∥2I′ . (15)
If γ < 1

τρ+2Lf
, we have H − 2τLfI

′
> 0 by Schur

complement lemma. Then (14) can be rewritten as
Vk − Vk+1 ≥ ∥∆qk+1∥2G−2τLf I

′ . (16)
Letting ς = γ

1−τγρ , we have ς < 1
2Lf

. Let c ∈ (ς, 1
2Lf

). Then
G− τ

c I
′
> 0, i.e., 2τLfI

′
< 2cLfG, which, combined with

(16) indicates that Vk − Vk+1 > 0. Similarly we have
Vk ≥ ∥qk − q∗∥2G−2τLf I

′ > 0.

Summing (16) from 1 to k over t we obtain

(1− 2cLf )

k∑
t=1

∥∆qt+1∥2G < V0 − Vk+1 ≤ V0.

Since c < 1
2Lf

, we obtain
k∑

t=1

∥∆qt+1∥2G <
V0

1− 2cLf
. (17)
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Combining (17) with Lemma 6 yields

∥∆qk+1∥2G <
1

k

k∑
t=1

∥∆qt+1∥2G <
V0

k(1− 2cLf )
(18)

and that limk→∞ ∥∆qk+1∥G = 0. From (16) we know that
xk and yk are bounded. The sequence {(yk, xk)}k≥0 thus
has at least a cluster point (y∞, x∞) and the corresponding
subsequence {(yki , xki)}i≥0. Taking the limit along ki →
∞ we obtain that the cluster point is a saddle point of
the primal-dual problem. Since {Vk}k≥0 converges and is
contractive with respect to the optimal set S, (y∞, z∞) is
the unique cluster point (Bauschke and Combettes, 2011,
Th. 5.5) and (He and Yuan, 2012, Th. 3.7). It then follows
that {(yk, xk)} will converge to a unique point of the
optimal set of S. From (18) we know that ∥∆qk+1∥2G will
decrease to 0 at a rate of O( 1k ). Thus, we can conclude
that the sequence {(yk, xk)} will converge to a solution
pair (y∗, x∗) at a nonergodic rate of O( 1k )

5. SIMULATION

In this section, we report simulation results to show the
effectiveness of the proposed algorithm.

5.1 Parameter Settings

We condider a system based on the modified IEEE 14-bus
network. A pipeline network as well as an EH are added
at each bus to the system. The structure of the system is
shown in Fig 2. There are five generators at nodes 1, 2, 3,
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Fig. 2. Structure of the MES.

Table 1. Parameter settings of generators

G G1 G2 G3 G6 G8
ae(mu/pu2) 0.12 0.08 0.09 0.05 0.13
be(mu/pu) 12.0 13.0 12.5 13.2 11.5

ce 0 0 0 0 0
[se, se](pu) [0,200] [0,150] [0,175] [0,210] [0,200]
1 [mu] denotes monetary unit and [pu] denotes power unit.

Table 2. Parameter settings of natural gas
companies

GC GC1 GC2 GC4 GC6 GC8
ag(mu/pu2) 0.033 0.023 0.042 0.033 0.012
bg(mu/pu) 5.8 6.0 5.5 6.3 6.6

cg 0 0 0 0 0
[sg , sg ](pu) [0,200] [0,275] [0,150] [0,175] [0,375]

6 and 8 and five local gas companies at nodes 1, 2, 4, 6, 8,

respectively. The energy conversion coefficients ηe,e, ηchp,e,
ηchp,h and ηg,h are selected as 0.98, 0.35, 0.4 and 0.9. In
this paper, the cost functions are approximately modeled
as quadratic functions, i.e., Ci(s

e
i ) = aei (s

e
i )

2+ bei s
e
i + cei ,∀i

and Ci(s
g
i ) = agi (s

g
i )

2 + bgi s
g
i + cgi ,∀i. The cost parameters

and local limits of each EH are listed in Table 1 and
Table 2. We choose the weight matrix W as I − L/m,
where L denotes the Laplacian matrix of the graph.
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Fig. 3. Simulation results:(a)Electricity produced by gen-
erators; (b)Gas purchased from companies; (c)The
supply-demand power mismatches at the input side
of EHs.

5.2 Simulation Results

We initialize the electricity and heat demands at each
bus as [60,10], [21.7,25.2], [66.2,15], [47.8,25.3], [17.6,5],
[11.2,25], [4,3], [5,36.8], [29.5,20], [9,5], [3.5,7], [6.1,14],
[13.5,10.5] and [14.9,10], respectively. The historical evolu-
tion of the energy supply and mismatches between energy
supply and demand of EHs are shown in Fig. 3. It can
be observed that the energy supply converges to a fixed
point in several iterations. A balance between supply and
demand is reached when all the objective variables reach
to a steady state. We compare the results of our proposed
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Table 3. Simulation results
G/GC G1/N1 G2/N2 G3/N4 G6/N6 G8/N8

DA se 67.7100 39.0650 62.5022 42.5040 81.7323
sg 44.8326 59.7337 38.7971 37.2569 89.9564

CA se 67.7040 39.0608 62.5158 42.5115 81.7236
sg 44.8321 59.9773 38.7968 37.2567 89.9542

2 [DA] denotes the proposed distributed algorithm and [CA]
denotes the centralized algorithm.

algorithm with a centralized algorithm as is shown in
Table 3. We can see that the proposed algorithm can
exactly find an optimal solution.
After it converges to an optimal point, we increase the
demand by 20% for each load to test the perfomance in

0 50 100 150 200 250 300 350
Iterations
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100
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|

Fig. 4. Convergence of the proposed algorithm with differ-
ent τ , γ.

response to the demand change under different parameter
settings. Fig 4 depicts the convergence results. It can
be seen that we can increase the stepsize to accelerate
the iteration but the convergece will be broken when the
stepsize exceeds a certain upper bound.

6. CONCLUSION

In this paper, we proposed a distributed algorithm to solve
the ED problem in MESs based on non-linear mapping
methods and dual splitting techniques. We have showed
that the algorithm is able to find the optimal solution
of the problem for general convex cost functions with a
nonergodic convergence rate of O( 1k ) when the stepsize is
within a specific range. In addition, the alogrithm works
well for large-scale systems and allows for generators plug-
and-play. Since we modelled our communication network
as an undirected fixed graph, more general situations such
as directed and time-varying networks can be taken into
account for future work.
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