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Abstract: This paper is concerned with robust finite-time L1-gain control problem for impulsive
positive systems (IPSs). By adopting the average impulsive interval technique, sufficient
conditions ensuring the finite-time boundedness of IPSs under L1-gain characterization are
formulated. The design of a feedback controller is also addressed to make the closed-loop system
be positive, finite-time bounded (FTB), and have L1-gain characterization. Results are presented
in the form of linear programming (LP) inequalities. Finally, a numerical example is given to
demonstrate the efficiency of the proposed design.
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1. INTRODUCTION

Positive systems are dynamic systems whose state vari-
ables and outputs stay in the positive orthant whenever
their initial states and inputs are nonnegative. In fact,
positive systems have wide applications in numerous ar-
eas such as chemical processes, mechanical systems, and
biology (Johnson (2006); Shorten et al. (2006); Farina
and Rinaldi (2011)). In the past decades, numerous sig-
nificant contributions for positive systems have appeared,
(see Zhao et al. (2014); Xiao et al. (2016); Zhang et al.
(2016); Liu et al. (2018); Qi et al. (2019)). Note that there
always exist instantaneous jump phenomena in the process
of system dynamics, which can be described by impulsive
systems (Ma et al. (2019)). Recently, impulsive positive
systems (IPSs), which consist of positive continuous dy-
namics and positive discrete dynamics, have been noticed
by some researchers, some important results have been
reported in (Hu et al. (2017); Wang et al. (2014); Yang
and Zhang (2019); Liu et al. (2015); Hu et al. (2019)).

When the system state doesn’t overstep a settled bound
within a specified time period if a prescribed bound on
the initial conditions is given, the system is finite-time
stable/ bounded (FTB) (Amato et al. (2011)). For positive
systems, contributions can be found in (Chen and Yang
(2014); Zhang et al. (2014b); Hu et al. (2019); Qi and Gao
(2015)).

On the other hand, the input-output performance which
can characterize the ability of anti-disturbance is a signifi-
cant index for dynamic systems. Research works of L1-gain
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characterization of positive systems are reported in (Zhang
et al. (2015); Wang and Zhao (2017); Xiang et al. (2017);
Qi et al. (2017)). Combining with the importance and
necessity of finite-time stability/ boundedness in practice,
it is an important issue that designing a controller to
achieve the finite-time stability/ boundedness and L1-gain
characterization of the controlled system. However, as we
know, there is few result available on the finite-time L1-
gain controller design for IPSs, which motivates this study.

In this study, the robust finite-time L1-gain control prob-
lem for IPSs is studied. A criterion is established to make
IPSs be FTB under L1-gain performance by applying
the average impulsive interval method. Then, a feedback
controller is proposed to guarantee that the closed-loop
system is positive, FTB, and has L1-gain performance.
The results are solved through the linear programming
(LP) technique. A numerical example is presented to val-
idate the efficiency of the obtained results.

Notations: Rn
+ means the positive orthant of Rn. 1-

norm of a vector z ∈ Rn is ∥z∥ =
∑n

k=1 |zk|. zi refers
to the ith element of z. z ≻ 0, (z ≽ 0) means zi > 0
(zi ≥ 0). max{z} and min{z} means the maximum and
the minimum component of z, respectively. Matrix M is
nonnegative (non-positive, positive and negative) refers to
M ≽ 0(≼ 0,≻ 0,≺ 0). Vector 1 refers to [1, ..., 1]T .

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following impulsive systems:
ẋ(t) = Ax(t) +Bu(t) +Dω(t), t ̸= tk, k = 1, 2, ...,
x(t) = Hx(t−), t = tk,
z(t) = Cx(t) + Fω(t),
x(t0) = x0,t0 = 0,

(1)
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where x(t) ∈ Rn is system state, u(t) ∈ Rr×n is the input
control. z(t) is the system output. ω(t) ∈ Rn

+ denotes the
exogenous disturbance vector and belongs to L1[0, tf ). A,
B, D, H, C, and F are known matrices with appropriate
dimensions. σ = {tk} = {t1, t2, t3, ...} is an impulsive
sequence with 0 < t1 < t2 < t3 < ... < tk−1 < tk < ...,
where limk→∞tk → ∞. x(t+k ) = lim

s→0+
x(tk + s) and

x(t−k ) = lim
s→0−

x(tk + s). We assume that the system state

is right continuous, then x(tk) = x(t+k ).

The feedback controller is

u(t) = Kx(t), (2)

where the gain matrix K ∈ Rr×n is to be designed.

The closed-loop system of (1) and (2) is formulated as
follows

ẋ(t) = (A+BK)x(t) +Dω(t), t ̸= tk, k = 1, 2, ...
x(t) = Hx(t−), t = tk,
z(t) = Cx(t) + Fω(t),
x(t0) = x0,t0 = 0.

(3)

We will introduce some definitions and lemmas which are
necessary for theoretical analysis.

Lemma 1. (Zhang et al. (2014a)). If and only if A is
Metzler, H ≽ 0, D ≽ 0, C ≽ 0, and F ≽ 0, then impulsive
system (1) without u(t) is positive.

Lemma 2. (Horn (1994)). If and only if there exists a
scalar ξ such that A+ ξI ≽ 0 holds, then A is Metzler.

Definition 1. (Lu et al. (2010)). If there exist N0 ∈ N such
that

t− t0
τa

−N0 ≤ Nσ(t, t0) ≤
t− t0
τa

+N0, ∀t ≥ t0, (4)

where Nσ(t, t0) is the number of impulsive jumps over
(t0, t), then the average impulsive interval of the impulsive
sequence is τa.

Definition 2. (Zhang et al. (2015)). Given positive con-
stants tf , c1, c2 , where c1 < c2, an initial time t0, and a
vector l ≻ 0, the IPS (3) is FTB w.r.t. (c1, c2, tf , l, σ) if

x(t0)
T l 6 c1 ⇒ xT (t)l 6 c2, ∀t ∈ [t0, tf ]. (5)

Definition 3. (Zhang et al. (2015)). System (3) with u(t) =
0 has a finite-time L1-gain γ, if

(1) System (3) is FTB w.r.t. (c1, c2, tf , l, σ);

(2) Under zero initial condition, there exist positive scalars
δ, ς, and γ such that for nonzero ω(t),

δ

∫ tf

t0

e−ςt ∥z(t)∥dt 6 γ

∫ tf

t0

∥ω(t)∥dt (6)

holds.

3. MAIN RESULTS

In this section, the robust finite-time L1-gain control prob-
lem of IPSs is investigated. First, a sufficient criterion
ensuring the L1-gain performance and finite-time bound-
edness of system (3) is proposed.

Here, in order to keep the positivity of impulsive system
(1) with u(t) = 0, we assume that A is Metzler, H ≽ 0,
C ≽ 0, D ≽ 0, and F ≽ 0.

Theorem 1. Consider system (3), for some positive con-
stants tf , α, µ > 1, λ, h, v− and v̄, an integer N0 ∈ N,
a scalar ξ, and a vector l ∈ Rn

+, if there exist a positive
scalar γ ≤ λ, a vector v ≻ 0, and a matrix K such that
the following equalities hold,

A+BK + ξI ≽ 0, (7)

((A+BK)T − αI)v + CT1n ≼ 0, (8)

DT v + FT1n − γ1n ≼ 0, (9)

(HT − µI)v ≼ 0, (10)

v−1n ≼ v ≼ v̄1n, (11)

and the average impulsive interval τa satisfies

τa > max{ lnµ
α
,

tf lnµ

lnκ− ln ρ− αtf
}, (12)

where c1 and c2 are prescribed scalars with c1 < c2,

ρ = v̄
l−
c1 + λh, κ =

v−c2

l̄
µ−N0 with κ > ρeαtf , in which

l̄ = max{l} and l− = min{l}. Then, system (3) is positive,

robust FTB w.r.t. (c1, c2, tf , l, σ), and has L1-gain γ over
the impulsive sequence σ.

Proof. Proof can be carried out through three steps.

(1) The positivity of system (3)

According to Lemma 2, we have A + BK is a Metzler
matrix from inequality (7). In addition, H ≽ 0, D ≽ 0,
C ≽ 0, and F ≽ 0, from Lemma 1, we have system (3) is
positive.

(2) Finite-time boundedness of system (3)

Select a copositive Lyapunov function in what follows:

V (t) = xT (t)v. (13)

For the impulsive interval t ∈ [tk−1, tk), k = 1, 2, ..., the
derivative of V (t) can be calculated:

V̇ (t)− αV (t)

= xT (t)((A+BK)T − αI)v + ωT (t)DT v. (14)

By inequalities (8) and (9), we can obtain

V (t) 6 eα(t−tk−1)V (tk−1)+λ

∫ t

tk−1

eα(t−s) ∥ω(t)∥ ds. (15)

For the impulsive instants t = tk, k = 1, 2, ..., from
inequality (10), we have

V (tk) = xT (tk)v = xT (t−k )H
T v

6 µxT (t−k )v = µV (t−k ). (16)

Combining (15) and (16) yields

V (t) 6 µNσ(t,t0)eα(t−t0)V (t0)

+λ

∫ t

t0

eα(t−s)µNσ(t,s) ∥ω(s)∥ ds. (17)
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Since µ > 1, together with (4), we have

V (t) 6 e(α+
lnµ
τa

)tfµN0(V (t0) + λh). (18)

From the inequality (11), we have

V (t0) = xT (t0)v 6 v̄

l−
xT (t0)l, (19)

and

V (t) >
v−

l̄
xT (t)l. (20)

Substituting (19) and (20) into (18), we can derive that

xT (t)l 6 l̄

v−
µN0e(α+

lnµ
τa

)tf (
v̄

l−
xT (t0)l + λh). (21)

When xT (t0)l 6 c1 holds, from inequality (12), we have

xT (t)l 6 c2, (22)

which implies by Definition 2 that system (3) is FTB w.r.t.
(c1, c2, tf , l, σ).

(3) L1-gain characterization analysis of system (3)

For the impulsive interval t ∈ [tk−1, tk), k = 1, 2, ..., let
ψ(t) = γ ∥ω(t)∥ − ∥z(t)∥, we have

V̇ (t)− αV (t)− ψ(t)

=
(
xT (t) ωT (t)

)( ((A+BK)
T − αI)v + CT1n

DT v + FT1n − γ1n

)
.(23)

From (8) and (9), we can obtain when t ∈ [tk−1, tk),
k = 1, 2, ...,

V (t) 6 eα(t−tk−1)V (tk−1) +

∫ t

tk−1

eα(t−s)ψ(s)ds. (24)

For t = tk, k = 1, 2, ..., by inequality (10), we can obtain

V (tk) 6 µV (t−k ), (25)

together with (24), we have for t > t0,

V (t) 6 µNσ(t,t0)eα(t−t0)V (t0)

+

∫ t

t0

eα(t−s)µNσ(t,s)ψ(s)ds. (26)

When the initial condition is set to be zero, since µ > 1,
by (4) and (12), we have

µ−N0

∫ t

t0

e−αs ∥z(s)∥ ds 6 γ

∫ t

t0

∥ω(s)∥ ds. (27)

Thus, inequality (6) holds. Therefore, by Definition 3,
system (3) is positive, FTB w.r.t. (c1, c2, tf , l, σ), and has
an L1-gain γ. This completes the proof. �

By applying Theorem 1, the following theorem will be
proposed to design the finite-time L1-gain controller.

Theorem 2. Consider system (3) with B ≻ 0, if for
prescribed positive constants tf , α, µ > 1, λ, h, v− and

v̄, integer N0 ∈ N, a scalar ξ, and vectors l ∈ Rn
+ and

p ∈ Rn
+, there exist a positive scalar γ ≤ λ, and vectors

v ≻ 0 and g such that the following equalities hold,

pTBT vA+BpgT + ξI ≽ 0, (28)

(AT − αI)v + CT1n + g ≼ 0, (29)

DT v + FT1n − γ1n ≼ 0, (30)

(HT − µI)v ≼ 0, (31)

v−1n ≼ v ≼ v̄1n, (32)

and the average impulsive interval τa satisfies

τa > max{ lnµ
α
,

tf lnµ

lnκ− ln ρ− αtf
}, (33)

where constants c1, c2 with c1 < c2, κ =
v−c2

l̄
µ−N0 ,

ρ = v̄
l−
c1 + λh with κ > ρeαtf , in which l̄ = max{l} and

l− = min{l}, then system (3) with controller

u(t) = Kx(t) =
pgT

pTBT v
x(t) (34)

is positive, robust FTB w.r.t. (c1, c2, tf , l, σ), and has an
L1-gain γ over the impulsive sequence σ.

4. ILLUSTRATIVE EXAMPLES

In this section, an example is given to demonstrate the
efficiency of designed finite-time L1-gain controller.

Example 1: Consider system (3) with:

A =

(
−0.16 0.5
0.44 −0.2

)
,H =

(
1.05 0.2
0.05 0.85

)
, B =

(
0.3
0.3

)
,

D =

(
0.026 0.03
0.032 0.026

)
, C =

(
0.01 0.02
0.003 0.03

)
,

F =

(
0.006 0.005
0.008 0.009

)
,

and the exogenous disturbance is ω(t) =
(
0.1e−t 0.1e−t

)T
,

then h = 0.2.
Let parameters be c1 = 0.09, c2 = 1, the finial time

of finite-time interval be tf = 8, l = ( 0.6 0.6 )
T
, and

τa = 1.1.
The initial state is selected as [ 0.1 0.05 ]T , which satisfies
the initial constraint x(t0)l ≤ c1. When the controller
u(t) = 0, the state simulation is presented in Fig. 1.
Fig. 2 displays the simulation of xT (t)l. We can observe
that xT (t)l is greater than c2 when t ≥ 6.427s, which
suggests that the system without control is not FTB w.r.t.
(c1, c2, tf , l, σ).

According to Theorem 2, we select α = 0.09, λ = 0.1,
v̄ = 1.6, v− = 0.642, µ = 1.1 and N0 = 0 satisfying the

condition (33). Choose parameters γ = 0.1, ξ = 1 and

p = ( 1 1 )
T
. Other parameters are the same as those in
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Fig. 1. State evolution of the open-loop system.

t(s)
0 1 2 3 4 5 6 7 8

xT
(t

)l

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 2. Simulation of xT (t)l for the open-loop system.

the open-loop simulation. By solving the inequalities (28)-
(32) by the LP approach, we obtain one feasible solution
as follows

g = (−0.2748 −0.4377 )
T
, v = ( 1.5074 1.4180 )

T
.

Thus, by (34), the matrix K is calculated as:

K = (−0.3131 −0.4988 ) .

Choose the same initial state as that in the open-loop
simulation. The state response of the closed-loop system is
illustrated in Fig. 3. Fig. 4 shows the simulation of xT (t)l.
We can find that with the controller designed in this paper,
the system is positive, robust FTB w.r.t. (c1, c2, tf , l, σ),
and has the L1-gain lever γ = 0.1, which validate the
efficiency of the present design.

5. CONCLUSION

This study has considered the robust finite-time L1-gain
control design problem for IPSs. By utilizing the average
impulsive interval method, a sufficient criterion has been
formulated to make IPSs be FTB with L1-gain charac-
terization. Then, a controller design problem has been
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Fig. 3. State evolution of the closed-loop system.
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Fig. 4. Simulation of xT (t)l for the closed-loop system.

studied, and the closed-loop system can be positive, FTB,
and has L1-gain characterization. The results have been
solved through the LP technique. Finally, a numerical
example has been provided to validate the efficiency of
the controller.
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